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Abstract. Let A be a unital C∗-algebra with unit 1A and let a ∈ A be a
positive and invertible element. Set

Sa(A) = { f

f(a)
: f ∈ S(A), f(a) ̸= 0},

where S(A) is the set of all states on A.
In this paper, by using the concept of algebraic a-Davies-Wielandt shell

of elements of A, we obtain a characterization of Roberts orthogonality with
respect to the norm:

∥x∥a = sup
φ∈Sa(A)

√
φ(x∗ax) (x ∈ A),

in C∗-algebra A, so called, a-Roberts orthogonality. More precisely, for any
a-isometry x ∈ A, we prove that x is a-Roberts orthogonal to 1A if and only
if algebraic a-numerical range of x is symmetric with respect to the origin.
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1. Introduction and preliminaries

Let A be a unital C∗-algebra with unit 1A. We denote by A′ the topological dual
space of A. The adjoint of any element x ∈ A is denoted by x∗. An element a
of A is called positive (written by a ≥ 0), if a is selfadjoint whose spectrum σ(a)
is contained in [0,∞). A linear functional f on A is called positive if f(a) ≥ 0
for every positive element a ∈ A. The set of all states of A, that is, the set of all
positive linear functionals of A of norm 1, is denoted by S(A); cf. [12].

Let a be a positive and invertible element of A. A generalization of state space
of A has been introduced in [8] as follows:

Sa(A) : = {φ ∈ A′
: φ ≥ 0, φ(a) = 1} = { f

f(a)
: f ∈ S(A), f(a) ̸= 0}.

Observe that if a = 1A, then Sa(A) = S(A). It has been proved in [8] that Sa(A)
is a nonempty convex and w∗-compact subset of A′. For any element x ∈ A, let

∥ · ∥a : A → [0,∞), ∥x∥a := sup{
√
φ(x∗ax) : φ ∈ Sa(A)}.

It was shown in [8] that ∥ · ∥a is a sub-multiplicative norm on A. Consequently,
∥ · ∥1A agrees with the C∗-norm ∥ · ∥ of A. The algebraic a-numerical range of
any element x ∈ A is defined by

Va(x) = {φ(ax) : φ ∈ Sa(A)}.

Observe that V1A(x) = V (x) = {f(x) : f ∈ S(A)} which is known as algebraic
numerical range of x. It has been proved in [8, Theorem 4.7] that Va(x) is a
nonempty convex subset of complex numbers for all x ∈ A. For more information
about algebraic a-numerical ranges and its fundamental properties the reader is
referred to [1].

One of the most well-known concept in study of the geometry of normed linear
spaces, and also operator spaces is the notion of orthogonality. In 1934, Roberts
introduced the first orthogonality in normed linear spaces [13]. Let (X, ∥ · ∥) be a
normed linear space over the field K ∈ {R,C}, whose dimension is at least 2. A
vector x ∈ X is said to be orthogonal in the sense of Roberts to a vector y ∈ X,
denoted by x ⊥R y, if

∥x− λy∥ = ∥x+ λy∥ (∀λ ∈ K).

Later, in 1935 Birkhoff introduced one of the most important orthogonality type
[7]. This notion of orthogonality was developed by James in [11]. A vector x ∈ X
is said to be orthogonal to a vector y ∈ X in the sense of Birkhoff–James, written
as x ⊥BJ y, if

∥x+ λy∥ ≥ ∥x∥ (∀λ ∈ K).
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Birkhoff-James orthogonality of bounded linear operators defined on Hilbert
spaces studied by Bhatia and S̆emrl in [6]. Some characterizations of Birkhoff-
James orthogonality in C∗-algebra A and in a more general setting Hilbert C∗-
modules over A in terms of the elements of state space S(A) have been obtained
in [2, 3, 5, 14]. Also, a characterization of Roberts orthogonality in terms of the
algebraic Davis-Wielandt shell of elements of A is obtained in [4]; see also [9].

In this paper, we consider a generalization of the notion of algebraic Davies-
Wielandt shell of x ∈ A [4], namely algebraic a-Davies-Wielandt shell of x, which
can be defined naturally as follows:

DVa(x) = {(φ(ax), φ(x∗ax)) : φ ∈ Sa(A)}.

Recently, the notion of Birkhoff-James orthogonality with respect to ∥ · ∥a in
unital C∗-algebra A, so called a-Birkhoff-James orthogonality, has been investi-
gated in [10]. A characterization of a-Birkhoff-James orthogonality in terms of
the elements of Sa(A) has been obtained in [10](see Theorem 2.5). Using this
characterization and the concept of algebraic a-Davies-Wielandt shells, we obtain
a characterization of Roberts orthogonality in unital C∗-algebra A with respect
to ∥ · ∥a. In fact, we prove that an a-isometry x ∈ A is a-Roberts orthogonal to
1A if and only if algebraic a-numerical range of x is symmetric with respect to
the origin. Our results cover and extend some known results of [4] .

2. a-Roberts orthogonality in unital C∗-algebras

Throughout this paper, we assume that A is a unital C∗-algebra with unit 1A
and a ∈ A is positive and invertible. We start this section with introducing the
notions of a-Birkhoff-James orthogonality and a-Roberts orthogonality in A.

We say that an element x ∈ A is Birkhoff-James orthogonal with respect to
∥ · ∥a (a-Birkhoff-James orthogonal) to an element y ∈ A, in short x ⊥a

BJ y, if

∥x+ λy∥a ≥ ∥x∥a (∀λ ∈ C).

Let us introduce the concept of a-Roberts orthogonality in C∗-algebras.

Definition 2.1. We say that an element x ∈ A is Roberts orthogonal with
respect to ∥ · ∥a (a-Roberts orthogonal) to an element y ∈ A, in short x ⊥a

R y, if

∥x− λy∥a = ∥x+ λy∥a (∀λ ∈ C).

It is easy to check that a-Roberts orthogonality implies a-Birkhoff-James or-
thogonality. Indeed, if x ⊥a

R y, then for all λ ∈ C, we have

2∥x∥a = ∥(x+ λy) + (x− λy)∥a ≤ ∥x+ λy∥a + ∥x− λy∥a = 2∥x+ λy∥a.

An element x♯ ∈ A is called an a-adjoint of x ∈ A if ax♯ = x∗a. The set of all
a-adjointable elements of A is denoted by Aa. An element x ∈ A is said to be
a-selfadjoint if ax is hermitian; i.e., ax = x∗a. It has been proved in [8] that if
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x ∈ A is a-selfadjoint, then Va(x) ⊆ R. Moreover, in [8, Corollary 4.9] was shown
that if x ∈ Aa and x♯ is an a-adjoint of it, then

∥x∥2a = ∥xx♯∥a = ∥x♯x∥a = ∥x♯∥2a.

We now discuss the main properties of a-Roberts orthogonality. The following
Proposition follows by the definition of a-Roberts orthogonality; and we omit the
proof.

Proposition 2.2. If x, y ∈ A, then the following statements hold:
i) αx ⊥a

R βy for any α, β ∈ C; i.e., a-Roberts orthogonality is homogenous;
ii) a-Roberts orthogonality is non-degenerated; i.e., if x ⊥a

R x, then x = 0.
iii) If x ⊥a

R y, then x♯ ⊥a
R y

♯;
iv) For any two nonzero elements x, y ∈ A, if x ⊥a

R y, then x and y are
linearly independent.

Proposition 2.3. For any x, y ∈ A, if x∗ay = 0, then x ⊥a
R y.

Proof. For each λ ∈ C, we have

∥x+ λy∥2a = sup
φ∈Sa(A)

φ((x+ λy)∗a(x+ λy))

= sup
φ∈Sa(A)

(
φ(x∗ax) + 2Reφ(x∗ay) + |λ|2φ(y∗ay)

)
= sup
φ∈Sa(A)

(
φ(x∗ax)− 2Reφ(x∗ay) + |λ|2φ(y∗ay)

)
= sup
φ∈Sa(A)

φ((x− λy)∗a(x− λy)) = ∥x− λy∥2a.

Hence ∥x+ λy∥a = ∥x− λy∥a for all λ ∈ C, and therefore x ⊥a
R y. □

In [10] have been described that if A is a commutative and unital C∗-algebra
and a ∈ A is positive and invertible, then a-Roberts orthogonality and the
Roberts orthogonality are equivalent. But it is not true in noncommutative C∗-
algebra even when a is invertible. The following example illustrate that a-Roberts
orthogonality and Roberts orthogonality may not be equivalent in noncommuta-
tive C∗-algebras.

Example 2.4. Let M2(C) be the C∗-algebra of all 2× 2 complex matrices, and
let Tr be the usual trace functional on M2(C). According to the Example 2.2 of
[8], we have

Sa(M2(C)) = {φh : h ∈ M2(C)+ and Tr(ha) = 1},

where
φh(x) := Tr(hx), (x ∈ M2(C)).
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Now, let a =

[
2 0
0 1

]
. Then with some simple matrix computations, we conclude

that
Sa(M2(C)) = {φh : h ∈ La},

where

La := {h =

[
h11 h12
h12 h22

]
∈ M2(C)+ : h12 ∈ C, h11, h22 ≥ 0 and 2h11 + h22 = 1}.

Let x =

[
0 1
0 1

]
and y =

[
0 1
0 −1

]
. It can easily be seen that

∥x+ λy∥2 =
∣∣1− λ

∣∣2 + ∣∣1 + λ
∣∣2 = ∥x− λy∥2

for all λ ∈ C. So x ⊥R y. On the other hand, for all λ ∈ C, we have
∥x+ λy∥2a = sup

h∈La

φh((x+ λy)∗a(x+ λy)) = sup
h∈La

Tr(h(x+ λy)∗a(x+ λy))

= sup
h∈La

Tr
( [ h11 h12

h12 h22

] [
0 0
0 2|1 + λ|2 + |1− λ|2

] )
= sup

2h11+h22=1,h11,h22≥0
(2|1 + λ|2 + |1− λ|2)h22

= 2|1 + λ|2 + |1− λ|2.
Similarly, we have

∥x− λy∥2a = sup
h∈La

Tr(h(x+ λy)∗a(x+ λy))

= sup
2h11+h22=1,h11,h22≥0

(2|1− λ|2 + |1 + λ|2)h22

= 2|1− λ|2 + |1 + λ|2.

Let λ = 1. Then ∥x+ λy∥2a = 8 ̸= 4 = ∥x− λy∥2a which implies that x ̸⊥a
R y.

Now, let x′ =

[
0

1

2
0 1

]
and y′ =

[
0 1
0 −1

]
. By Proposition 2.3, since

(x′)∗ay′ = 0, we conclude that x′ ⊥R
a y

′. But for every λ ∈ C, we have

∥x′ + λy′∥2 = |1
2
+ λ|2 + |1− λ|2

and
∥x′ − λy′∥2 = |1

2
− λ|2 + |1 + λ|2.

So, ∥x′ − λy′∥ ̸= ∥x′ + λy′∥, for λ = 1. Therefore x′ ̸⊥R y
′.

The following characterization of a-Birkhoff-James orthogonality in a unital
C∗-algebra A based on the elements of its generalized state space Sa(A) has been
presented in [10].
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Theorem 2.5. [10, Theorem 2.6] Let A be a unital C∗-algebra, x, y ∈ A and
let a be positive and invertible element of A. Then the following statements are
equivalent:

(i) x ⊥a
BJ y.

(ii) There is φ ∈ Sa(A) such that φ(x∗ax) = ∥x∥2a and φ(y∗ax) = 0 (φ(x∗ay) =
0).

Now, we present our first main result in the next Proposition. Note that
Theorem 2.5 has a key role for proving this Proposition.

Proposition 2.6. Let x ∈ A be a-selfadjoint. If x ⊥a
R 1A, then Va(x) is sym-

metric with respect to the origin.

Proof. Assume that x ∈ A is a-selfadjoint and x ⊥a
R 1A. Since ⊥a

R⊆⊥a
BJ , we

conclude from Theorem 2.5 that (0, ∥x∥2a) ∈ DVa(x). So there is φ ∈ Sa(A) such
that φ(x∗ax) = ∥x∥2a and φ(ax) = 0. It follows that 0 ∈ Va(x). Note that Va(x) is
compact, and so is a bounded subset of R. Hence, there are α ≤ 0 ≤ β such that
Va(x) = [α, β], since Va(x) is a convex subset of R. Without loss of generality,
we may assume that −α ≤ β. Now, from the definition of Va(x), there exists
φ ∈ Sa(A) such that φ(ax) = β. On the other hand, for every n ∈ N, there exists
φn ∈ Sa(A) such that

∥x+ n1A∥2a = φn((x+ n1A)
∗a(x+ n1A)) = φn(x

∗ax) + 2nφn(ax) + n2. (2.1)

Also, there exists ψn ∈ Sa(A) such that

∥x− n1A∥2a = ψn((x− n1A)
∗a(x− n1A)). (2.2)

But for each φ ∈ Sa(A), we have
φ((x+ n1A)

∗a(x+ n1A)) ≤ sup
φ∈Sa(A)

φ((x+ n1A)
∗a(x+ n1A))

= ∥x+ n1A∥2a = φn((x+ n1A)
∗a(x+ n1A)).

Hence for each n ∈ N,
φ(x∗ax) + 2nφ(ax) + n2 ≤ φn(x

∗ax) + 2nφn(ax) + n2,

and so
2n(φ(ax)− φn(ax)) ≤ φn(x

∗ax)− φ(x∗ax) (∀n ∈ N).
On the other hand, for every n ∈ N, φn ∈ Sa(A). Then φn(ax) ∈ Va(x) = [α, β].
So, φn(ax) ≤ β for all n ∈ N. Hence, 0 ≤ β − φn(ax), and therefore

0 ≤ φ(ax)− φn(ax) (∀n ∈ N).

Now, let ε > 0 for which φ(ax)− φn(ax) > ε for all n ∈ N. Then

n ≤ φn(x
∗ax)− φ(x∗ax)

2(φ(ax)− φn(ax))
<
φn(x

∗ax)− φ(x∗ax)

2ε
≤ φn(x

∗ax)

2ε
≤ ∥x∥2a

2ε
,
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which is a contradiction, since the set of natural numbers is not bounded above.
Therefore for each ε > 0 there is nε ∈ N such that φ(ax)−φnε(ax) ≤ ε. Hence, if
we take ε = 1

k
(k ∈ N), then there is nk ∈ N such that φ(ax)−φnk

(ax) ≤ 1

k
−→ 0

as k → ∞. So φnk
(ax) → φ(ax). Further, (3.2), (2.2) and x ⊥a

R 1A imply that

φn((x+ n1A)
∗a(x+ n1A)) = ∥x+ n1A∥2a = ∥x− n1A∥2a

= ψn((x+ n1A)
∗a(x+ n1A)) (∀n ∈ N).

Thus φn(x∗ax) + 2nφn(ax) + n2 = ψn(x
∗ax) + 2nψn(ax) + n2 for all n ∈ N, and

so
φn(ax) + ψn(ax) =

ψn(x
∗ax)− φn(x

∗ax)

2n
(∀n ∈ N).

Since φn and ψn are bounded for all n ∈ N, we conclud that
ψn(x

∗ax)− φn(x
∗ax)

2n

n→∞−→ 0,

that implies φn(ax) + ψn(ax) → 0. Therefore

lim
k→∞

ψnk
(ax) = − lim

k→∞
φnk

(ax) = −φ(ax) = −β

Moreover, for each k ∈ N, we have

ψnk
(ax) ∈ Va(x) = [α, β].

It follows that −β ∈ [α, β], and so α = −β which implies that Va(x) = [α, β] =
[−β, β]. □

Remark 2.7. By using the similar technique used in the proof of Proposition 2.1
of [4], we can show that Proposition 2.6 holds for every x ∈ A for which x ⊥a

R 1A
as well. In the last result of this paper (Theorem 3.4), we obtain some special
classes of elements x ∈ A for which the symmetry of Va(x) with respect to the
origin is a sufficient condition for the a-Roberts orthogonality to 1A.

3. Characterization of a-Roberts orthogonality in C∗-algebras

Assume that x ∈ A is arbitrary. The concept of algebraic Davis-Wielandt shell
of x ∈ A was introduced in [4] as follows:

DV (x) = {(φ(x), φ(x∗x)) : φ ∈ S(A)}.

It is well-known that the DV (x) is a compact convex subspace of C × R; (see
[4]). Let a ∈ A be positive and invertible. We introduce a generalized notion for
DV (x), namely algebraic a-Davies-Wielandt shell of x as follows:

DVa(x) = {(φ(ax), φ(x∗ax)) : φ ∈ Sa(A)}.

To achieve the desired result, we need the following lemma.
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Lemma 3.1. Let A be a unital C∗-algebra with unit 1A and let a ∈ A be positive
and invertible and x ∈ A. If there is φ ∈ Sa(A) such that (−φ(ax), φ(x∗ax)) /∈
DVa(x), then there exists λ ∈ C such that either

φ(x∗ax)− 2Re(λφ(ax)) > ψ(x∗ax) + 2Re(λψ(ax)), ∀ψ ∈ Sa(A),

or
φ(x∗ax)− 2Re(λφ(ax)) < ψ(x∗ax) + 2Re(λψ(ax)), ∀ψ ∈ Sa(A).

Proof. For every y ∈ A and every ψ ∈ Sa(A), we have
DVa(y) = {(ψ(Re y), ψ(Im y), ψ(y∗ay)) : ψ ∈ Sa(A)}.

From the fact that (−φ(ax), φ(x∗ax)) /∈ DVa(x), we conclude that
(
φ(Re(ax)), φ(Im(ax)), ψ(x∗ax)

)
/∈

DVa(−x). Since DVa(−x) is closed and convex set in R3, separation theorem fol-
lows that there are α, β, γ ∈ R such that

αφ(x∗ax)− βφ(Re(ax))− γφ(Im(ax))

> αψ(x∗ax) + βψ(Re(ax)) + γψ(Im(ax)) (∀ψ ∈ Sa(A))

or
αφ(x∗ax)− βφ(Re(ax))− γφ(Im(ax))

< αψ(x∗ax) + βψ(Re(ax)) + γψ(Im(ax)) (∀ψ ∈ Sa(A)).

Now, it is enough to take λ :=
β + iγ

2α
for α ̸= 0. □

Let x ∈ A. The upper boundary of DV (x) is the set
DVub(x) = {(µ, r) ∈ DV (x) : r = maxLµ(x)},

where Lµ(x) = {φ(x∗x) : φ ∈ S(A), φ(x) = µ}. We need to consider the upper
boundary of DVa(x) as in the following definition.

Definition 3.2. Let A be a unital C∗-algebra and let a ∈ A be positive and
invertible and x ∈ A. The a-upper boundary of DVa(x) is the set

DV a
ub(x) = {(µ, r) ∈ DVa(x) : r = maxLaµ(x)},

where Laµ(x) = {φ(x∗ax) : φ ∈ Sa(A), φ(ax) = µ}.

First, note that Laµ(x) is a compact subset of R, since Sa(A) is w∗-compact.
Now, let (µ, r) ∈ DVa(x). Then

DVa(−x) ={φ(−ax), φ((−x)∗a(−x)) : φ ∈ Sa(A)}
={φ(−ax), φ(x∗ax) : φ ∈ Sa(A)},

and so (−µ, r) ∈ DVa(−x). Also, we have La−µ(−x) = Laµ(x). Thus
(µ, r) ∈ DV a

ub(x) ⇔ (−µ, r) ∈ DV a
ub(−x). (3.1)
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The next result gives us the relation between a-Roberts orthogonality and a-
upper boundary of DVa(x). The proof method employed in this theorem follows
Arambašić et. al [4] approach.

Theorem 3.3. Let A be a unital C∗-algebra with unit 1A and let a ∈ A be
positive and invertible and x ∈ A. The following statements are equivalent:

(i) x ⊥a
R 1A,

(ii) DV a
ub(x) = DV a

ub(−x).

Proof. (i) ⇒ (ii) Suppose that x ⊥a
R 1A. We just prove DV a

ub(x) ⊆ DV a
ub(−x),

since a-Roberts orthogonality is homogenous, and so we can substitute x with
−x. First, we prove that

DV a
ub(x) ⊆ DVa(−x). (3.2)

Suppose that (µ, r) ∈ DV a
ub(x). Then there exists φ ∈ Sa(A) such that (µ, r) =

(φ(ax), φ(x∗ax)). To the contrary, we assume that (−µ, r) = (−φ(ax), φ(x∗ax)) /∈
DVa(x). By perviuos lemma, there exists λ ∈ C such that either

φ(x∗ax)− 2Re(λφ(ax)) > ψ(x∗ax) + 2Re(λψ(ax)) (∀ψ ∈ Sa(A)) (3.3)
or

φ(x∗ax)− 2Re(λφ(ax)) < ψ(x∗ax) + 2Re(λψ(ax)) (∀ψ ∈ Sa(A)). (3.4)
Let (3.3) holds. Then

ψ((x+ λ1A)
∗a(x+ λ1A)) = ψ(x∗ax) + 2Re(λψ(ax)) + |λ|2

< φ(x∗ax)− 2Re(λφ(ax)) + |λ|2 = φ((x− λ1A)
∗a(x− λ1A))

= ∥x− λ1A∥2a.

Taking supremum of all ψ ∈ Sa(A) give us
∥x+ λ1A∥2a = sup

ψ∈Sa(A
ψ((x+ λ1A)

∗a(x+ λ1A)) < ∥x− λ1A∥2a (3.5)

which is a contradiction to x ⊥a
R 1A.

Now, let (3.4) holds. Since x ⊥a
R 1A, Proposition 2.6 implies that Va(x) is

symmetric with respect to the origin. Then there exists ψ ∈ Sa(A) such that
ψ(ax) = −φ(ax) = −µ. By (3.4), we get

φ(x∗ax)− 2Re(λφ(ax)) < ψ(x∗ax) + 2Re(λψ(ax)),

and so
φ(x∗ax) < ψ(x∗ax) (3.6)

Also, we have (−ψ(ax), ψ(x∗ax)) ∈ DVa(x). If it is not true, by Lemma 3.1 there
is α ∈ C such that either

ψ(x∗ax)− 2Re(αψ(ax)) > ρ(x∗ax) + 2Re(αρ(ax)) (∀ρ ∈ Sa(A)) (3.7)
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or
ψ(x∗ax)− 2Re(αψ(ax)) < ρ(x∗ax) + 2Re(αρ(ax)) (∀ρ ∈ Sa(A)). (3.8)

If (3.7) holds, similar way of proving (3.5) yeilds that ∥x− α1A∥a > ∥x+ α1A∥a
that is contradiction with hypothesis x ⊥a

R 1A, and if (3.8) holds, with taking
ρ = φ, we get ψ(x∗ax) < φ(x∗ax) which is deduce (3.6) not hold.

Consequently there exists ρ ∈ Sa(A) such that ρ(ax) = ψ(ax) = µ and
ρ(x∗ax) = −ψ(x∗ax). From (3.6), we obtain that ρ(x∗ax) = ψ(x∗ax) > φ(x∗ax) =
r that is contradiction with the fact that (µ, r) ∈ DV a

ub(x). Then (3.5) does
not hold, and hence (−µ, r) = (−φ(ax), ρ(x∗ax)) ∈ DVa(x). It means (µ, r) ∈
DVa(−x). This show DV a

ub(x) ⊆ DVa(−x), since (µ, r) ∈ DV a
ub(x) is an arbitrary.

Now, we shall show that DV a
ub(x) ⊆ DV a

ub(−x). Assume (µ, r) ∈ DVa(x). By
using (3.2), we get (µ, r) ∈ DVa(−x), and so (−µ, r) ∈ DVa(x). Let ψ ∈ Sa(A)
such that ψ(ax) = −µ and ψ(x∗ax) = r. We want to show (−µ, r) ∈ DV a

ub(x).
To do this, we prove that ρ(x∗ax) ≤ r for all ρ ∈ Sa(A) such that ρ(ax) = −µ.
Suppose that it does not hold. It means that there exists ρ ∈ Sa(A) such that
ρ(ax) = −µ and

ρ(x∗ax) > r = ψ(x∗ax). (3.9)
Assume that (−µ, r) ∈ DVa(x). Then (ρ(ax), ρ(x∗ax)) ∈ DV a

ub(x) and so (ρ(ax), ρ(x∗ax)) ∈
DVa(−x) by (3.2). Hence there exists π ∈ Sa(A) such that π(ax) = −ρ(ax) = µ
and π(x∗ax) = ρ(x∗ax). From (µ, r) ∈ DV a

ub(x) and π(ax) = µ we conclude that
π(x∗ax) ≤ r and so ρ(x∗ax) = π(x∗ax) ≤ r that is contradiction with (3.9).
Hence for all ρ ∈ Sa(A) such that ρ(ax) = −µ, we have (−µ, r) ∈ DV a

ub(x) and
so (µ, r) ∈ DV a

ub(−x). Since (µ, r) ∈ DV a
ub(x) is arbitrary, we conclude that

DV a
ub(x) ⊆ DV a

ub(−x).
(ii) ⇒ (i) Assume that DV a

ub(x) = DV a
ub(−x) for every x ∈ A. For each λ ∈ C,

by using (3.1), we have
∥x+ λ1A∥2a = sup{

(
φ(x+ λ1A)

∗a(x+ λ1A)
)

: φ ∈ Sa(A)}
= sup{φ(x∗ax) + 2Re(λφ(ax)) + |λ|2 , φ ∈ Sa(A)}
= sup{r + 2Re(λµ) + |λ|2 : (µ, r) ∈ DV a

ub(x)}
= sup{r + 2Re(λµ) + |λ|2 : (−µ, r) ∈ DV a

ub(−x)}
= sup{r + 2Re(λµ) + |λ|2 : (−µ, r) ∈ DV a

ub(x)}
= sup{r + 2Re(λ(−µ)) + |λ|2 : (µ, r) ∈ DV a

ub(x)}
= sup{φ(x∗ax)− 2Re(λφ(ax)) + |λ|2 : (µ, r) ∈ DV a

ub(x)}
= sup{

(
φ(x− λ1A)

∗a(x− λ1A)
)

: φ ∈ Sa(A)} = ∥x− λ1A∥2a.
Therefore x ⊥a

R 1A. □
Finally, we want to explain when the algebraic a-numerical range is symmetric.

To this, we recall the concept of a-isometry in unital C∗-algebras. An element
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x ∈ A is called an a-isometry if x♯x = 1A, which equivalent to x∗ax = a, where
a is positive and invertible element.

Theorem 3.4. Let A be a unital C∗-algebra with unit 1A and let a ∈ A be
positive and invertible and x ∈ A. If x ∈ A is a-isometry, then the following
statements are equivalent:

(i) x ⊥a
R 1A.

(ii) Va(x) is symmetric with respect to the origin.

Proof. Note that x is an a-isometry. So φ(x∗ax) = φ(ax♯x) = φ(a) = 1A. Then
DV a

ub(x) = {(φ(ax), φ(x∗ax)) ∈ DVa(x) : φ ∈ Sa(A)}
= {(φ(ax), φ(a)) ∈ DVa(x) : φ ∈ Sa(A)}
= {(φ(ax), 1A) ∈ DVa(x) : φ ∈ Sa(A)} = Va(x)× 1A.

Therefore DV a
ub(x) = DV a

ub(−x) if and only if Va(x) = Va(−x). Pervious Theorem
yields that DV a

ub(x) = DV a
ub(−x) if and only if x ⊥a

R 1A and this fact complete
the proof. □
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