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Abstract. In this paper, we introduce and study the concepts of
stable convergence and square-norm convergence of bounded linear
operators on ultrametric Banach spaces. We establish a results on
convergence and error estimates of operators and we prove many re-
sults related to the stable convergence, the square-convergence and
the completely compact convergence on ultrametric Banach spaces.
Finally, we give several examples about them.
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1. Introduction

In the classical setting, Anselone [4] introduced and studied the collec-
tively compact convergence of bounded linear operators and he applied
it to numerical integration approximations of integral operators. There
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are many other concepts of the convergence as the norm convergence,
the pointwise convergence and the ν-convergence in [3].

In ultrametric operator theory, the authors [1] extended and stud-
ied the concepts of the collectively compact convergence and the ν-
convergence of bounded linear operators on ultrametric Banach spaces.

Throughout this paper, E and F are ultrametric Banach spaces over
an ultrametric complete valued field K with a non-trivial valuation | · |,
L(E,F ) is the set of all bounded linear operators from E into F and Qp

denotes the field of p-adic numbers. For more details, see [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 21].

Remember that a free Banach space E is an ultrametric Banach space
for which there is a family (ei)i∈N in E\{0} such that any u ∈ E is
written as the form u =

∑
i∈N

xiei, xi ∈ K and ∥u∥ = sup
i∈N

|xi|∥ei∥. The

family (ei)i∈N is called an orthogonal basis.
In this paper, the appproximation of the solutions of the problem of

the form
Ax = y, (1.1)

where A ∈ L(E,F ) is studied. Consider
Anxn = yn, (1.2)

where An ∈ L(E,F ). We will suppose that (1.1) is well-posed i.e., A is
bijective and A−1 : F → E.

2. Preliminaries

We begin with some preliminaries.

Definition 2.1 ([1]). Let E be an ultrametric Banach space over K, let
A, (An) ∈ L(E). Then

(i) The sequence (An)n is said to be norm convergent to A denoted
by An → A if lim

n→∞
∥An −A∥ = 0;

(ii) The sequence (An)n is said to be pointwise convergent to A,

denoted by An
p→ A, if for all x ∈ E, lim

n→∞
∥Anx−Ax∥ = 0.

Theorem 2.2 ([21]). Let E be an ultrametric Banach space over K and
let F be an ultrametric normed space over K. If S is a subset of L(E,F )
with for each x ∈ E, the set {Ax : A ∈ S} is bounded in F, hence S is a
bounded set in L(E,F ).

Corollary 2.3 ([21]). Let E be an ultrametric Banach space over K and
let F be an ultrametric normed space over K. If (An)n∈N is a sequence
in L(E,F ) such that for each x ∈ E,Ax = limn→∞Anx exists, then
A ∈ L(E,F ).
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Definition 2.4 ([1]). Let E be an ultrametric Banach space over a
locally compact field K and let A,An ∈ L(E). A sequence (An)n∈N
is said to be convergent to A in the collectively compact convergence,
denoted by An

c.c→ A, if An
p→ A and for some N ∈ N,∪

n≥N

{(An −A)x : x ∈ E, ∥x∥ ≤ 1}

has compact closure of E.

Lemma 2.5 ([7]). Let E be an ultrametric Banach space over K. Let
A ∈ L(E) with ∥A∥ < 1, hence (I −A)−1 exists and ∥(I −A)−1∥ ≤ 1.

3. Main results

The following lemma holds.

Lemma 3.1. Let E be an ultrametric Banach space over K. Let A ∈
L(E) with ∥Ak∥ < 1 for some k ∈ N, hence (I −A)−1 exists and

∥(I −A)−1∥ ≤
∥
∑k−1

i=0 Ai∥
1− ∥Ak∥

.

Proof. Since I −Ak = (
∑k−1

i=0 Ai)(I −A), using Lemma 2.5, one can get
the result. □

We continue by the following results.

Definition 3.2. Let E and F be two ultrametric Banach spaces over K,
let (An)n∈N ∈ L(E,F ), (An)n∈N is said to be stable with index N ∈ N if

(i) (∥An∥)n∈N is bounded;
(ii) For all n ≥ N, An is invertible;
(iii) {∥A−1

n ∥ : n ≥ N} is bounded.

Proposition 3.3. Let E and F be two ultrametric Banach spaces over
K, let (An)n∈N ∈ L(E,F ). Assume that there is N ∈ N with for each
n ≥ N, An is invertible and An

p→ A. We have:
(i) If {∥A−1

n ∥ : n ≥ N} is bounded, hence A is injective;
(ii) If (A−1

n y)n (with y ∈ F ) converges, hence y ∈ R(A);
In particular, if (An)n∈N is stable and for each x ∈ E, Anx → Ax as
n → ∞ and (A−1

n y)n converges for any y ∈ F , hence (1.1) is well-posed.

Proof.
(i) Let x ∈ E with Ax = 0, we shall prove that x = 0. Since {∥A−1

n ∥ :
n ≥ N} is bounded i.e., there is C > 0 with n ≥ N, ∥A−1

n ∥ ≤ C. Then
∥x∥ = ∥A−1

n Anx∥ = ∥A−1
n (Anx−Ax)∥ ≤ C∥(Anx−Ax)∥ → 0,

as n → ∞, thus A is injective.
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(ii) Since for each x ∈ X,Anx → Ax as n → ∞. Hence, there is M > 0
with for all n ∈ N, ∥An∥ ≤ M. Set x = limn→∞A−1

n y, hence

∥y −Anx∥ = ∥An(A
−1
n y − x)∥ ≤ M∥A−1

n y − x∥ → 0

as n → ∞, then
∥y −Ax∥ = ∥y −Anx+Anx−Ax∥ ≤ max{∥y −Anx∥, ∥Anx−Ax∥} → 0

as n → ∞, thus y ∈ R(A). □

We may see that if (xn)n is a solution of (1.2), hence for each x ∈ E,

An(x− xn) = Anx− yn. (3.1)

Theorem 3.4. Let E and F be two ultrametric Banach spaces over K.
Suppose that (An)n is stable with index N ∈ N in L(E,F ). Let (xn)n be
the unique solution of (1.2) for n ≥ N. Hence for each x ∈ E,

M1∥Anx− yn∥ ≤ ∥x− xn∥ ≤ M2∥Anx− yn∥, (3.2)
where M1,M2 > 0 such that for each n ≥ N,

∥An∥ ≤ M−1
1 and ∥A−1

n ∥ ≤ M2.

In addition, if x ∈ E, y ∈ F such that βn = ∥(An − A)x + y − yn∥ →
0 as n → ∞, then

xn → x if, and only if, Ax = y,

and in this case βn = ∥Anx− yn∥.

Proof. Let (xn)n be the unique solution of (1.2) for n ≥ N. From (3.1),
we have
∥xn − x∥ = ∥A−1

n (An(x− xn))∥ ≤ ∥A−1
n ∥∥Anx− yn∥, for any n ≥ N,

and
∥Anx− yn∥ = ∥An(x− xn)∥ ≤ ∥An∥∥x− xn∥, for all n ≥ N,

thus
M1∥Anx− yn∥ ≤ ∥x− xn∥ ≤ M2∥Anx− yn∥,

where M1,M2 > 0 such that for each n ≥ N,

∥An∥ ≤ M−1
1 and ∥A−1

n ∥ ≤ M2.

From (3.2), we get xn converges to x as n → ∞, if and only if Anx−yn →
0 as n → ∞. Also, we have βn → 0 if, and only if, Anx− yn → Ax− y.
By hypothesis, βn → 0 and two last equivalences, we get xn → x if, and
only if, Ax = y and in this case βn = ∥Anx− yn∥. □

By Theorem 3.4, we have.
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Theorem 3.5. Let E and F be two ultrametric Banach spaces over
K. Assume that A−1 exists and (An)n is stable with index N ∈ N in
L(E,F ). Let x be the unique solution of (1.1) and (xn)n be the unique
solution of (1.2) for n ≥ N. Assume also that

yn → y, and ∥(Anx−Ax)∥ → 0 as → ∞.

Hence βn = ∥Anx− yn∥ → 0 as n → ∞ and
M1βn ≤ ∥x− xn∥ ≤ M2βn, for all n ≥ N, (3.3)

where M1,M2 > 0 such that for each n ≥ N,

∥An∥ ≤ M−1
1 and ∥A−1

n ∥ ≤ M2.

In addition, xn → x as n → ∞.

Remark 3.6. Let E and F be two ultrametric Banach spaces over K and
let A ∈ L(E,F ). If B = A− λI where λ ∈ K and (An)n converges to A
in L(E,F ). Setting Bn = An − λI, then

∥B −Bn∥ = ∥A−An∥ → 0, as n → ∞.

Theorem 3.7. Let E and F be two ultrametric Banach spaces over K
and let A ∈ L(E,F ). Assume that A is bijective and (An)n ∈ L(E,F )
converges in norm to A. Then (An)n is stable.

Proof. Set Bn = An − A, hence BnA
−1 → 0 as n → ∞. Thus there is

N ∈ N with n ≥ N, ∥BnA
−1∥ ≤ 1

2 . By Lemma 2.5, (I − BnA
−1)−1

exists and ∥(I −BnA
−1)−1∥ ≤ 1. Hence for each n ≥ N, we have

∥A−1
n ∥ = ∥A−1(I −BnA

−1)−1∥ ≤ ∥A−1∥∥(I −BnA
−1)−1∥ ≤ ∥A−1∥.

Consequently, (An)n is stable. □
Definition 3.8. Let E and F be two ultrametric Banach spaces over
K and let A,An ∈ L(E,F ). A sequence (An)n converges in square-norm
to A if lim

n→∞
∥(An −A)2∥ = 0.

Lemma 3.9. Let E be an ultrametric Banach space over K. Let (An)n∈N ∈
L(E). If (An)n converges in norm to A, then (An)n converges in square-
norm to A.

Proof. It suffices to apply that for all B ∈ L(E), ∥B2∥ ≤ ∥B∥2. □
Remark 3.10. The converse of Lemma 3.9 is not true in general.

We illustrate that by the following countre-example.

Example 3.11. Let K = Qp. If for all n ∈ N,

An =

(
1 p−1

pn 2

)
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and
A =

(
1 0
0 2

)
.

We have for all n ∈ N,

(An −A)2 =

(
pn−1 0
0 pn−1

)
,

then limn→∞ ∥(An − A)2∥ = 0 and limn→∞ ∥An − A∥ = p ̸= 0. Conse-
quently, (An)n converges in square-norm to A but (An)n is not conver-
gent in norm to A.

Theorem 3.12. Let E be an ultrametric Banach space over K. Let
A, (An)n∈N ∈ L(E). Assume that A is bijective, limn→∞ ∥((An−A)A−1)2∥ =
0 and (∥An∥)n is bounded. Hence (An)n∈N is stable.

Proof. Since (∥An∥)n is bounded, hence for any n ∈ N, ∥(An−A)A−1∥ ≤
M. Assume that A is bijective and limn→∞ ∥((An−A)A−1)2∥ = 0, then
there is N ∈ N with for each n ≥ N, ∥((An −A)A−1)2∥ ≤ 1

2 . By Lemma
3.1, (An)n∈N is bijective and

∥A−1
n ∥ ≤ ∥A−1∥(1 + ∥(An −A)A−1∥)

1− ∥((An −A)A−1)2∥
≤ 2(1 +M)∥A−1∥, for all n ≥ N.

□

Consider the following condtions:
(C1) ∥(A−An)A∥ → 0;
(C2) ∥(A−An)An∥ → 0;
(C3) ∥(A−An)

2∥ → 0.

Note that for each A, (An)n∈N ∈ L(E),

(A−An)A = (A−An)An + (A−An)
2. (3.4)

Proposition 3.13. Let E be an ultrametric Banach space over K. Let
A, (An)n∈N ∈ L(E). Any two of (C1)-(C3) imply the third.

Proof. It suffices to use (3.4) and hypothesis. □

Proposition 3.14. Let E be an ultrametric Banach space of countable
type over K. Assume that (Pn)n∈N ∈ L(E) is a sequence of projections
with (∥Pn∥)n∈N is bounded and ∥(I − Pn)A∥ → 0 as n → ∞. Let

An ∈ {PnA,APn, PnAPn}.

Then (An)n∈N satisfies (C1)-(C3).

Proof. Obvious. □
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Proposition 3.15. Let E be an ultrametric Banach space over a locally
compact field K. Let (An)n∈N, A ∈ L(E) such that An

p→ A and S ⊂ E
with cl(S) is compact. Hence

lim
n→∞

sup
x∈S

∥Anx−Ax∥ = 0.

In particular, if B ∈ L(X) is compact, hence
lim
n→∞

∥(An −A)B∥ = 0.

Proof. From Theorem 2.2, there is C > 0 such that for each n ∈
N, ∥An∥ ≤ C. Let ε > 0 be given. Since cl(S) is compact, there ex-
ist x1, · · · , xk in S such that

S ⊆
k∪

i=1

{x ∈ E : ∥x− xi∥ < ε}.

For i ∈ {1, · · · , k}, let Ni ∈ N with for any n > Ni, ∥Anxi − Axi∥ < ε.
Let x ∈ S and let j ∈ {1, · · · , k} with ∥xj −x∥ < ε. Hence for all n ≥ N
where N = max{Ni : i = 1, · · · , k}, we get

∥Anx−Ax∥ = ∥Anx−Anxi +Anxi −Axi +Axi −Ax∥
≤ max{∥Anx−Anxi∥, ∥Anxi −Axi∥, ∥Axi −Ax∥}
≤ max{∥An∥∥x− xi∥, ∥Anxi −Axi∥, ∥A∥∥xi − x∥}
≤ max{C, 1, ∥A∥}ε.

Consequently,
lim
n→∞

sup
x∈S

∥Anx−Ax∥ = 0.

From S = {Bx : ∥x∥ ≤ 1}, we get the particular case. □

Theorem 3.16. Let E be an ultrametric Banach space over a locally
compact field K such that ∥E∥ ⊆ |K|. Let (An)n∈N ∈ L(X) such that
An

cc→ A, then (C3) is satisfied. Furthermore if A is compact, then
(C1)-(C2) are also satisfied.

Proof. From An
cc→ A, we get for any x ∈ X,Anx → Ax and there is

N ∈ N with n ≥ N, the collection

S =
∪
n≥N

{(An −A)x : x ∈ E, ∥x∥ ≤ 1},

has a compact closure. Then by Proposition 3.15,
∥(An −A)2∥ ≤ sup

x∈S
∥(An −A)x∥ → 0 as n → 0.
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Since A is compact, by Proposition 3.15, then limn→∞ ∥(An−A)A∥ = 0
and limn→∞ ∥(An −A)An∥ = 0. □

Put
(C0) ∥[(An −A)(λI −A)−1]2∥ → 0 for all λ ∈ ρ(A). We get

Theorem 3.17. Let E be an ultrametric Banach space over K. Let
(An)n∈N ∈ L(E) with ∥(An)∥n∈N is bounbed. Hence any two of the
conditions (C1)-(C3) imply (C0).

Proof. By Proposition 3.13, it is enough to show that conditions (C1)
and (C3) imply (C0). Then for all 0 ̸= λ ∈ ρ(A), we get

(λI −A)−1 =
1

λ
(I +A(λI −A)−1).

Setting R(λ,A) = (λI −A)−1 and S(λ,A) = I +A(λI −A)−1, we get

λ2[(A−An)R(λ,A)]2 = [(A−An)S(λ,A)]2

= [(A−An)
2 + (A−An)AR(λ,A)(A−An)]S(λ,A).

Since the conditions (C1) and (C3) hold and (∥(An)∥)n∈N is bounbed,
hence (C0) is satisfied. □

Definition 3.18. Let A, (An)n ∈ L(E), then λ−An is a square-approximation
of A if for any λ ∈ ρ(A), limn→∞ ∥[(An − A)(λI − A)−1]2∥ = 0 and is
denoted by λI −An

sq→ λI −A.

From Theorem 3.17, we get.

Theorem 3.19. Let E be an ultrametric Banach space over a locally
compact field K such that ∥E∥ ⊆ |K|. Let (An)n∈N, A ∈ L(E) with
An

p→ A and A is compact and λ ̸∈ σ(A). If ∥(A − An)
2∥ → 0 as

n → ∞, then λI −An is a square-approximation of λI −A.

Proof. Since An
p→ A. By Theorem 2.2, (∥An∥)n is bounded and by

the condition A is compact and Theorem 3.15, we get limn→∞ ∥(A −
An)A∥ = 0. From ∥(A − An)

2∥ → 0 as n → ∞ and limn→∞ ∥(A −
An)A∥ = 0 and Theorem 3.17, we get λI−An is a square-approximation
of A □

Theorem 3.20. Let E be an ultrametric Banach space over K, let
(An)n, A ∈ L(X). If any two of the conditions (C1)-(C3) are satisfied,
hence there is N ∈ N, we have

for each n ≥ N, σ(An) ⊂ σ(A).
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Proof. Let λ ∈ ρ(A), by Theorem 3.13, we suppose the conditions (C1)
and (C3), i.e., limn→∞ ∥(An−A)An∥ = 0 and limn→∞ ∥(An−A)2∥ = 0.
Put for n ∈ N,

Cn = λI − (A−An), Dn = λI + (λI −A)−1(A−An)An.

One can see that
Cn(λI −An) = (λI −A)Dn. (3.5)

Let 0 < M < 1 and N ∈ N such that
∥(An −A)2∥ ≤ (M |λ|)2

and
∥(An −A)An∥ ≤ M |λ|

∥(λI −A)−1∥
for each n ≥ N. By Lemmas 2.5 and 3.1, Cn and Dn are invertible
for any n ≥ N. Using (3.5), we get for all n ≥ N, (λI − An)

−1 =
B−1

n (λI −A)−1An, thus λ ∈ ρ(An) for all n ≥ N. □
Theorem 3.21. Let E and F be two free Banach spaces over K. Assume
that (An)n is stable with index N ∈ N in L(E,F ). Let (xn)n be the unique
solution of (1.2) for n ≥ N. Hence for each x ∈ E,

∥xn − x∥ ≤ max{∥x− Pnx∥,M∥AnPnx− yn∥, (3.6)
where M > 0 with for each n ≥ N,

∥A−1
n ∥ ≤ M.

In addition, if x ∈ E, y ∈ F such that αn = ∥(AnPn−A)x+y−yn∥ → 0
and Pnx → x as n → ∞, hence

xn → x if and only if Ax = y,

and in this case αn = ∥AnPnx− yn∥.

Proof. Let x ∈ E, we get
xn − x = x− Pnx+A−1

n (AnPnx− yn). (3.7)
Then

∥xn − x∥ = ∥x− Pnx+A−1
n (AnPnx− yn)∥

≤ max{∥x− Pnx∥,M∥AnPnx− yn∥}.
If x ∈ E, y ∈ F such that αn = ∥(AnPn − A)x + y − yn∥ → 0 and
Pnx → x as n → ∞, then

AnPn − yn → Ax− y, as n → ∞.

Since (∥An∥)n and (∥A−1
n ∥)n≥N are bounded and from (3.7), we get

xn → x if, and only if, Ax = y and in this case βn = ∥AnPnx− yn∥. □
Similarly to the proof of Theorem 3.21, we get.
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Theorem 3.22. Let E and F be two free Banach spaces over K. Assume
that A−1 exists and (An)n is stable with index N ∈ N in L(E,F ). Let x
be the unique solution of (1.1) and (xn)n be the unique solution of (1.2)
for n ≥ N. Assume also that

yn → y, Pnx → x, and ∥(AnPnx−Ax)∥ → 0 as → ∞.

Then
∥xn − x∥ ≤ max{∥x− Pnx∥,M∥AnPnx− yn∥, (3.8)

where M > 0 with for each n ≥ N,

∥A−1
n ∥ ≤ M.

In addition, xn → x as n → ∞.

Example 3.23. Let E and F be two free Banach spaces over K. Assume
that (Pn)n∈N ∈ L(E) and (Qn)n∈N ∈ L(E) are projections with for any
x ∈ E and y ∈ R(A), Pnx → x and Qny → yx as n → ∞. Then

∥APnx−Ax∥ ≤ ∥A∥∥APnx−Ax∥ → 0 as n → 0,

and
∥QnAx−Ax∥ → 0 as n → 0,

for all x ∈ E. Thus (APn)n and (QnA)n are pointwise approximations
of A. Suppose that (∥Qn∥)n is bounded, hence
∥QnAPn −Ax∥ ≤ max{∥Qn∥∥(APnx−Ax)∥, ∥QnAx−Ax∥} → 0,

as n → ∞ for each x ∈ E.

Example 3.24. Let E = c0(Qp) and (en)n≥1 be basis of E. Let (Pn)n
be defined on c0(Qp) by

Pnx =

n∑
i=1

< x, ei > ei.

Then
(i) For all n ∈ N, (Pn)n is orthogonal projection.
(ii) For each x ∈ E, ∥Pnx− x∥ → 0 as n → ∞.
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