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Abstract. Let X be a non-empty set and HX be the set of all
mappings from X to P ∗(X), when P ∗(X) is the family of all non-
empty subsets of X. In this paper, we define the hyperoperation ⊚
on HX such that (HX ,⊚) is an Hv-semigroup. Then we prove that
the fundamental relation β∗ on HX is the trivial relation.
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1. Introduction

Algebraic hyperstructures are a generalization of classical algebraic struc-
tures. In a classical algebraic structure the composition of two elements
is an element, while in an algebraic hyperstructure the composition of
two elements is a non-empty set. More exactly, let H be a non-empty
set. Then a map ◦ : H ×H → P ∗(H) is called a hyperoperation when
P ∗(H) is the family of non-empty subsets of H and the couple (H, ◦) is
called a hypergroupoid. The hyper product of two subsets A and B of
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H defines as follows
A ◦B =

∪
a∈A,b∈B

a ◦ b.

Also, the notion x ◦A is used for {x} ◦A for every x ∈ H.
We deal with the large class of hyperstructures called Hv-semigroups

were introduced by Vougiouklis [10] as a generalization of the well-
known algebraic hyperstructures (hypergroup, hyperring, hypermodule
and so on). After the introduction of the notion of Hv-structures, sev-
eral authors studied different aspects of Hv-structures. For instance,
Vougiouklis [11], Spartalis [8, 9], Davvaz [5]. The hyperstructure (H, ◦)
is called an Hv-semigroup if the weak associativity property holds i.
e. x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅ for every x, y, z ∈ H. Also, an Hv-
semigroup (H, ◦) is called an Hv-group if satisfies the reproductive prop-
erty: x ◦H = H ◦ x = H for every x ∈ H.

In [8] Spartalis introduced a wide class of Hv-semigroups, obtained
from a semigroup, using families of non-empty sets. These constructions,
called S−Hv-semigroups, are more general than the well known complete
semihypergroups. Also, Corsini and Vougiouklis in 1989 introduced the
uniting elements method as follows: Take the partition in a group G
for which put in the same class, all pairs of elements that causes the
non-validity of a not valid property d. The quotient by this partition
G/d is an Hv-structure [3].

The main tool to study hyperstructures is the fundamental relation β∗

that is defined as the smallest equivalence relation so that the quotient
be the corresponding classical structures. Let (H, ◦) be an Hv-semigroup
and U be the set of all finite hyperproducts of elements of H. Then the
relation β defines as xβy if and only if {x, y} ⊆ u for some u ∈ U and
the fundamental relation β∗ is the transitive closure of β. One can see
[1, 2, 4] for more details.

Also, the hyperstructure (H, ◦) is called a semihypergroup if the as-
sociative property hold, i. e. x◦ (y ◦z) = (x◦y)◦z for every x, y, z ∈ H.

For the basic concepts and terminology of semihypergroup, the reader
is refereed to the fundamental book [5].

As we know, transformation semigroups are also of utmost importance
for semigroup theory, as every semigroup is isomorphic to a transforma-
tion semigroup. The main motivation behind this paper is to construct
an Hv-semigroup that has a role similar to transformation semigroup.

In Section 2, we analyse the structure of the a generalization of the
full transformation semigroupa, say HX , prove some properties of their
ideals and give an example. Also, we define an order ≤ such that HX

becomes an ordered Hv-semigroup. Finally, we prove that the funda-
mental relation β∗ on HX is the trivial relation.
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2. Generalized transformations

In this section we generalize the concept of a transformation on a non-
empty set and define a new hyperoperation on the set of all generalized
transformations on a non-empty set and construct an Hv-semigroup that
is a generalization of the full transformations semigroup.

Definition 2.1. Let X be a non-empty set and P ∗(X) denote the set
of all non-empty subset of X. Then, every function from X to P ∗(X) is
called an Hv-transformation on X and the set of all Hv-transformations
on X is denoted by HX .

Obviously, every function on a non-empty set X is an Hv-transformation.
We define a hyperoperation ⊚ on HX that is weak associative and so
the hyperstructure (HX ,⊚) is an Hv-semigroup. Thus the full transfor-
mation semigroup is a subsemigroup of HX .

Definition 2.2. Let X be a non-empty set and HX = {f : X →
P ∗(X)}. For every f ∈ HX let Λf be the set of all choice functions on
the family {f(x)}x∈X . Then we define the hyperoperation ⊚ on HX as
follows:

f ⊚ g = {(f, λg)|λg ∈ Λg},∀f, g ∈ HX

where, for every x ∈ X, (f, λg)(x) = f(λg(g(x))).

Remark 2.3. Since, the hyperoperation ⊚ is closed thus (HX ,⊚) is a
hypergroupoid.

From now on, we focus on the case that X is a finite set. We con-
sider X = {1, 2, ..., n} and use Hn in place of HX . Thus (Hn,⊚) is a
hypergroupoid with (2n − 1)n elements.

Also, we denote every f ∈ HX by [F1, F2, · · · , Fn] where f(k) =
Fk, k = 1, 2, · · · , n. For example consider the identity and universal
mappings on X that are denoted by idX and uX , respectively, where
for every k ∈ {1, 2, · · · , n }, idX(k) = {k} and uX(k) = X. Then
idX = [{1}, {2}, · · · , {n}] and uX = [X,X, · · · , X].

By use of this notation we can say that every element of Hn is an n-
tuple [F1, F2, · · · , Fn], [Fk] for short, such that every Fk’s is a non-empty
subset of {1, 2, · · · , n}. Moreover, the hyperoperation ⊚ is simplify as
below:
[Fk]⊚ [Gk] = {[Ak]|Ak = Fλ(Gk), λ : {Gk}nk=1 → ∪n

k=1Gk, λ(Gk) ∈ Gk}.

Theorem 2.4. Let n be a natural number. Then (Hn,⊚) is an Hv-
semigroup with the right identity element idX .

Proof. For every f = [Fk], g = [Gk], r = [Rk] ∈ Hn, let m = [Mk]
such that for every k ∈ {1, 2, · · · , n}, Mk = Fmin(Gmin(Rk)). Then m ∈
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f ⊚ (g ⊚ r) ∩ (f ⊚ g) ⊚ r thus (Hn,⊚) satisfies the weak associativity
property.

□

Example 2.5. Let n = 2. Then X = {1, 2},

H2 = {[1, 1], [1, 2], [1, X], [2, 1], [2, 2], [2, X], [X, 1], [X, 2], [X,X]}

and we have the following Cayley table, where hi is the i’th element of
H2 for 1 ≤ i ≤ 9

⊚ h1 h2 h3 h4 h5 h6 h7 h8 h9
h1 h1 h1 h1 h1 h1 h1 h1 h1 h1
h2 h1 h2 {h1, h2} h4 h5 {h4, h5} {h1, h4} {h2, h5} {h1, h2, h4, h5}
h3 h1 h3 {h1, h3} h7 h9 {h7, h9} {h1, h7} {h3, h9} {h1, h3, h7, h9}
h4 h5 h4 {h4, h5} h2 h1 {h1, h2} {h2, h5} {h1, h4} {h1, h2, h4, h5}
h5 h5 h5 h5 h5 h5 h5 h5 h5 h5
h6 h5 h6 {h5, h6} h8 h9 {h8, h9} {h5, h8} {h6, h9} {h5, h6, h8, h9}
h7 h9 h7 {h7, h9} h3 h1 {h1, h3} {h3, h9} {h1, h7} {h1, h3, h7, h9}
h8 h9 h8 {h8, h9} h6 h5 {h5, h6} {h6, h9} {h5, h8} {h5, h6, h8, h9}
h9 h9 h9 h9 h9 h9 h9 h9 h9 h9

Let f = [Fk] ∈ Hn and << f >>= f ⊚ uX . Then << f >> is
the subset of Hn that contains all r = [Rk] such that for every k ∈
{1, 2, · · · , n} we have Rk ∈

{
Fj |j ∈ {1, 2, · · · , n}

}
. In the following we

prove some properties.

Lemma 2.6. For every f ∈ Hn the following assertions hold.
(1) If σ is a permutation on {1, 2, · · · , n} and fσ = [Fσ(k)], then

<< f >>=<< fσ >>.
(2) If F = {F1}∪{F2}∪· · ·∪{Fn}, then << f >> has |F |n elements.
(3) If f is one-to-one, then << f >> has nn elements.
(4) If f is a constant mapping, then << f >>= {f}.
(5) << f >> is a right ideal of Hn.

Proof. (1), (2), (3) and (4) are straightforward.
5) Suppose that g ∈<< f >> and r ∈ Hn then, for every t ∈ g ⊚ r,

there exist choice functions λ and µ such that for every 1 ≤ k ≤ n

Tk = Gλ(Rk)) = Fµ(Gλ(GK))

so t ∈<< f >>, thus, << f >> is a right ideal of Hn.
□
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Let F1,F2,· · · and Fn be distinct subsets of X, then we have the
following chain of right ideals:

<< F1, F1, · · · , F1 >> ⊆<< F1, F2, F1, F1, · · · , F1 >>
⊆<< F1, F2, F3, F1, F1 · · · , F1 >>
⊆ · · · ⊆<< F1, F2, · · · , Fn >>

In [7], Heidari and Davvaz studied a semihypergroup (S, ◦) besides a
binary relation ≤, where ≤ is a partial order relation such that satisfies
the monotone condition. Indeed, an ordered semihypergroup (S, ◦,≤
) is a semihypergroup (S, ◦) together with a partial order ≤ that is
compatible with the hyperoperation, meaning that for any x, y, z ∈ S,
we have x ≤ y ⇐⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z. Here, z ◦ x ≤ z ◦ y
means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that a ≤ b. The case
x ◦ z ≤ y ◦ z is defined similarly.

Lemma 2.7. (Hn,⊚,≤) is a right ordered Hv-semigroup, where for
every f, g ∈ Hn the order ≤ defines as follows

f ≤ g ⇔ Fk ⊆ Gk,∀1 ≤ k ≤ n.

Proof. Let f, g ∈ Hn such that f ≤ g. Then for every r ∈ Hn and
t ∈ f ⊚ r there exists a choice function λ such that for every 1 ≤ k ≤ n
we have

Tk = Fλ(Rk) ⊆ Gλ(Rk) ∈ g ⊚ r

so, t ≤ [Gλ(Rk)], thus (Hn,⊚,≤) is a right ordered Hv-semigroup. □

Lemma 2.8. The Hv-semigroup Hn has nn minimal and only one max-
imal element.

Proof. An element [Fk] is minimal if and only if for every 1 ≤ k ≤ n,
Fk has no empty subset so |Fk| = 1 thus we have nn minimal element.
Also, u is only maximal element. □

Theorem 2.9. The fundamental relation β is not transitive and β∗ is
trivial relation on Hn for every natural number n.

Proof. If n = 1, then the result hold trivially. Let n > 1 and f =
[{1}, {1}, · · · , {1, n}]. Then there is no hyper product contains i and f ,
so (i, f) /∈ β.

Also, for every f and g in Hn we have

fβ[F1, F1, · · · , F1]β[G1, F1, F1, · · · , F1]β[G1, G1, · · · , G1]βg

Thus (f, g) ∈ β∗ so β∗ is the trivial relation on Hn. □
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3. Conclusion

We introduced the structure of the a generalization of the full trans-
formation semigroup more precisely let X be a non-empty set and P ∗(X)
denote the set of all non-empty subset of X. Then, every function from
X to P ∗(X) is called an Hv-transformation on X and the set of all Hv-
transformations on X is denoted by HX . Morever, we proved that HX is
an Hv-semigroup such that contains the full transformation semigroup.
However the following question remains for the future work; ”Is every
Hv-semigroup can be embedded in HX?”
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