Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir https://doi.org/10.22080/cjms.2025.28681.1745 Caspian J Math Sci. 14(1)(2025), 137-142 (RESEARCH ARTICLE)

Constructing a new class of H_v -semigroups

Dariush Heidari ¹ ¹ Department of science, Mahallat institute of higher education, Mahallat, Iran

ABSTRACT. Let X be a non-empty set and H_X be the set of all mappings from X to $P^*(X)$, when $P^*(X)$ is the family of all nonempty subsets of X. In this paper, we define the hyperoperation \odot on H_X such that (H_X, \odot) is an H_v -semigroup. Then we prove that the fundamental relation β^* on H_X is the trivial relation.

Keywords: hyperoperation, H_v -semigroup, fundamental relation.

2000 Mathematics subject classification: 20N20.

1. INTRODUCTION

Algebraic hyperstructures are a generalization of classical algebraic structures. In a classical algebraic structure the composition of two elements is an element, while in an algebraic hyperstructure the composition of two elements is a non-empty set. More exactly, let H be a non-empty set. Then a map $\circ : H \times H \to P^*(H)$ is called a hyperoperation when $P^*(H)$ is the family of non-empty subsets of H and the couple (H, \circ) is called a hypergroupoid. The hyper product of two subsets A and B of

¹Corresponding author: dheidari82@gmail.com

Received: 22 February 2025

Revised: 19 April 2025

Accepted: 19 May 2025

How to Cite: Heidari, Dariush. Constructing a new class of H_v -semigroups, Casp.J. Math. Sci., 14(1)(2025), 137-142.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2025 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

¹³⁷

H defines as follows

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b.$$

Also, the notion $x \circ A$ is used for $\{x\} \circ A$ for every $x \in H$.

We deal with the large class of hyperstructures called H_v -semigroups were introduced by Vougiouklis [10] as a generalization of the wellknown algebraic hyperstructures (hypergroup, hyperring, hypermodule and so on). After the introduction of the notion of Hv-structures, several authors studied different aspects of Hv-structures. For instance, Vougiouklis [11], Spartalis [8, 9], Davvaz [5]. The hyperstructure (H, \circ) is called an H_v -semigroup if the weak associativity property holds i. e. $x \circ (y \circ z) \cap (x \circ y) \circ z \neq \emptyset$ for every $x, y, z \in H$. Also, an H_v semigroup (H, \circ) is called an H_v -group if satisfies the reproductive property: $x \circ H = H \circ x = H$ for every $x \in H$.

In [8] Spartalis introduced a wide class of H_v -semigroups, obtained from a semigroup, using families of non-empty sets. These constructions, called $S-H_v$ -semigroups, are more general than the well known complete semihypergroups. Also, Corsini and Vougiouklis in 1989 introduced the uniting elements method as follows: Take the partition in a group G for which put in the same class, all pairs of elements that causes the non-validity of a not valid property d. The quotient by this partition G/d is an Hv-structure [3].

The main tool to study hyperstructures is the fundamental relation β^* that is defined as the smallest equivalence relation so that the quotient be the corresponding classical structures. Let (H, \circ) be an H_v -semigroup and \mathcal{U} be the set of all finite hyperproducts of elements of H. Then the relation β defines as $x\beta y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \mathcal{U}$ and the fundamental relation β^* is the transitive closure of β . One can see [1, 2, 4] for more details.

Also, the hyperstructure (H, \circ) is called a semihypergroup if the associative property hold, i. e. $x \circ (y \circ z) = (x \circ y) \circ z$ for every $x, y, z \in H$.

For the basic concepts and terminology of semihypergroup, the reader is referred to the fundamental book [5].

As we know, transformation semigroups are also of utmost importance for semigroup theory, as every semigroup is isomorphic to a transformation semigroup. The main motivation behind this paper is to construct an H_v -semigroup that has a role similar to transformation semigroup.

In Section 2, we analyse the structure of the a generalization of the full transformation semigroupa, say H_X , prove some properties of their ideals and give an example. Also, we define an order \leq such that H_X becomes an ordered H_v -semigroup. Finally, we prove that the fundamental relation β^* on H_X is the trivial relation.

2. Generalized transformations

In this section we generalize the concept of a transformation on a nonempty set and define a new hyperoperation on the set of all generalized transformations on a non-empty set and construct an H_v -semigroup that is a generalization of the full transformations semigroup.

Definition 2.1. Let X be a non-empty set and $P^*(X)$ denote the set of all non-empty subset of X. Then, every function from X to $P^*(X)$ is called an H_v -transformation on X and the set of all H_v -transformations on X is denoted by H_X .

Obviously, every function on a non-empty set X is an H_v -transformation. We define a hyperoperation \odot on H_X that is weak associative and so the hyperstructure (H_X, \odot) is an H_v -semigroup. Thus the full transformation semigroup is a subsemigroup of H_X .

Definition 2.2. Let X be a non-empty set and $H_X = \{f : X \to P^*(X)\}$. For every $f \in H_X$ let Λ_f be the set of all choice functions on the family $\{f(x)\}_{x \in X}$. Then we define the hyperoperation \odot on H_X as follows:

$$f \odot g = \{(f, \lambda_g) | \lambda_g \in \Lambda_g\}, \forall f, g \in H_X$$

where, for every $x \in X$, $(f, \lambda_g)(x) = f(\lambda_g(g(x)))$.

Remark 2.3. Since, the hyperoperation \odot is closed thus (H_X, \odot) is a hypergroupoid.

From now on, we focus on the case that X is a finite set. We consider $X = \{1, 2, ..., n\}$ and use H_n in place of H_X . Thus (H_n, \odot) is a hypergroupoid with $(2^n - 1)^n$ elements.

Also, we denote every $f \in H_X$ by $[F_1, F_2, \dots, F_n]$ where $f(k) = F_k, k = 1, 2, \dots, n$. For example consider the identity and universal mappings on X that are denoted by id_X and u_X , respectively, where for every $k \in \{1, 2, \dots, n\}$, $id_X(k) = \{k\}$ and $u_X(k) = X$. Then $id_X = [\{1\}, \{2\}, \dots, \{n\}]$ and $u_X = [X, X, \dots, X]$.

By use of this notation we can say that every element of H_n is an *n*-tuple $[F_1, F_2, \dots, F_n]$, $[F_k]$ for short, such that every F_k 's is a non-empty subset of $\{1, 2, \dots, n\}$. Moreover, the hyperoperation \odot is simplify as below:

$$[F_k] \odot [G_k] = \{ [A_k] | A_k = F_{\lambda(G_k)}, \lambda : \{G_k\}_{k=1}^n \to \bigcup_{k=1}^n G_k, \lambda(G_k) \in G_k \}.$$

Theorem 2.4. Let n be a natural number. Then (H_n, \odot) is an H_v -semigroup with the right identity element id_X .

Proof. For every $f = [F_k], g = [G_k], r = [R_k] \in H_n$, let $m = [M_k]$ such that for every $k \in \{1, 2, \dots, n\}, M_k = F_{\min(G_{\min(R_k)})}$. Then $m \in$

 $f \odot (g \odot r) \cap (f \odot g) \odot r$ thus (H_n, \odot) satisfies the weak associativity property.

Example 2.5. Let n = 2. Then $X = \{1, 2\}$,

$$H_2 = \{[1,1], [1,2], [1,X], [2,1], [2,2], [2,X], [X,1], [X,2], [X,X]\}$$

and we have the following Cayley table, where h_i is the *i*'th element of H_2 for $1 \le i \le 9$

0	$ h_1 $	h_2	h_3	h_4	h_5	h_6	h_7	h_8	h_9
h_1	h_1	h_1	h_1	h_1	h_1	h_1	h_1	h_1	h_1
h_2	$ h_1 $	h_2	$\{h_1,h_2\}$	h_4	h_5	$\{h_4, h_5\}$	$\{h_1,h_4\}$	$\{h_2, h_5\}$	$\{h_1, h_2, h_4, h_5\}$
h_3	h_1	h_3	$\{h_1, h_3\}$	h_7	h_9	$\{h_7,h_9\}$	$\{h_1, h_7\}$	$\{h_3,h_9\}$	$\{h_1, h_3, h_7, h_9\}$
h_4	h_5	h_4	$\{h_4, h_5\}$	h_2	h_1	$\{h_1,h_2\}$	$\{h_2, h_5\}$	$\{h_1,h_4\}$	$\{h_1, h_2, h_4, h_5\}$
h_5	h_5	h_5	h_5	h_5	h_5	h_5	h_5	h_5	h_5
h_6	h_5	h_6	$\{h_5, h_6\}$	h_8	h_9	$\{h_8,h_9\}$	$\{h_5, h_8\}$	$\{h_6, h_9\}$	$\{h_5, h_6, h_8, h_9\}$
h_7	h_9	h_7	$\{h_7,h_9\}$	h_3	h_1	$\{h_1,h_3\}$	$\{h_3,h_9\}$	$\{h_1, h_7\}$	$\{h_1, h_3, h_7, h_9\}$
h_8	h_9	h_8	$\{h_8,h_9\}$	h_6	h_5	$\{h_5, h_6\}$	$\{h_6, h_9\}$	$\{h_5, h_8\}$	$\{h_5, h_6, h_8, h_9\}$
h_9	$ h_9 $	h_9	h_9	h_9	h_9	h_9	h_9	h_9	h_9

Let $f = [F_k] \in H_n$ and $\langle \langle f \rangle \rangle = f \odot u_X$. Then $\langle \langle f \rangle \rangle$ is the subset of H_n that contains all $r = [R_k]$ such that for every $k \in \{1, 2, \dots, n\}$ we have $R_k \in \{F_j | j \in \{1, 2, \dots, n\}\}$. In the following we prove some properties.

Lemma 2.6. For every $f \in H_n$ the following assertions hold.

- (1) If σ is a permutation on $\{1, 2, \dots, n\}$ and $f_{\sigma} = [F_{\sigma(k)}]$, then $\langle \langle f \rangle \rangle = \langle \langle f_{\sigma} \rangle \rangle$.
- (2) If $F = \{F_1\} \cup \{F_2\} \cup \cdots \cup \{F_n\}$, then $\ll f >> has |F|^n$ elements.
- (3) If f is one-to-one, then $\langle \langle f \rangle \rangle$ has n^n elements.
- (4) If f is a constant mapping, then $\langle \langle f \rangle \rangle = \{f\}$.
- (5) $\langle f \rangle is a right ideal of H_n$.

Proof. (1), (2), (3) and (4) are straightforward.

5) Suppose that $g \in \langle \langle f \rangle \rangle$ and $r \in H_n$ then, for every $t \in g \odot r$, there exist choice functions λ and μ such that for every $1 \leq k \leq n$

$$T_k = G_{\lambda(R_k)} = F_{\mu(G_\lambda(G_K))}$$

so $t \in \langle \langle f \rangle \rangle$, thus, $\langle \langle f \rangle \rangle$ is a right ideal of H_n .

Let F_1, F_2, \cdots and F_n be distinct subsets of X, then we have the following chain of right ideals:

$$\begin{array}{ll} << F_1, F_1, \cdots, F_1 >> & \subseteq << F_1, F_2, F_1, F_1, \cdots, F_1 >> \\ & \subseteq << F_1, F_2, F_3, F_1, F_1 \cdots, F_1 >> \\ & \subseteq \cdots \subseteq << F_1, F_2, \cdots, F_n >> \end{array}$$

In [7], Heidari and Davvaz studied a semihypergroup (S, \circ) besides a binary relation \leq , where \leq is a partial order relation such that satisfies the monotone condition. Indeed, an ordered semihypergroup (S, \circ, \leq) is a semihypergroup (S, \circ) together with a partial order \leq that is compatible with the hyperoperation, meaning that for any $x, y, z \in S$, we have $x \leq y \iff z \circ x \leq z \circ y$ and $x \circ z \leq y \circ z$. Here, $z \circ x \leq z \circ y$ means for any $a \in z \circ x$ there exists $b \in z \circ y$ such that $a \leq b$. The case $x \circ z \leq y \circ z$ is defined similarly.

Lemma 2.7. (H_n, \odot, \leq) is a right ordered H_v -semigroup, where for every $f, g \in H_n$ the order \leq defines as follows

$$f \leq g \Leftrightarrow F_k \subseteq G_k, \forall 1 \leq k \leq n.$$

Proof. Let $f, g \in H_n$ such that $f \leq g$. Then for every $r \in H_n$ and $t \in f \odot r$ there exists a choice function λ such that for every $1 \leq k \leq n$ we have

$$T_k = F_{\lambda(R_k)} \subseteq G_{\lambda(R_k)} \in g \odot r$$

so, $t \leq [G_{\lambda(R_k)}]$, thus (H_n, \odot, \leq) is a right ordered H_v -semigroup. \Box

Lemma 2.8. The H_v -semigroup H_n has n^n minimal and only one maximal element.

Proof. An element $[F_k]$ is minimal if and only if for every $1 \le k \le n$, F_k has no empty subset so $|F_k| = 1$ thus we have n^n minimal element. Also, u is only maximal element.

Theorem 2.9. The fundamental relation β is not transitive and β^* is trivial relation on H_n for every natural number n.

Proof. If n = 1, then the result hold trivially. Let n > 1 and $f = [\{1\}, \{1\}, \dots, \{1, n\}]$. Then there is no hyper product contains i and f, so $(i, f) \notin \beta$.

Also, for every f and g in H_n we have

$$f\beta[F_1, F_1, \cdots, F_1]\beta[G_1, F_1, F_1, \cdots, F_1]\beta[G_1, G_1, \cdots, G_1]\beta g$$

Thus $(f,g) \in \beta^*$ so β^* is the trivial relation on H_n .

3. Conclusion

We introduced the structure of the a generalization of the full transformation semigroup more precisely let X be a non-empty set and $P^*(X)$ denote the set of all non-empty subset of X. Then, every function from X to $P^*(X)$ is called an H_v -transformation on X and the set of all H_v transformations on X is denoted by H_X . Morever, we proved that H_X is an H_v -semigroup such that contains the full transformation semigroup. However the following question remains for the future work; "Is every H_v -semigroup can be embedded in H_X ?"

References

- [1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [2] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Advanced in Math- ematics, Kluwer Academic Publisher, 2003.
- [3] P. Corsini and T. Vougiouklis, From groupoids to groups through hypergroups, *Klower Rendiconti Mathematics*, S. VII, 9 (1989), 173-181.
- [4] B. Davvaz, Semihypergroup Theory, Academic Press, 2016.
- [5] B. Davvaz, A brief survey of the theory of Hv-structures, Proc. 8th International Congress on Algebraic Hyperstructures and Applications, 1-9 Sep., (2002), Samothraki, Greece, Spanidis Press, (2003) 39-70.
- [6] B. Davvaz, T. Vougiouklis, A walk through weak hyperstructures, Hv-Structures, World Scientific, (2018).
- [7] D. Heidari and B Davvaz, On ordered hyperstructures, U.P.B. Sci. Bull., Series A, 73(2) (2011), 85-96.
- [8] S. Spartalis, On Hv-semigroups, Italian Journal of Pure and Applied Mathematics, 11 (2002) 165-174.
- [9] S. Spartalis, On reversible Hv-group, Algebraic Hyperstructures and Applications, (1994) 163-170.
- [10] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. of the 4th AHA, Xanthi (1990), World Scientific, 1991, 203-211.
- [11] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115, Palm Harber, USA (1994).