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Abstract: 

In this study, uniaxial and biaxial compression tests were simulated to assess the impact of 

sample scale, both dimensions and shape, along with the rate and nature of loading on the 

strength behavior and deformability of a limestone rock specimen. For this end, the finite 

difference method (FDM) using FLAC code was employed. The compression test simulations 

utilized an innovative technique based on the model's equilibrium principle during loading, 

mimicking static loading conditions in reality. This approach facilitated systematic control of 

axial and lateral loads on the model, effectively preventing abrupt, violent failure. A series of 

two-dimensional (2D) models was subjected to varying loading conditions to appraise the 

stress-strain behavior of the computational models. Numerical results show that changes in the 

model's shape and dimensions affected the compressive strength of rock models. Here, an 

increment in the width-to-length ratio of the model led to enhanced compressive strength. 

Similarly, an increase in the loading rate also increased the uniaxial compressive strength of the 

model. Also, the rock model's compressive strength was further increased by applying and 

augmenting lateral pressure in the biaxial compression test. Hence, rocks under pressure 

demonstrate scale-dependent behaviors, exhibiting varying strengths under different loading 

conditions. 
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1. Introduction 

Assessing the mechanical behavior of rocks and 

determining the mechanism and failure criterion 

necessitates understanding strength parameters, such as the 

uniaxial and biaxial compressive strength of rock masses. 

These parameters are integral to the design and stability 

analysis of various surface and subsurface structures, 

including rock slopes of surface mine faces, trenches, 

dams, roads, and excavations of underground mines, 

tunnels, shafts, and caves. Furthermore, these parameters 

are crucial in deciding the different stages of mining unit 

operations, namely drilling, blasting, digging, and cutting, 

and all types of support systems for surface and 

underground structures in civil and mining engineering [1, 

2]. 

Given the heterogeneity and anisotropy of rocks, the 

strength and deformability parameters of each rock type 

must be measured precisely, considering the initial and 

boundary conditions of the area. Presently, direct methods, 

such as in-site and laboratory tests, and indirect tests, such 

as employing theoretical-experimental relationships and 

numerical-analytical methods, offer a variety of solutions 

for determining the compressive strength of rocks [3]. 

Direct methods, such as field tests, can prove to be costly 

and time-consuming due to operational challenges. 

Furthermore, laboratory techniques are limited by their 

ability to apply only some natural conditions of the area. 

Nevertheless, standard laboratory procedures for 

measuring compressive strength have been provided by 

entities such as the American Society for Testing and 

Materials (ASTM) and the International Society of Rock 

Mechanics (ISRM) [4]. While these techniques are 

relatively straightforward, they tend to be both time-

consuming and expensive, requiring meticulous 

preparation of rock specimens. For carbonate rocks like 

limestone, this process often poses a challenge [5]. 

When initiating engineering projects, the strength 

parameters of rocks can be determined quickly and at a 

low cost using indirect tests such as point load index [6-

12], Schmidt hammer [13-19], sound speed [20-23], cyclic 

loading [24], and even small-scale experiments [25]. 

Laboratory studies, for instance, have shown that the 

uniaxial compressive strength of limestone directly 
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correlates with the rock's density [26], while it inversely 

correlates with environmental humidity [27-29]. However, 

the precision of these methods tends to be insufficient in 

practical scenarios, frequently necessitating the use of 

alternative approaches. 

To establish the strength parameters of rocks, researchers 

have proposed experimental and theoretical criteria based 

on data gathered and experiences drawn from various 

projects. These include the Mohr-Coulumb [30], 

Baniawski [31], Johnston [32], Ramamurthy et al. [33], 

and Hoek and Brown [34] strength criteria. A significant 

drawback of these relationships is their specificity to 

certain areas, aligning with the conditions of the 

experimental criterion. Consequently, their applicability is 

not universal. 

Over the past decades, the advent of advanced computing 

equipment has led to the development of several analytical 

methods based on operations research. These include 

techniques like the adaptive neuro-fuzzy inference system 

(ANFIS), artificial neural network (ANN), Monte-Carlo 

simulation, meta-heuristic and evolutionary algorithms, 

and linear and non-linear regression. These methods have 

been used to determine the rock strength parameters [35-

39]. Despite their high flexibility, reduced calculation time, 

and ability to use both quantitative and qualitative criteria 

simultaneously, these methods are often associated with 

high uncertainty due to their random basis. 

Among analytical techniques, numerical methods offer 

unique capabilities for creating both continuous and 

discontinuous models, encompassing rock and 

discontinuity. These methods allow the rock to be divided 

into numerous small elements, facilitating a detailed, 

accurate, and rapid examination of each element's 

mechanical behavior and interdependencies [40]. Past 

studies have demonstrated these methods' capacity to 

accurately determine the strength parameters of various 

types of rock and rock mass under static and dynamic 

loading conditions [41-50]. Consequently, by simulating 

direct and indirect tests using these methods, the rock’s 

strength behavior and deformability can be estimated 

accurately, quickly, and cost-effectively, while maintaining 

conditions similar to those in nature. 

The most common method for studying rock mechanical 

behavior involves applying axial compression to a circular 

cylinder sample two to three times longer than its diameter. 

When the rock's lateral surface is free from traction, this 

setup is called uniaxial or unconfined compression. The 

results can be represented in a stress-strain curve, with 

stress (σ) plotted against strain (ε) (Figure 1). Based on 

this figure, behavior within the range of stress and strain 

before failure is known as linearly elastic. The stress value 

at point B, which indicates the transition from elastic to 

ductile behavior, is referred to as the yield stress of the 

rock. Also, the stress value at point C, which indicates the 

transition from ductile to brittle behavior, is referred to as 

the uniaxial compressive strength (UCS) of the rock. In the 

ductile regime, corresponding to region BC of this figure, 

the transverse strains increase in magnitude much more 

rapidly than the axial strain. The failure process is ongoing 

throughout the brittle region designated as CE. The rock 

physically deteriorates during this process, decreasing its 

ability to support a load. Thus, failure begins at point C. 

For a rock subjected to uniaxial compression, the criteria 

for failure can be defined simply as the condition under 

which failure occurs [30, 51].  

 

Figure 1. Complete stress-strain curve for a rock sample 

under compression 

In this study, the finite difference method (FDM) has been 

used for numerical modeling, with a focus on examining 

the influence of scale, rate, and type of loading on the 

mechanical behavior of rocks under pressure. Standard 

uniaxial and biaxial compression tests were simulated in 

FLAC2D software, investigating the mechanical behavior 

of a limestone sample through stress-strain curves. In this 

context, while establishing the strength behavior of the 

samples under pressure, the impact of the aforementioned 

external factors on the compressive strength of the model 

was determined at each stage. 

2. Modeling of Compressive Strength Test 

The finite difference method is a numerical method 

rooted in differential equations, suitable for modeling 

continuous media with non-linear behavior. In this method, 

each derivative of the governing equations is directly 

defined by an algebraic description in terms of model 

variables (such as stress or displacement) at distinct points 

of the model geometry. Initially, motion equations were 

utilized to derive new velocities and displacements 

resulting from the application of stresses and forces. 

Subsequently, strain rates were calculated from the 

velocity values, and the new stress values were obtained 

from the new strain rates. Each computational cycle occurs 

in one step. If the time steps of computation are 

sufficiently small, the results obtained in one region over a 

short time span will not impact neighboring regions. Thus, 

after several steps in the analysis, environmental changes 

are applied across all model elements. 

FLAC, featuring fast Lagrangian analysis capability, is a 

powerful software based on the finite difference numerical 

method, using an explicit time-dependent approach to 

solve algebraic equations [34]. The general analysis 

method in this software involves dividing the model's 

geometry into smaller elements with identical numerical 
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characteristics, followed by solving the differential 

equation associated with each element until the relative 

equilibrium of the model is achieved. Owing to the 

software's high flexibility in modeling and analyzing 

problems, its usage has broadened to predict the strength 

behavior and deformability of various materials, such as 

soil or rock, under different loading conditions. Hence, this 

research employed software to model compression tests on 

rock using a novel technique - the equilibrium of model 

points at each step. This research's novelty lies in its 

extension of the mathematical platform established by 

Noorian-Bidgoli et al. [45] for a DFM model to study the 

stress-strain behavior of rock under pressure. 

2.1. Geometry and Meshing of the Model 

The two-dimensional version of the numerical code, 

FLAC2D, is utilized for simulation under plane strain 

conditions [52]. In this instance, a two-dimensional 

geometric model of the problem is constructed, allowing 

the removal of one of the strain components along the x, y, 

and z axes. Given the aim of this research to model rock 

compressive tests, the model's geometry is fashioned in 

accordance with standard laboratory tests, that is, a 

cylindrical sample under loading. 

In this research, six scale types were employed to 

construct the model's geometry to examine the effect of 

scale (length and width of the sample) on the rock sample's 

compressive strength, as per Table 1. Typically, the length 

of the sample (L) in a standard rock compressive test 

(ISRM standard) is considered to be between 1.50 and 2.50 

times the diameter or width of the sample (D). As NX is 

chosen for the rock samples in the laboratory, the base 

width of the model is selected as 54 mm. Consequently, 

the model's length in the first case is chosen as 1.50, 2.50, 

and 3.50 times the width. In the second case, these values 

are reversed. Non-standard values were chosen to conduct 

a sensitivity analysis of the sample scale, as it is an 

important variable in determining rock compressive 

strength. These dimensional ranges are used to investigate 

the effect of the sample scale on the stress-strain behavior 

of rock under pressure. 

Table 1. Dimensions of the numerical models 

Length to width 

ratio (L/D) 
Width or D 

(cm) 
Length or L 

(cm) 
Model 

number 
1.50 5.40 8.10 1 

2.50 5.40 13.50 2 

3.50 5.40 18.90 3 

0.67 8.10 5.40 4 

0.40 13.50 5.40 5 

0.29 18.90 5.40 6 

Notably, all the mentioned models assume intact rock 

without discontinuities. In the following stage, models are 

meshed with square meshes (10×20), mirroring the shape 

of the rock sample (Figure 2). Each model element 

contains four nodes, meaning that the derivatives in the 

problem's governing differential equation replace their 

approximate values at the node. 

 

Figure 2. Geometry and meshing of the numerical model 

2.2. Behavior and Mechanical Properties of the Model 

The Mohr-Coulomb behavioral model was employed in 

this research to investigate the stress-strain behavior of 

rocks under compressive loading. This model is used 

because it is the closest one to simulating limestone 

behavior among a few material models supported by the 

FLAC2D software. Additionally, the necessary data for 

utilizing this model were available in this study. This 

failure criterion characterizes the behavior of materials 

based on the shear failure equation and ultimate tensile 

strength. The availability of necessary information for 

modeling informed this choice. This behavior model, 

based on principal stress values, is offered in FLAC 

software, effectively representing the principal stress 

vector in the Mohr-Coulomb criterion. The mechanical 

properties of limestone used in modeling are presented in 

Table 2. 

Table 2. Mechanical properties of the numerical models 

Value Unit Parameter 

2700 3Kg/m Density 

96 GPa Modulus of elasticity 

0.37 - Poisson's ratio 

9.17 MPa Cohesion 

25.68 ◦ Friction angle 

2.3. Boundary and Initial Conditions of the Model 

To model the compressive tests (uniaxial and biaxial) 

akin to laboratory loading conditions, a compressive load 

along the vertical axis (y) was applied to the model's upper 

surface. This loading was uniformly and continuously 

conducted during the model execution. In this context, a 

lower loading rate requires more modeling time but yields 

more accurate results. Therefore, a loading rate of 0.001 

m/s was selected for this research to enhance the accuracy 

of calculations. Furthermore, to mitigate fluctuations 

caused by the model's sudden failure during loading, the 

local damping ability of static loading was utilized on the 

model. 
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As shown in Figure 3-a, in the uniaxial rock compressive 

test modeling, the model's two side walls (right and left) 

are defined without loading and left free. Additionally, by 

setting the boundary of the model at the model's bottom 

level (floor), displacement is considered zero in both 

horizontal and vertical directions. In Figure 3, y signifies 

the initial axial compressive load on the model's upper 

surface, while Δy denotes the loading rate at each loading 

step. Consequently, y+Δy represents the sum of the initial 

and increased axial load at the conclusion of each loading 

step on the model. 

According to Figure 3-b, in the biaxial compressive test 

modeling, an additional constant compressive load in the 

horizontal axial direction (x) is applied to the model's 

lateral surfaces in conjunction with the axial load seen in 

the uniaxial compressive test. Essentially, the model's 

lateral pressures or confining pressures align with the 

horizontal stresses in the ground or the hydraulic pressure 

of the fluid in the laboratory, which can be factored into 

the modeling. In this research, six values of lateral load 

have been employed to investigate the impact of lateral 

pressure on mechanical behavior and the final strength of 

the rock, as per Table 3. 

  
(a) (b) 

Figure 3. Boundary conditions of the model in (a) Uniaxial 

and (b) Biaxial compressive strength test 

Table 3. Lateral loading values to model of the biaxial 

compressive strength test 

Lateral loading rate (m/s) Loading type 

0.01 1 

0.03 2 

0.05 3 

0.07 4 

0.09 5 

0.10 6 

2.4. Running of the model 

In FLAC, model execution and loading cycle application 

can either be performed manually or automatically. The 

automatic method, typically executed by defining a loop in 

the model, is faster but less precise. In this case, without 

inspecting the equilibrium of all the model points during 

the loading time, the model is saved after each execution, 

and the next step commences. As a result, it is impossible 

to verify the equilibrium of all model points after each 

loading step. Most research in the literature applies 

automatic loading to the model, which can compromise 

accuracy. 

For this research, a model has been developed using Fish 

programming via an innovative technique to enhance 

calculation accuracy. In this method, the model is 

manually run in each loading cycle, and the history of 

unbalanced forces at the observation points is scrutinized 

to ensure the model reaches equilibrium at the end of each 

execution step. In this context, if the model has not 

achieved equilibrium, the loading cycle is extended. 

Concurrently, the condition of the unbalanced forces of the 

observation points is regularly checked until the model 

achieves equilibrium. Therefore, in this method, the 

current loading cycle is saved when the model reaches 

equilibrium. The model is then reloaded at the beginning 

of the next loading cycle. This process continues until the 

modeled rock sample fails. 

In the code, the history command enables recording 

various parameter changes during model execution at pre-

defined points (observation points). Hence, changes such 

as displacement, stress, strain, and so on, at the observation 

points are recorded at variable time intervals. For this 

research, nine observation points have been defined for 

each model, with the location of these points remaining 

fixed across all models. These points include four points at 

the four corners of the model (two upper and two lower 

corners), two points at the center of the model's upper and 

lower surfaces, two points in the centers of the lateral 

surfaces, and one point at the model's center of gravity. 

Figure 4 schematically presents the location of the 

aforementioned observation points on one of the models. 

The model's equilibrium is monitored and controlled using 

these points during loading. For instance, the changes in 

unbalanced forces over time during the execution of one of 

the models in the initial ten loading steps of the uniaxial 

compressive strength test are depicted in Figure 5. This 

figure indicates that the quantity of unbalanced forces 

reaches zero or near zero at each loading, signifying the 

model's equilibrium at the completed steps, ten steps in 

this figure. 

 

Figure 4. Schematic of the location of 9 observation points on 

the model 

3. Results and Discussion 



Noorian Bidgoli and Koochaki et al/Contrib. Sci. & Tech Eng, 2025, 2(2) 

51 
 

Simulations were conducted under uniaxial and biaxial 

loading conditions until the peak strength of the tested 

model was achieved. After each modeling, axial stress 

versus axial strain curves (stress-strain curves) were 

plotted to assess the mechanical behavior of the rock 

models. 

 

Figure 5. Variations of unbalanced forces with respect to time 

during the uniaxial compressive strength test 

3.1. Effect of Sample Scale 

As previously explained, to examine the effect of sample 

sizes (changes in length and width) on the mechanical 

behavior of rock models under pressure, six models were 

constructed according to Table 1, with uniaxial 

compression tests performed on all of them. Ultimately, 

results were derived in the form of stress-strain curves 

(Figure 6). The number of execution cycles until the final 

solution for each model for samples with D/L ratios of 

1.50, 2.50, and 3.50 was 51569, 55695, and 56646, 

respectively. For samples with L/D ratios of 1.50, 2.50, 

and 3.50, these figures were 41569, 47659, and 52428, 

respectively. 

 

Figure 6. The effect of sample scale on the mechanical 

behavior of the rock model 

As observable in Figure 6, the value of peak uniaxial 

compressive strength (marked points under each sample) 

decreases with the increase in length (L) and the length-to-

width ratio (L/D) of the model. On the other hand, the rock 

sample's strength increases as the width-to-length ratio 

increases. The reasons for these trends differ from those 

observed in cases purely related to size. When a model is 

subjected to uniaxial compression, loading end platens, 

preferably the same diameter as the model, are employed. 

Due to an unavoidable mismatch in the elastic properties 

of the rock and the platens, a complex zone of triaxial 

compression forms at the ends of the rock model as the 

platen restricts the rock's expansion. Therefore, this end 

effect is not significant for a slender model but can 

dominate the stress field in a squat model. 

This outcome can also be attributed to the reduced 

likelihood of failure due to bending with shorter sample 

lengths, enabling the model to reach its ultimate strength 

over more cycles. Furthermore, this figure shows that with 

the increase of width (D) and the model’s width-to-length 

ratio (D/L), the peak uniaxial compressive strength value 

escalates. The reasoning behind this observation could be 

that an increased model width reduces the amount of force 

per unit area (pressure), delaying sample fractures and 

thereby boosting strength. 

Moreover, comparing the deformation behavior of the 

models reveals that when the model's length surpasses its 

width (models No. 1, 2, and 3), the fracture behavior 

mimics that of brittle rocks. Conversely, ductile fracture 

behavior is observed when the model's width is larger than 

its length (models no. 4, 5, and 6). Therefore, the ductility 

increases as the ratio of width to length of the rock sample 

increases. Prior experimental results have exhibited similar 

behaviors [53], indicating that reducing the sample's 

diameter-to-length ratio shifts the rock's mechanical 

behavior under pressure from ductile to brittle. 

3.2. Effect of Loading Rate 

This section presents the results of uniaxial compressive 

test modeling on a standard sample with a length-to-width 

ratio (L/D) of 2.50, aiming to investigate the effect of the 

loading rate. Three loading rate values of 0.001, 0.003, and 

0.005 have been employed under the same conditions 

illustrated in Figure 3-a. 

Figure 7 depicts the results derived from the three types 

of loading in the form of stress-strain curves. As evident, 

the uniaxial compressive strength significantly increases 

with the escalation of the loading rate on the model under 

pressure. Notably, the mechanical behavior of the model 

remains consistent in all three loading rate conditions, with 

all models exhibiting entirely brittle stress-strain behavior. 

 

Figure 7. The effect of loading rate on the mechanical 

behavior of the rock model 

Commonly in practice, the loading rate in compression 

tests is applied as the stress or strain rate of change per 
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time unit on rock samples. For instance, most automatic 

testing devices (servo-control) for uniaxial compressive 

strength tests usually apply strain or displacement control 

loading. Herein, based on the sample sizes and strain rate, 

the loading rate can be selected and applied to the rock 

models. The total form of the stress-strain curve is a 

function of the applied strain rate. A lower strain rate leads 

to a decrease in compressive strength. 

Prior laboratory studies on various rock samples have 

indicated that an increased loading speed augments 

uniaxial compressive strength [54]. Thus, in the laboratory, 

testing hard rocks at higher loading speeds is typically 

preferred, while softer rocks are tested at lower loading 

speeds. Consequently, adherence to laboratory standards 

and the correct selection of the loading rate can play a vital 

role in successfully determining the compressive strength 

and mechanical behavior of rocks. 

3.3. Effect of Confining Load 

A biaxial compression test has been modeled to examine 

the effect of lateral or confining load on the model's 

mechanical behavior. The behavior of the models under six 

different types of lateral loads, akin to the values in Table 

3, is presented in Figure 8 in the form of stress-strain 

curves. As depicted in this figure, the rise in confining 

pressure enhances the compressive strength of the rock 

model under biaxial pressure. This can be attributed to the 

prevention of deformation or high lateral strains through 

the application and increase of confining pressure, 

delaying the sample's yielding and failure limit and, in 

turn, escalating the strength. Additionally, this figure 

implies that with the growth of confining pressure, the 

model's behavior transitions from brittle to ductile, a 

phenomenon also observed in previous practical studies by 

Mogi [55]. The stress-strain curve initially shows a nearly 

linear elastic segment, with a slope (Young’s modulus) that 

is mostly unaffected by the confining stress. 

 

Figure 8. The effect of confining load on the mechanical 

behavior of the rock model 

4. Conclusions 

External factors such as scale, loading rate, and confining 

load significantly influence the mechanical behavior of 

rocks under pressure, necessitating their consideration 

when determining the strength behavior and deformability 

of rocks. These elements, independent of the rock's 

inherent characteristics, depend on the experimental 

conditions and can be controlled. Thus, the effects of these 

factors must be correctly determined to achieve accurate 

results. This research developed a systematic 2D numerical 

procedure using the FLAC finite difference code to 

examine the stress-strain behavior of a limestone sample 

under uniaxial and biaxial compressive loading. Key 

conclusions from this research can be summarized as 

follows: 

- An increase in the sample's width (diameter) to length 

(height) ratio elevates the sample's compressive strength 

under uniaxial pressure and vice versa. This size 

enlargement alters the model's mechanical behavior from 

brittle to ductile. This outcome underscores the importance 

of sample size and shape in rock testing, as it could yield 

different results due to variations in the applied load on the 

surface. 

- A higher loading rate on the pressure-subjected sample 

enhances its uniaxial compressive strength. In this context, 

the model's mechanical behavior remains consistent across 

various loading rates, with all models exhibiting entirely 

brittle stress-strain behavior. Consequently, the stress-

strain behavior of rocks significantly depends on the 

loading rate. 

- Confining load application on an axially loaded 

specimen amplifies its compressive strength compared to 

the unconfined state. Increased confining load and strength 

enhancement shift the rock model's stress-strain behavior 

from brittle to ductile. These findings hold considerable 

implications for investigations into rock strength under 

pressure. 

Overall, it is concluded that the external factors studied in 

this research influenced the results of simulated pressure 

tests significantly. The modeled rock samples exhibit 

robust scale-dependent stress-strain behaviors with varying 

strengths under different loading conditions. Therefore, 

rock tests must adhere to the guidelines of common 

standards; otherwise, the results could substantially 

deviate. In this context, numerical modeling emerges as a 

potent tool that can accurately determine these factors' 

effects on fracture behavior and types of rock strength, 

obviating the need for time-consuming and costly practical 

tests. Sensitivity analysis using these methods can mitigate 

the risk of potential misestimation of rock strength and 

deformability parameters. 

Utilizing the models developed in this research allows the 

exploration of the effects of internal or intrinsic factors on 

rock mechanical behavior. The authors are currently 

investigating this topic and anticipate future publications. 

5. References 

[1] Bieniawski, Z. T. (1974). Geomechanics Classification of 

Rock Masses and Its Application in Tunneling. Proceedings 

of 3rd Congress of the International Society of Rock 

Mechanics, Denever National Academy of Sciences, 

Denver, United States. 

[2] Cargill, J. S., & Shakoor, A. (1990). Evaluation of 

empirical methods for measuring the uniaxial compressive 



Noorian Bidgoli and Koochaki et al/Contrib. Sci. & Tech Eng, 2025, 2(2) 

53 
 

strength of rock. International Journal of Rock Mechanics 

and Mining Sciences & Geomechanics Abstracts, 27(6), 

495–503. doi:10.1016/0148-9062(90)91001-N. 

[3] Kanji, M., He, M., & Ribeiro e Sousa, L. (Eds.). (2020). 

Soft Rock Mechanics and Engineering. Springer, Cham, 

Switzerland. doi:10.1007/978-3-030-29477-9. 

[4] Ulusay, R. (Ed.). (2015). The ISRM Suggested Methods for 

Rock Characterization, Testing and Monitoring: 2007-

2014. Springer, Cham, Switzerland. doi:10.1007/978-3-

319-07713-0. 

[5] Zhang, L. (2016). Engineering properties of rocks. 

Butterworth-Heinemann, Waltham, United States. 

[6] Hawkins, A. B., & Oivert, J. A. G. (1986). Point Load 

Tests: Correlation factors and contractual use. An example 

from the Corallian at Weymouth. Geological Society 

Engineering Geology Special Publication, 2(1), 269–271. 

doi:10.1144/GSL.1986.002.01.48. 

[7] Romana, M. (1999). Correlation between uniaxial 

compressive and point-load (Franklin test) strengths for 

different rock classes. 9th ISRM Congress, 25 August, 1999 

Paris, France. 

[8] Rusnak, J., & Mark, C. (2000). Using the point load test to 

determine the uniaxial compressive strength of coal 

measure rock. Proceedings of the 19th International 

Conference on Ground Control in Mining, August 8-10, 

2000, Morgantown, United States.  

[9] Tsiambaos, G., & Sabatakakis, N. (2004). Considerations 

on strength of intact sedimentary rocks. Engineering 

Geology, 72(3–4), 261–273. 

doi:10.1016/j.enggeo.2003.10.001. 

[10] Singh, T. N., Kainthola, A., & Venkatesh, A. (2012). 

Correlation between point load index and uniaxial 

compressive strength for different rock types. Rock 

Mechanics and Rock Engineering, 45(2), 259–264. 

doi:10.1007/s00603-011-0192-z. 

[11] Garrido, M. E., Petnga, F. B., Martínez-Ibáñez, V., Serón, J. 

B., Hidalgo-Signes, C., & Tomás, R. (2022). Predicting the 

Uniaxial Compressive Strength of a Limestone Exposed to 

High Temperatures by Point Load and Leeb Rebound 

Hardness Testing. Rock Mechanics and Rock Engineering, 

55(1), 1–17. doi:10.1007/s00603-021-02647-0. 

[12] Sadeghi, E., Nikudel, M. R., Khamehchiyan, M., & 

Kavussi, A. (2022). Estimation of Unconfined 

Compressive Strength (UCS) of Carbonate Rocks by Index 

Mechanical Tests and Specimen Size Properties: Central 

Alborz Zone of Iran. Rock Mechanics and Rock 

Engineering, 55(1), 125–145. doi:10.1007/s00603-021-

02532-w. 

[13] Sachpazis, C. I. (1990). Correlating schmidt hardness with 

compressive strength and young’s modulus of carbonate 

rocks. Bulletin of the International Association of 

Engineering Geology, 42(1), 75–83. 

doi:10.1007/BF02592622. 

[14] Katz, O., Reches, Z., & Roegiers, J. C. (2000). Evaluation 

of mechanical rock properties using a Schmidt Hammer. 

International Journal of Rock Mechanics and Mining 

Sciences, 37(4), 723–728. doi:10.1016/S1365-

1609(00)00004-6. 

[15] Kahraman, S. (2001). Evaluation of simple methods for 

assessing the uniaxial compressive strength of rock. 

International Journal of Rock Mechanics and Mining 

Sciences, 38(7), 981–994. doi:10.1016/S1365-

1609(01)00039-9. 

[16] Mostyn, G. R., & Li, K. S. (2020). Probabilistic slope 

analysis — State-of-play. Probabilistic Methods in 

Geotechnical Engineering, 89–109. 

doi:10.1201/9781003077749-6. 

[17] Yaşar, E., & Erdoǧan, Y. (2004). Estimation of rock 

physicomechanical properties using hardness methods. 

Engineering Geology, 71(3–4), 281–288. 

doi:10.1016/S0013-7952(03)00141-8. 

[18] Shalabi, F. I., Cording, E. J., & Al-Hattamleh, O. H. 

(2007). Estimation of rock engineering properties using 

hardness tests. Engineering Geology, 90(3–4), 138–147. 

doi:10.1016/j.enggeo.2006.12.006. 

[19] Aldeeky, H., Al Hattamleh, O., & Rababah, S. (2020). 

Assessing the uniaxial compressive strength and tangent 

Young’s modulus of basalt rock using the leeb rebound 

hardness test. Materiales de Construccion, 70(340), 230– 

230. doi:10.3989/MC.2020.15119. 

[20] Pappalardo, G. (2015). Correlation Between P-Wave 

Velocity and Physical–Mechanical Properties of Intensely 

Jointed Dolostones, Peloritani Mounts, NE Sicily. Rock 

Mechanics and Rock Engineering, 48(4), 1711–1721. 

doi:10.1007/s00603-014-0607-8. 

[21] Abdelhedi, M., Aloui, M., Mnif, T., & Abbes, C. (2017). 

Ultrasonic velocity as a tool for mechanical and physical 

parameters prediction within carbonate rocks. 

Geomechanics and Engineering, 13(3), 371–384. 

doi:10.12989/gae.2017.13.3.371. 

[22] Gomez-Heras, M., Benavente, D., Pla, C., Martinez-

Martinez, J., Fort, R., & Brotons, V. (2020). Ultrasonic 

pulse velocity as a way of improving uniaxial compressive 

strength estimations from Leeb hardness measurements. 

Construction and Building Materials, 261, 119996. 

doi:10.1016/j.conbuildmat.2020.119996. 

[23] Benavente, D., Martinez-Martinez, J., Galiana-Merino, J. 

J., Pla, C., de Jongh, M., & Garcia-Martinez, N. (2022). 

Estimation of uniaxial compressive strength and intrinsic 

permeability from ultrasounds in sedimentary stones used 

as heritage building materials. Journal of Cultural Heritage, 

55, 346–355. doi:10.1016/j.culher.2022.04.010. 

[24] Chen, J., Du, C., Jiang, D., Fan, J., & He, Y. (2016). The 

mechanical properties of rock salt under cyclic loading-

unloading experiments. Geomechanics and Engineering, 

10(3), 325–334. doi:10.12989/gae.2016.10.3.325. 

[25] Komadja, G. C., Stanislas, T. T., Munganyinka, P., Anye, 

V., Pradhan, S. P., Adebayo, B., & Onwualu, A. P. (2022). 

New approach for assessing uniaxial compressive strength 

of rocks using measurement from nanoindentation 



Noorian Bidgoli and Koochaki et al/Contrib. Sci. & Tech Eng, 2025, 2(2) 

54 
 

experiments. Bulletin of Engineering Geology and the 

Environment, 81(8), 299. doi:10.1007/s10064-022-02801-

0. 

[26] Deere, D. U., & Miller, R. P. (1966). Engineering 

Classification and Index Properties for Intact Rock. 

Defense Technical Information Center, Fort Belvoir, United 

States. doi:10.21236/ad0646610. 

[27] Hawkins, A. B., & McConnell, B. J. (1992). Sensitivity of 

sandstone strength and deformability to changes in 

moisture content. Quarterly Journal of Engineering 

Geology, 25(2), 115–130. 

doi:10.1144/gsl.qjeg.1992.025.02.05. 

[28] Lashkaripour, G. R. (2002). Predicting mechanical 

properties of mudrock from index parameters. Bulletin of 

Engineering Geology and the Environment, 61(1), 73–77. 

doi:10.1007/s100640100116. 

[29] Yilmaz, I. (2010). Influence of water content on the 

strength and deformability of gypsum. International 

Journal of Rock Mechanics and Mining Sciences, 47(2), 

342–347. doi:10.1016/j.ijrmms.2009.09.002. 

[30] Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). 

Fundamentals of rock mechanics. John Wiley & Sons, 

Hoboken, United States. 

[31] Bieniawski, Z. T. (1974). Estimating the Strength of Rock 

Materials. Journal of The South African Institute of Mining 

and Metallurgy, 74(8), 312–320. doi:10.1016/0148-

9062(74)91782-3. 

[32] Johnston, I. W. (1985). Strength of intact geomechanical 

materials. Journal of Geotechnical Engineering, 111(6), 

730–749. doi:10.1061/(ASCE)0733-

9410(1985)111:6(730). 

[33] Ramamurthy, T., Rao, G. V., & Rao, K. S. (1985). A 

strength criterion for rocks. Proceedings of the Indian 

Geotechnical Conference, 16-18 December, 1985, 

Roorkee, India. 

[34] Hoek, E., & Brown, E. T. (1980). Empirical Strength 

Criterion for Rock Masses. Journal of the Geotechnical 

Engineering Division, 106(9), 1013–1035. 

doi:10.1061/ajgeb6.0001029. 

[35] Veríssimo-Anacleto, J., Ludovico-Marques, M., & Neto, P. 

(2020). An empirical model for compressive strength of the 

limestone masonry based on number of courses – An 

experimental study. Construction and Building Materials, 

258, 119508. doi:10.1016/j.conbuildmat.2020.119508. 

[36] Mahmoodzadeh, A., Mohammadi, M., Hashim Ibrahim, H., 

Nariman Abdulhamid, S., Ghafoor Salim, S., Farid Hama 

Ali, H., & Kamal Majeed, M. (2021). Artificial intelligence 

forecasting models of uniaxial compressive strength. 

Transportation Geotechnics, 27, 100499. 

doi:10.1016/j.trgeo.2020.100499. 

[37] Alzabeebee, S., Mohammed, D. A., & Alshkane, Y. M. 

(2022). Experimental Study and Soft Computing Modeling 

of the Unconfined Compressive Strength of Limestone 

Rocks Considering Dry and Saturation Conditions. Rock 

Mechanics and Rock Engineering, 55(9), 5535–5554. 

doi:10.1007/s00603-022-02948-y. 

[38] Lawal, A. I., Kwon, S., Aladejare, A. E., & Oniyide, G. O. 

(2022). Prediction of the static and dynamic mechanical 

properties of sedimentary rock using soft computing 

methods. Geomechanics and Engineering, 28(3), 313–334. 

doi:10.12989/gae.2022.28.3.313. 

[39] Özdemir, E. (2022). A New Predictive Model for Uniaxial 

Compressive Strength of Rock Using Machine Learning 

Method: Artificial Intelligence-Based Age-Layered 

Population Structure Genetic Programming (ALPS-GP). 

Arabian Journal for Science and Engineering, 47(1), 629–

639. doi:10.1007/s13369-021-05761-x. 

[40] Jing, L., & Hudson, J. A. (2002). Numerical methods in 

rock mechanics. International Journal of Rock Mechanics 

and Mining Sciences, 39(4), 409–427. doi:10.1016/S1365-

1609(02)00065-5. 

[41] Fuenkajorn, K., & Serata, S. (1993). Numerical simulation 

of strain-softening and dilation of rock salt. International 

Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts, 30(7), 1303–1306. 

doi:10.1016/0148-9062(93)90113-r. 

[42] Mohammad, N., Reddish, D. J., & Stace, L. R. (1997). The 

relation between in situ and laboratory rock properties used 

in numerical modelling. International Journal of Rock 

Mechanics and Mining Sciences, 34(2), 289–297. 

doi:10.1016/S0148-9062(96)00060-5. 

[43] Lu, Y. B., Li, Q. M., & Ma, G. W. (2010). Numerical 

investigation of the dynamic compressive strength of rocks 

based on split Hopkinson pressure bar tests. International 

Journal of Rock Mechanics and Mining Sciences, 47(5), 

829–838. doi:10.1016/j.ijrmms.2010.03.013. 

[44] TOKASHIKI, N., & AYDAN, Ö. (2010). the Stability 

Assessment of Overhanging Ryukyu Limestone Cliffs With 

an Emphasis on the Evaluation of Tensile Strength of Rock 

Mass. Doboku Gakkai Ronbunshuu C, 66(2), 397–406. 

doi:10.2208/jscejc.66.397. 

[45] Bidgoli, M. N., Zhao, Z., & Jing, L. (2013). Numerical 

evaluation of strength and deformability of fractured rocks. 

Journal of Rock Mechanics and Geotechnical Engineering, 

5(6), 419–430. doi:10.1016/j.jrmge.2013.09.002. 

[46] Xu, T., Ranjith, P. G., Wasantha, P. L. P., Zhao, J., Tang, C. 

A., & Zhu, W. C. (2013). Influence of the geometry of 

partially-spanning joints on mechanical properties of rock 

in uniaxial compression. Engineering Geology, 167, 134–

147. doi:10.1016/j.enggeo.2013.10.011. 

[47] Wang, S. Y., Sloan, S. W., Sheng, D. C., Yang, S. Q., & 

Tang, C. A. (2014). Numerical study of failure behaviour 

of pre-cracked rock specimens under conventional triaxial 

compression. International Journal of Solids and 

Structures, 51(5), 1132–1148. 

doi:10.1016/j.ijsolstr.2013.12.012. 

[48] Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., & De 

Silva, V. R. S. (2017). Development of a laboratory-scale 

numerical model to simulate the mechanical behaviour of 



Noorian Bidgoli and Koochaki et al/Contrib. Sci. & Tech Eng, 2025, 2(2) 

55 
 

deep saline reservoir rocks under varying salinity 

conditions in uniaxial and triaxial test environments. 

Measurement, 101, 126–137. 

doi:10.1016/j.measurement.2017.01.015. 

[49] Xu, Z. H., Wang, W. Y., Lin, P., Xiong, Y., Liu, Z. Y., & He, 

S. J. (2020). A parameter calibration method for PFC 

simulation: Development and a case study of limestone. 

Geomechanics and Engineering, 22(1), 97–108. 

doi:10.12989/gae.2020.22.1.097. 

[50] Yin, Y., Li, G., Liu, Y., Jiang, X., & Luan, W. (2021). 

Research on uniaxial compression of jointed rock mass 

based on numerical simulation. IOP Conference Series: 

Earth and Environmental Science, 804(2), 22053. 

doi:10.1088/1755-1315/804/2/022053. 

[51] Noorian-Bidgoli, M. (2014). Strength and deformability of 

fractured rocks. PhD Thesis, KTH Royal Institute of 

Technology, Stockholm, Sweden. 

[52] Itasca, FLAC. (2000). Fast Lagrangian analysis of 

continua. Itasca Consulting Group Inc., Minneapolis, 

United States. 

[53] Harrison, J. P., & Hudson, J. A. (2000). Introduction. 

Engineering Rock Mechanics Part II, 3–11, Elsevier, 

Amsterdam, Netherlands. doi:10.1016/b978-008043010-

2/50002-2. 

[54] Sano, O., Ito, I., & Terada, M. (1981). Influence of strain 

rate on dilatancy and strength of Oshima granite under 

uniaxial compression. Journal of Geophysical Research, 

86(B10), 9299–9311. doi:10.1029/JB086iB10p09299. 

[55] Mogi, K. (2012). How I developed a true triaxial rock 

testing machine. True Triaxial Testing of Rocks, 4, 139–

157. doi:10.1201/b12705. 

 


