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Abstract. A topological space X is said to be τ -Lindelöf if every
open cover of X contains a subcover of cardinality ≤ τ . This paper
aims to study those spaces in which all points have a τ -Lindelöf
neighborhood, calling them locally τ -Lindelöf. This work extends
the known results from Lindelöf and locally Lindelöf spaces to τ -
Lindelöf and locally τ -Lindelöf spaces.
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1. Introduction

Compactness is one of the most fundamental concepts in topology that is
a generalization of the “closed and bounded” property in the Euclidean
space R. A topological space is said to be compact if every open cover
has a finite subcover. The definition of compactness adopted here was
given by Alexandroff and Urysohn in 1923 [3]. They deeply analyzed the
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concept of compactness in [4]. Not all important spaces are compact-
even the real line is not. As a generalization of compactness we consider
local compactness: a Hausdorff space X is called locally compact if ev-
ery point x ∈ X has a compact neighborhood. The Euclidean space Rn

and any infinite discrete space are locally compact. However, the space
Q is not locally compact. The notion of a locally compact space was
introduced, independently, by Alexandroff in [1, 2] and Tietze in [11].

In 1903, Lindelöf proved that any family of open subsets of Rn con-
tains a countable subfamily with the same union, see [9]. Motivated by
this result, Alexandroff and Urysohn introduced the notion of a Lindelöf
space in [4] as follows: a space X is called Lindelöf if every open cover
of X has a countable subcover. Obviously, every compact space is Lin-
delöf. However, the converse is not true.

More than a century has passed since the invention of the notion of
Lindelofness, and researchers in topology and analysis are still inter-
ested in this concept and its generalizations. In this paper, among the
generalizations and types of Lindelofness, we are interested in the con-
cept τ -Lindelöfness defined by Vesko Valov [12]. A space X is called
τ -Lindelöf if every open cover of X contains a subcover of cardinality
≤ τ . We continue this approach and investigate spaces in which all
points have a τ -Lindelöf neighborhood. We aim to extend the known
results about Lindelöf and locally Lindelöf spaces.

Throughout this paper, all considered spaces are assumed to be Haus-
dorff. We usually denote by X a topological space and by τ(X) the
topology on X. The “Axiom of Choice” is assumed throughout this
paper. If X is a set, |X| denotes the cardinality of X. For any infi-
nite cardinal number τ , τ+ stands for the successor cardinal of τ , i.e.,
the least cardinal greater than τ . Assuming the axiom of choice, it is
known that each cardinal has a successor cardinal. Our notation and
terminology are mainly as in [6] and [13].

2. τ-Lindelöf spaces
We cite the following definition from [12].

Definition 2.1. A space X is called τ -Lindelöf if every open cover of
X contains a subcover of cardinality ≤ τ .

Notice immediately that Lindelöf spaces (e.g., compact spaces) are
precisely ℵ0-Lindelöf. In general, every infinite discrete space of cardi-
nality τ is τ -Lindelöf. Hereafter, we will restrict our attention to only
τ > ℵ0 without loss of generality.

Lemma 2.2. The following statements hold.
(1) Every closed subspace of a τ -Lindelöf space is τ -Lindelöf.
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(2) The continuous image of a τ -Lindelöf space is τ -Lindelöf.

Proof. (1) Let X be a τ -Lindelöf space and F ⊆ X a closed sub-
space. Then for any open cover {Uα}α∈A of F , we have the open cover
{Uα} ∪ {X \ F} of X. Since X is τ -Lindelöf, {Uα} ∪ {X \ F} contains
a subcover of cardinality ≤ τ , say {Ui}. If necessary, we remove X \ F ,
and we have the desired subcover of F . Thus, F is also τ -Lindelöf.
(2) Let f : X → f(X) be a continuous map and let A be any cover-
ing of f(X). Then

{
f−1(A)|A ∈ A

}
is a collection of sets covering X;

these sets are open in X by the continuity of f . Since X is τ -Lindelöf,{
f−1(A)|A ∈ A

}
contains a subcover of cardinality ≤ τ , say

{
f−1(Ai)

}
.

Then, {Ai} forms a subcover of the original cover A with cardinality
≤ τ . Thus, f(X) is τ -Lindelöf, as desired. □

Lemma 2.3. Every subspace of X is τ -Lindelöf if and only if every
open subspace of X is τ -Lindelöf.

Proof. If every subspace of X is τ -Lindelöf, there is nothing to prove.
Now, let S be an arbitrary subset of X and let {Oi}i∈I be an open cover
of S. The family {Oi}i∈I is an open cover of the open set

⋃
{Oi}i∈I .

By hypothesis,
⋃
{Oi}i∈I contains a subcover of cardinality ≤ τ , say{

Oij

}
j∈J . This subcover is also a cover of the set S, as desired. □

Lemma 2.4. Let {Ci}i∈I be a family of τ -Lindelöf subspaces of a topo-
logical space X, where the index set I has cardinality λ < τ . Then⋃

i∈I {Ci} is τ -Lindelöf.

Proof. Consider a collection {Ci}i∈I , where |I| = λ < τ , of τ -Lindelöf
subspaces of X. Let C =

⋃
Ci and A be an arbitrary cover for C.

For each i, the cover A of Ci contains a subcover of cardinality ≤ τ .
Assuming the axiom of choice, we have λ× τ = max {λ, τ} = τ . Then,
the cover A of C contains a subcover of cardinality ≤ τ . Therefore, C
is τ -Lindelöf. □

Let us recall that a family Ω of subsets of X has the finite intersection
property if the intersection of any finite subcollection of Ω is non-empty.
For more details, see [13, Definition 17.3]. We shall be interested in a
counterpart of this definition.

Definition 2.5. We say that a family F of non-empty subsets of X has
the α intersection property, if the intersection of any subcollection of F
with cardinality α is non-empty.

With the above definition, we have the following useful characteriza-
tion of the τ -Lindelöf property.
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Lemma 2.6. A space X is τ -Lindelöf if and only if every family of
closed non-empty subsets of X which has the τ intersection property has
a non-empty intersection.

Proof. Let F be a family of closed subsets of X with the τ intersection
property. Suppose that

⋂
F∈F F = ∅. Then U = {X \ F : F ∈ F} is an

open cover for X. Indeed,⋃
U∈U

U =
⋃
F∈F

X \ F = X \
⋂
F∈F

F = X \ ∅ = X.

Define F ′ = {X \ U : U ∈ U ′} ⊆ F . Since X is τ -Lindelöf,
⋃

U∈U U
contains a subcover of cardinality ≤ τ , say

⋃
U∈U ′ U . However, this

means that
∅ = X \

⋃
U∈U ′

U =
⋂

U∈U ′

X \ U =
⋂

F∈F ′

F.

This contradicts the τ intersection property. Hence
⋂

F∈F F ̸= ∅.
Conversely, let U be an open cover of X. Then F = {X \ U : U ∈ U}

is a family of closed subsets of X. Suppose that X is not τ -Lindelöf, so
for all τ subsets of U ′ ⊆ U , there exists x ∈ X with x ∈ X \

⋃
U∈U ′ U .

Then x ∈ X \
⋃

U∈U ′ U =
⋂

U∈U ′(X \ U) =
⋂

F∈F ′ F . So, F has the τ
intersection property. Thus, we have

∅ ̸=
⋂
F∈F

F =
⋂
U∈U

X \ U = X \
⋃
U∈U

U = ∅.

That is a contradiction. Hence X is τ -Lindelöf. □

Before proceeding, we need to recall a definition. Following [8], the
intersection of any family with cardinality less than λ of open subsets of
a topological space X is called a Gλ-set (or λ-open). The complement of
a λ-open set is said to be Fλ-set (or λ-closed). The topological space X
is said to be a Pλ-space whenever each Gλ-set in X is open. Obviously,
Pℵ1-spaces are precisely P -spaces. Recall that a space X is said to be a
P -space, if every Gδ is open. Conditions that are equivalent to a space
being classified as a P -space are presented in [7, 4J and 14.29].

Lemma 2.7. The following statements are equivalent:
(1) X is a Pλ-space.
(2) For every family {Aα}α∈I of subsets of X, with |I| < λ, we have

(
⋂

α∈I Aα)
◦ =

⋂
α∈I A

◦
α.

(3) For every family {Aα}α∈I of subsets of X, with |I| < λ, we have⋃
α∈I Aα =

⋃
α∈I Aα.

(4) For every family {Aα}α∈I of closed subsets of X, with |I| < λ,⋃
α∈I Aα is closed.
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Proof. Most of the other implications being obvious or easy, we shall
only prove (1) ⇒ (2). Assume that {Aα}α∈I is a family of subsets of X,
with |I| < λ. Clearly, (

⋂
α∈I Aα)

◦ ⊆
⋂

α∈I A
◦
α. On the other hand, by

hypothesis,
⋂

α∈I A
◦
α is open and so

⋂
α∈I A

◦
α ⊆ (

⋂
α∈I Aα)

◦. □
Lemma 2.8. Every τ -Lindelöf subspace of a Pτ+-space is closed.

Proof. Let X be a Pτ+-space and K be a τ -Lindelöf subspace of X. Fix
x ∈ X \K. Since X is Hausdorff, for each y ∈ K there are disjoint open
sets Uy and Vy such that x ∈ Uy and y ∈ Vy. Obviously, {Vy : y ∈ K}
is an open cover of K. Since K is τ -Lindelöf, {Vy : y ∈ K} contains a
subcover of cardinality ≤ τ , say {Vi : i ∈ I}. Define U :=

⋂
i∈I Uy. Since

X is a Pτ+-space, U is an open neighborhood of x disjoint from K. Since
x was an arbitrary point of X \K, K must be closed. □

We need the following lemma.
Lemma 2.9. Let Y be a Pτ+-space. If C ⊆ Y is τ -Lindelöf and disjoint
from x, then there exist disjoint open neighborhoods V of x and V ′ of
C.

Proof. Since x /∈ C, we can find disjoint open neighborhoods Vy of x
and V ′

y of y for each y ∈ C. The collection
{
V ′
y

}
y∈C is a cover of C.

By τ -Lindelöfness,
{
V ′
y

}
y∈C contains a subcover of cardinality ≤ τ , say{

V ′
yi

}
i∈I . Define V :=

⋂
i∈I V

′
yi and V ′ :=

⋃
i∈I V

′
yi . Since Y is a Pτ+-

space, V , being an intersection of open neighborhoods, is open. Clearly,
V ∩ V ′ = ∅, x ∈ V and C ⊆ V ′, as desired. □

We conclude this section with the following fact.
Corollary 2.10. If X is a τ -Lindelöf Pτ+-space, then X is a normal
space.

Proof. Let A and B be two disjoint closed subsets of X. Lemma (2.2)(1)
implies that A and B are τ -Lindelöf. Thus, by Lemma (2.9), the result
follows. □

3. Locally τ-Lindelöf spaces
A space X is called locally compact if each point of X has a compact

neighborhood. We refer the reader to [13, 18, §6] and [6, §3] for more
details.

There are three definitions of locally Lindelöf in the literature:
(1) Every point has a Lindelöf neighborhood.
(2) Every point has a neighborhood whose closure is Lindelöf.
(3) Every neighborhood of a point contains a neighborhood whose

closure is Lindelöf.
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Obviously, (3) ⇒ (2) ⇒ (1). Furthermore, (1) ⇒ (3) if X is a P -space.
The following notion is motivated by the above definitions.

Definition 3.1. We say a space X is locally τ -Lindelöf if every point
x ∈ X has a τ -Lindelöf neighborhood.

We will now examine a significant concept that establishes the con-
nection between locally τ -Lindelöf spaces and τ -Lindelöf spaces. Before
proceeding, let us recall that a space Y is said to be an extension of a
space X if Y contains X as a dense subspace. An extension Y of X is
called a one-point extension of X if Y \ X is a singleton. Alexandroff
proved that any locally compact non-compact space X has a one-point
compact extension, called the one point compactification of X. In order
to achieve our aims, we make the following definition.
Definition 3.2. Let Y be τ -Lindelöf. If X ↪→ Y is an embedding such
that X is dense in Y , then we say Y is a τ -Lindelöfication of X. If Y \X
is a singleton, then we say Y is the one-point τ -Lindelöfication of X.
Theorem 3.3. Let X be a Pτ+-space. The following statements are
equivalent:

(1) X is a locally τ -Lindelöf space.
(2) There exists a one-point τ -Lindelöfication Y of X.

Moreover, if such a τ -Lindelöfication Y exists, then it is unique up to
homeomorphism.
Proof. (2) ⇒ (1) Suppose Y = X∪{∞} is a one-point τ -Lindelöfication.
The subspace X ⊆ Y is Hausdorff, and if x ∈ X choose disjoint neigh-
borhoods x ∈ U and ∞ ∈ V . Let C = Y \ V . By Lemma 2.2(1), C is
τ -Lindelöf. And

x ∈ U ⊆ C = Y \ V ⊆ Y \ {∞} = X.

Therefore, X is locally τ -Lindelöf at x.
(1) ⇒ (2) Suppose X is locally τ -Lindelöf. Define Y := X ∪ {∞},

where the element ∞ /∈ X is a distinct symbol. Define a topology on Y
by

τ = {U : U ⊆ X open} ∪ {Y \ C : C ⊆ X τ -Lindelöf} .
The sets of the form {U : U ⊆ X and open} are precisely those that

are already open in X. The sets
{Y \ C : C ⊆ X τ -Lindelöf} are those containing ∞ whose complements
are τ -Lindelöf subsets of X.

(1) We first confirm that this indeed defines a topology. Clearly,
∅ and X are in τ(X). Let {Ci}i∈I ⊆ X be a collection of τ -
Lindelöf subspaces. It is easy to see that

⋂
i∈I Ci is τ -Lindelöf.

Lemma 2.4 yields that
⋃in

k=i1
Ck is τ -Lindelöf for each n ∈ N.
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Now assume that U ⊆ X is open and C ⊆ X is τ -Lindelöf. By
Lemma 2.8, we have C is closed, and so Y \ C is open. Thus,

U ∩ (Y \ C) = U ∩ (X \ C) ⊆ X

is an element of τ(X). On the other hand, C ∩ (X \U) is closed
and so it is τ -Lindelöf, by Lemma 2.2(1). Hence,

U ∪ (Y \ C) = Y \ (C ∩ (X \ U))

is an element of τ(X).
Moreover, since X is open in Y , the subspace topology on X
induced by τ(X) is the original topology on X.

(2) (Y is Hausdorff.) If two points x, y ∈ Y are in X, then they can
be separated by the corresponding open neighborhoods that arise
from the Hausdorff X ⊆ Y . To separate x ∈ X and ∞, local
τ -Lindelöfness implies there exists a τ -Lindelöf C containing an
open neighborhood U of x. Hence, U and Y \C separate x and
∞.

(3) (Y is τ -Lindelöf.) Let {Ui}i∈I be an open cover. ∞ lies in some
U0 = Y \C, for C τ -Lindelöf. Now {Ui ∩ C}i∈I is an open cover
of C. By τ -Lindelöfness, C contains a subcover of cardinality
≤ τ , say

⋃
J(Uj ∩ C). Thus, C ⊆

⋃
J Uj , and Y = U0 ∪

⋃
J Uj .

(4) (Y is unique up to homeomorphism.) Assume that there is an-
other Y ′ = X∪{p} that is τ -Lindelöf such that subspace topology
on X agrees with our original topology on X. We will show that
the map Y → Y ′ defined by the identity on X and ∞ → p is a
homeomorphism, so that the only difference between Y and Y ′

is the naming of the added point.
• Since Y ′ is Hausdorff, {p} is closed. Thus, X ⊆ Y ′ is open.

This yields that the subspace topology on X consists ex-
actly of open subsets of Y ′ which contain X. Hence, The
collection {U} of the sets {U : U ⊆ X open} open sets in
Y ′ are exactly the open sets of X.

• If V ⊆ Y ′ is open and p ∈ V , then C = Y ′ \ V is closed
in Y ′. Hence, C is τ -Lindelöf by Lemma 2.2(1). But in
fact C ⊆ Y ′ \ {p} = X, so V = Y ′ \ C, where C ⊆ X, is
τ -Lindelöf. Conversely, if C ⊆ X is τ -Lindelöf, then it is
closed in Y ′ by Lemma 2.8. This yields that Y ′ \C is open
in Y ′.

□

Proposition 3.4. A Pτ+-space X is locally τ -Lindelöf if and only if it
is homeomorphic to an open subset of a τ -Lindelöf space Y .
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Proof. (⇒) It follows from the fact that X is open in the τ -Lindelöf
space Y = X ∪ {∞}, see Theorem 3.3.
(⇐) Define Y∞ = Y \ X. Since Y∞ is closed in Y , it is τ -Lindelöf by
Lemma 2.2(1). Using Lemma 2.9, we can find disjoint open sets U and
Y∞ ⊆ V in Y , where x ∈ U . Then K = Y \ V is the desired τ -Lindelöf
neighborhood of x in X. □
Proposition 3.5. Let X be a Pτ+-space. The following statements are
equivalent:

(1) X is locally τ -Lindelöf.
(2) For all x ∈ X and neighborhoods U of x, there exists a neigh-

borhood V of x such that V ⊆ U and V is τ -Lindelöf.
Proof. (1) ⇒ (2) Let x ∈ X and U be a neighborhood of x. Let Y be
the one-point τ -Lindelöfication of X. By Theorem 3.3, Y is τ -Lindelöf.
Define C := Y \ U . Since C is closed in Y , it is τ -Lindelöf by Lemma
2.2(1). Lemma 2.9 implies that there exists disjoint neighborhoods V
around x and V ′ around Y \ U . Thus we have

x ∈ V ⊆ V ⊆ Y \ V ′ ⊆ (Y \ C) = U.

(2) ⇒ (1) Assume (2). Take U = X, at each points there is a τ -Lindelöf
V containing x that contains the open neighborhood V of x. □

Proposition 3.5 yields the following corollary.
Corollary 3.6. Let X be a locally τ -Lindelöf Pτ+-space, K be a τ -
Lindelöf set in X, and U be an open subset, with K ⊆ U . Then there
exists an open set V such that:

(1) V is a τ -Lindelöf space;
(2) K ⊆ V ⊆ V ⊆ U .

Proof. By Proposition 3.5, for every x ∈ K, we find an open set V (x)

such that V (x) is τ -Lindelöf and x ∈ V (x) ⊆ V (x) ⊆ U . We have
K ⊆

⋃
x∈K V (x). By τ -Lindelöfness,

⋃
x∈K V (x) contains a subcover of

cardinality ≤ τ , say
⋃

i∈I V (xi). Notice that if we take V =
⋃

i∈I V (xi),
then we deduce that K ⊆ V ⊆ V ⊆

⋃
i∈I V (xi) ⊆ U , as desired. □

Lemma 3.7. Any open or closed subset of a locally τ -Lindelöf Pτ+-space
is locally τ -Lindelöf.
Proof. Let X be a locally τ -Lindelöf space. If Y ⊆ X is open, then any
point in Y has a neighborhood whose closure is τ -Lindelöf and contained
in Y by Proposition 3.5. Hence, Y is locally τ -Lindelöf. Now suppose
Z ⊆ X is closed. Any x ∈ Z has a τ -Lindelöf neighborhood in X, say U .
We note that U ∩ Z = U ∩ Z is a closed subset of the τ -Lindelöf set U .
From Lemma 2.2(1), we deduce that U∩Z is τ -Lindelöf. Hence, U∩Z is
a τ -Lindelöf neighborhood of x in Z. Thus, Z is locally τ -Lindelöf. □
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For invariance properties, we have the following lemma.
Lemma 3.8. (1) A locally τ -Lindelöf subset A of a Pτ+-space Y is

of the form V ∩ F , where V is open and F is closed in Y .
(2) A subspace of a locally τ -Lindelöf Pτ+-space is locally τ -Lindelöf

if and only if it is of the form V ∩ F , where V is open and F is
closed.

Proof. (1) Assume that A is locally τ -Lindelöf. Each a ∈ A has a neigh-
borhood V (a) in Y such that V (a) ∩ A is τ -Lindelöf and is closed in Y
by Lemma 2.8. Define V :=

⋃
{V (a)|a ∈ A}. Obviously, V is open in

Y and contains A. Moreover, the formula V (a)∩A = V (a)∩ (V (a)∩A)
shows that each V (a)∩A is closed in V (a). This implies that A is closed
in V . Thus, A = V ∩ F , where F is a closed set in Y , as desired.
(2) By (1), it suffices to show that if A = V ∩ F , then A is locally
τ -Lindelöf. Take a ∈ A. By Proposition 3.5, we can find a τ -Lindelöf
open U in Y satisfying a ∈ U ⊆ U ⊆ V . Consider the neighbor-
hood U ∩ A of a in A. The closure of this neighborhood in A is
U ∩A = U ∩ (V ∩F ) = U ∩F , which is a set closed in U , as desired. □

The following is an easy consequence of Lemma 3.8.
Corollary 3.9. A dense subspace D of a locally τ -Lindelöf Pτ+-space
X is locally τ -Lindelöf if and only if it is open in X.
Corollary 3.10. Let X be a locally τ -Lindelöf Pτ+-space. A subset
A ⊆ X is open if and only if its intersection with each τ -Lindelöf C ⊆ X
is open in C.
Proof. We only prove the converse. Assume A ∩ C is open in C for
each τ -Lindelöf C. Take a ∈ A. By Proposition 3.5, we can find a τ -
Lindelöf neighborhood V (a). Since A ∩ V (a) is open in V (a), we infer
that A ∩ V (a) is open in V (a). Hence, A ∩ V (a) is open in X. Thus,
each a ∈ A has a neighborhood in A. This implies that A is open in X,
as desired. □

We now look at the products of locally τ -Lindelöf spaces.
Corollary 3.11. If X and Y are locally τ -Lindelöf Pτ+-spaces, then so
is X × Y .
Proof. Let x ∈ X, y ∈ Y . By Proposition 3.5, there are open sets
U ⊆ X, V ⊆ Y with U and V τ -Lindelöf. Hence, U × V is an open
neighbourhood of (x, y) in X × Y with τ -Lindelöf closure U × V , and
we are done. □

One of the most important results in analysis and topology is Urysohn’s
Lemma which states that any two disjoint closed sets in a normal space
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are completely separated, see [7, 3.13]. A version of Urysohn’s Lemma
for locally compact Hausdorff spaces is stated in [10, 2.12]. We now
state the following.

Theorem 3.12. (Urysohn’s Lemma for locally τ -Lindelöf spaces) Let X
be a locally τ -Lindelöf Pτ+-space, and let K,F ⊆ X be two disjoint sets,
where K is τ -Lindelöf and F is closed. Then there exists a continuous
function f : X → [0, 1] such that f

∣∣
K

= 1 and f
∣∣
F
= 0.

Proof. With the help of Corollary 3.6 for the pair K ⊆ X\F , we can find
an open set E, where E is τ -Lindelöf, such that K ⊆ E ⊆ E ⊆ X \ F .
Again, Corollary 3.6 yields that for the pair K ⊆ E, we can find another
open set G with G τ -Lindelöf, such that K ⊆ G ⊆ G ⊆ E. E (equipped
with the induced topology) is a τ -Lindelöf space, hence it is normal by
Lemma 2.10. Using Urysohn’s Lemma, there is a continuous function
g : E → [0, 1] such that g

∣∣
K

= 1 and g
∣∣
E\G = 0. Define the function

f : X → [0, 1] by

f(x) =

{
g(x) x ∈ E
0 x ∈ X \ E.

Obviously, f
∣∣
E

= g
∣∣
E

, and we have f
∣∣
E

is continuous. Take the open
set A = X \G. Hence, it is clear that f

∣∣
A
= 0. Therefore, we have two

open sets E and A, where A ∪ E = X. Note that both f
∣∣
A

and f
∣∣
E

are continuous. Thus, we deduce that f is continuous. The other two
properties f

∣∣
K

= 1 and f
∣∣
F
= 0 are clear. □

The intersection of two dense sets may not be dense, but if the sets
are also open, the intersection is dense. A space X is called a Baire
space if the intersection of each countable family of dense sets in X is
dense. It is known that every locally compact space is a Baire space, see
[13, 25.4] for example. We now make the following.

Theorem 3.13. (Baire’s Theorem for locally τ -Lindelöf spaces) If {Vi|i ∈ I}
is a τ+ collection of open dense subsets in a locally τ -Lindelöf P+

τ -space
X, then

⋂
Vi is also dense.

Proof. Let Wi0 ⊆ X be a non-empty open set. Since Vi1 is dense, Vi1 ∩
Wi0 is non-empty open. By Proposition 3.5, there is a non-empty open
set Wi1 , where Wi1 is τ -Lindelöf and Wi1 ⊆ Vi1 ∩Wi0 . Inductively, we
get open sets Win such that Win ⊆ Vin ∩ Win−1 for all n ≥ 1. Win is
a decreasing sequence of τ -Lindelöf sets, so has τ intersection property.
Lemma 2.6 yields K =

⋂
Wi is non-empty τ -Lindelöf. Since K ⊆ Wi0

and K ⊆ Vi for all i ∈ I, we infer that Wi0 ∩ (
⋂
Vi) is non-empty. Thus⋂

Vi intersects every non-empty open set and so is dense. □
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The second half of this section is devoted to the study of kτ -spaces.
First, let us recall that a space X is said to be a k-space if it has the
weak topology determined by the family of its compact subspaces. The
following is a counterpart of this definition.
Definition 3.14. We say a space X is a kτ -space if it has the weak
topology determined by the family of its τ -Lindelöf subspaces.

Obviously, every locally τ -Lindelöf space is a kτ -space. To describe
the relation of locally τ -Lindelöf spaces and kτ -spaces, we need recall
the following definition and theorem from [5].
Definition 3.15. ([5, Definition 8.4, §VI]) Let {Yα|α ∈ A} be a family
of spaces. For each α, let Y ′

α be the space {α}×Yα, so that Y ′
α
∼= Yα and

the family {Y ′
α|α ∈ A} is pairwise disjoint. The free union of the given

family {Yα|α ∈ A} is the set
⋃

α Y
′
α with the weak topology determined

by the space Y ′
α; this space is denoted by

∑
α Y

′
α.

Theorem 3.16. ([5, Theorem 8.5, §VI]) Let (X, τ) be a space with the
weak topology determined by the covering {Aα|α ∈ A}. Let A =

∑
αA

′
α

be the free union of {Aα|α ∈ A}. For each α, let hα : A′
α → Aα ⊆ X

be the homeomorphism (α, a) → a. Define h :
∑

αA
′
α → X by h = hα.

Then h
∣∣
A′

α
is continuous and A/Ker(h) ∼= X.

We end this paper with a result describing the relationship between
locally τ -Lindelöf spaces and kτ -spaces.
Theorem 3.17. A space X is a kτ -space if and only if it is a quotient
space of a locally τ -Lindelöf space.

Proof. (⇒) Assume that X is a kτ -space. By Theorem 3.16, X is a
quotient space of the free union of its τ -Lindelöf subspaces. On the
other hand, it is clear that the free union of τ -Lindelöf spaces is locally
τ -Lindelöf, as desired.
(⇐) Let f : Y → X be the identification map, where Y is locally
τ -Lindelöf. Let U ⊆ X be such that U ∩ C is open in C for each
τ -Lindelöf C. We claim that U is open in X. For each relatively τ -
Lindelöf open set V ⊆ Y , we have U ∩ f(V ) is open in the τ -Lindelöf
f(V ), that is, U ∩ f(V ) = f(V ) ∩ G, where G is open in X. Since
f−1(U) ∩ f−1f(V ) = f−1f(V ) ∩ f−1(G), it follows f−1(U) ∩ V is open
in Y . Since there is a covering Y :=

⋃
α Vα consisting of relatively τ -

Lindelöf open sets, the formula f−1(U) =
⋃

α f
−1(U) ∩ Vα shows that

f−1(U) is open in Y , and so U is open in X. □
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