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Abstract. In this paper, we study the 4-dimensional para-hypercomplex
Lie groups equipped with a left invariant Randers metric. We first get
all the equations related to geodesic vectors on four dimensional para-
hypercomplex Lie groups. Finally, we show the condition of the equiva-
lence of geodesic vectors in the Riemannian and Finslerian spaces.
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1. Introduction

A geodesic is the shortest curve among all piece-wise differentiable curves
on any surface connecting two points. For the first time in 1697, Bernoulli
study about concept of geodesics. Let S be a surface on R3 parameterized by
a regular patch X. Then the geodesics on S are determined by the system of
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two second order differential equations{
u′′ + Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 = 0,

v′′ + Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 = 0,

where the Γi
jk are the Christoffel symbols of X and u, v : (a, b) → R are

differentiable functions. For example the three straight lines v 7→ (0, v, 0),
v 7→ (v

√
3, v, 0) and v 7→ (−v

√
3, v, 0) are geodesics on monkey saddle z =

x3 − 3xy2 that satisfies the differential equation

uu′2 − 2vu′v′ − uv′2 = 0.

Now assume that M be a smooth manifold and let ∇ be a connection in
TM . Let σ : I → M be a smooth curve. In the term of smooth coordinates
(xi) we can write σ(t) = (x1(t), . . . , xn(t)). Then σ is a geodesic if and only if
its component functions satisfy the following geodesic equation

d2σk

dt2
+ Γk

ij

dσi

dt

dσj

dt
= 0.

In 2003, the authors in [2] study the para-hypercomlex structure and they
have classified four dimensional real Lie algebras which admit a para-hypercomlex
structure. Later in [6], the author study properties of left invariant Riemann-
ian metrics on para-hypercomlex four dimensional Lie groups. Also in [6],
the explicit formulas for computing flag curvature have been obtained for left
invariant Randers metrics of Berwald type. In this paper, we consider the left
invariant Randers metrics and we give all geodesics equations on the para-
hypercomplex 4-dimensional Lie groups. We note that in [7], we describe all
geodesic vectors of the invariant infinite series metric on the left invariant hy-
percomplex four dimensional simply connected Lie groups and in [5], we study
geodesic vectors of the left invariant (α, β)-metrics on nilpotent Lie groups of
five dimensional.

2. Preliminaries

Assume that M be a smooth n-dimensional C∞ manifold and TM be its
tangent bundle. A Finsler metric on M is a non-negative function F : TM →
R with the following properties [1]:

(1) F is smooth on the slit tangent bundle TM0 := TM\{0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.
(3) The following bilinear symmetric form gy : TxM×TxM → R is positive

definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0. (2.1)



98 Milad Zeinali Laki, Dariush Latifi

Let α =
√
ãij (x) yiyj be a norm induced by a Riemannian metric ã and

β (x, y) = bi(x)y
i be a 1-form on an n-dimensional manifold M . Let

b := ‖β(x)‖α :=
√

ãij(x)bi(x)bj(x).

Now, assume that the function F is defined as follows:

F := αφ(s), s =
β

α
, (2.2)

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying:

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ‖β(x)‖α < b0 for any x ∈ M . A Finsler metric
in the form (2.2) is called an (α, β)-metric [7]. A Finsler space having the
Finsler function F (x, y) = α(x, y) + β(x, y), is called a Randers space. We
note that the Riemannian metric ã induces an inner product on any cotangent
space T ∗

xM such that 〈dxi(x), dxj(x)〉 = ãij(x). The induced inner product
on T ∗

xM induces a linear isomorphism between T ∗
xM and TxM . Then the

1-form β corresponds to a vector field X̃ on M such that ã(y, X̃(x)) = β(x, y).

Also we have ‖β(x)‖α = ‖X̃(x)‖α. Thus we can write Randers metric as
F (x, y) =

√
ã(y, y)+ ã(X, y). Consider the Chern connection on π∗TM whose

coefficients are denoted by Γi
jk. Let γ(t) be a smooth regular curve in M with

velocity field V . Suppose W (t) := W i(t) ∂
∂xi be a vector field along γ. Then

the covariant derivative DV W with reference vector V have the form[dW i

dt
+W jV k(Γi

jk)(γ,V )

] ∂

∂xi
|γ(t).

A curve γ(t) with the velocity V , is a Finslerian geodesic if

DV

[ V

F (V )

]
= 0, with reference vector V.

We recall that, in Riemannian setting the authors in [3], proved that a
X ∈ g− {0} is a geodesic vector if and only if

〈[X,Y ]m, Xm〉 = 0, ∀Y ∈ m. (2.3)
After this, the second author in Finsler setting shown that:

Lemma 2.1. [4] Suppose (G/H,F ) be a homogeneous Finsler space with a
reductive decomposition

g = h+m.

Therefore, Y ∈ g− {0} is a geodesic vector if and only if
gYm(Ym, [Y, Z]m) = 0, ∀Z ∈ m, (2.4)

where the subscript m indicates the projection of a vector from g to m.
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3. Geodesic vectors of Randers metric on para-hypercomplex
Lie groups

Assume that M be a smooth manifold and {Ji}i=1,2,3 be a family of fiberwise
endomorphism of TM such that

J2
1 = −IdTM , J2

2 = IdTM ,

J2 6= ±IdTM , J1J2 = −J2J1 = J3,

and Ni = 0, i = 1, 2, 3 where Ni is the Nijenhuis tensor corresponding to Ji
defined as follows:

N1(X,Y ) = [J1X, J1Y ]− J1([X, J1Y ] + [J1X,Y ])− [X,Y ],

Ni(X,Y ) = [JiX, JiY ]− Ji([X, JiY ] + [JiX,Y ]) + [X,Y ], i = 2, 3,

for all vector fields X,Y on M . Then the family {Ji}i=1,2,3 is called a para-
hypercomplex structure on M . Recall that, indeed a para-hypercomplex struc-
ture on a smooth manifold M is a triple {Ji}i=1,2,3 such that J1 is a complex
structure and J2, J3 are two non-trivial integrable product structures on M
satisfying J1J2 = −J2J1 = J3.

A para-hypercomplex structure {Ji}i=1,2,3 on a Lie group G is said to be
left invariant if for any t ∈ G, Ji = T lt ◦ Ji ◦ T lt−1 , i = 1, 2, 3, where T lt is the
differential function of the left translation lt. A Riemannian metric g on a Lie
group G is called left invariant if

g(t)(X,Y ) = g(e)(Ttlt−1X,Ttlt−1Y ), ∀t ∈ G,X, Y ∈ TtG,

where e is the unit element of G. Like as above a Finsler metric F on a Lie
group G is called left invariant if F (t,X) = F (e, Ttlt−1X), ∀t ∈ G,X ∈ TtG.

In [2], the authors classified four dimensional Lie algebras admitting left
invariant para-hypercomplex structures. In each case, let Gi be the connected
four dimensional Lie group corresponding to the considered Lie algebra gi and
〈, 〉 is an inner product on gi such that {E1, E2, E3, E4} is an orthonormal
basis for gi. In the following we have these cases [2]:

(1)
[E1, E2] = E2, [E1, E4] = E4. (3.1)

(2)
[E1, E2] = E3. (3.2)

(3)
[E1, E2] = E1. (3.3)

(4)
[E1, E3] = E1, [E1, E4] = E2, [E2, E3] = E2, [E2, E4] = λE1+γE2, λ, γ ∈ R.

(3.4)
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(5)
[E1, E3] = E1, [E2, E4] = E2. (3.5)

(6)
[E1, E2] = E4, [E1, E4] = −E2, [E2, E4] = −E1. (3.6)

where {E1, E2, E3, E4} is an orthonormal basis. Now we describe all geodesic
vectors of left invariant Randers metrics F defined by F (x, y) =

√
ã(y, y) +

ã(X, y). By using (2.1) and some computations for the Randers metric F we
have:

gY (U, V ) =ã(U, V ) + ã(X,U)ã(X,V )− ã(X,Y )ã(Y, U)ã(Y, V )

ã(Y, Y )3/2

+
1√

ã(Y, Y )

{
ã(X,U)ã(Y, V ) + ã(X,Y )ã(U, V ) + ã(X,V )ã(Y, U)

}
.

So for all Z ∈ g we have:

gY (Y, [Y, Z]) = ã
(
X +

Y√
ã(Y, Y )

, [Y, Z]
)
F (Y ). (3.7)

By using Lemma 2.1 and equation (3.7), a vector Y = a1E1 + a2E2 + a3E3 +
a4E4 ∈ g is a geodesic vector if and only if

ã

 4∑
i=1

biEi +

∑4
i=1 aiEi√∑4

i=1 a
2
i

,
[ 4∑

i=1

aiEi, Ej

] = 0, j = 1, 2, 3, 4. (3.8)

3.1. Case (1). In this case by using equation (3.1) we have:
a2b2 + a4b4 +

a22+a24√∑4
i=1 a

2
i

= 0,

a1b2 +
a1a2√∑4

i=1 a
2
i

= 0,

a1b4 +
a1a4√∑4

i=1 a
2
i

= 0.

Corollary 3.1. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on the
left invariant connected 4-dimensional para-hypercomplex Lie group with Lie
algebra g1. Then geodesic vectors depending only on ã(X,E2) and ã(X,E4).

Theorem 3.2. Suppose that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X =
b1E1 + b3E3 on the left invariant connected 4-dimensional para-hypercomplex
Lie group with Lie algebra g1. Then Y ∈ g1 is a geodesic vector of (M,F ) if
and only if Y is a geodesic vector of (M, ã).

Proof. Let Y ∈
∑4

i=1 aiEi ∈ g1. Suppose that Y is a geodesic vector of
(M, ã). By using equation (2.3) we have ã(Y, [Y,Ei]) = 0 for each i = 1, 2, 3, 4.
Therefore by using (3.8), Y is a geodesic of (M,F ).
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Conversely, let Y =
∑4

i=1 aiEi ∈ g1 is a geodesic vector of (M,F ), because
ã(X, [Y,Ei]) = 0 for each i = 1, 2, 3, 4, by using (3.8) we have ã(Y, [Y,Ei]) = 0.
This proof the assertion. □

3.2. Case (2). In this case by using equation (3.2) we have:a2b3 +
a2a3√∑4

i=1 a
2
i

= 0,

a1b3 +
a1a3√∑4

i=1 a
2
i

= 0.

Corollary 3.3. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on
the left invariant connected 4-dimensional para-hypercomplex Lie group with
Lie algebra g2. Then geodesic vectors depending only on ã(X,E3).

Theorem 3.4. Suppose that (M,F ) be a Finsler space with Randers met-
ric defined by the Riemannian metric ã and the left invariant vector field
X = b1E1 + b2E2 + b4E4 on the left invariant connected 4-dimensional para-
hypercomplex Lie group with Lie algebra g2. Then Y ∈ g2 is a geodesic vector
of (M,F ) if and only if Y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. □

3.3. Case (3). In this case by using equation (3.3) we have:a2b1 +
a1a2√∑4

i=1 a
2
i

= 0,

a1b1 +
a21√∑4
i=1 a

2
i

= 0.

Corollary 3.5. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on
the left invariant connected 4-dimensional para-hypercomplex Lie group with
Lie algebra g3. Then geodesic vectors depending only on ã(X,E1).

Theorem 3.6. Suppose that (M,F ) be a Finsler space with Randers met-
ric defined by the Riemannian metric ã and the left invariant vector field
X = b2E2 + b3E3 + b4E4 on the left invariant connected 4-dimensional para-
hypercomplex Lie group with Lie algebra g3. Then Y ∈ g3 is a geodesic vector
of (M,F ) if and only if Y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. □
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3.4. Case (4). In this case by using equation (3.4) we have:

a3b1 + a4b2 +
a1a3+a2a4√∑4

i=1 a
2
i

= 0,

a4b1λ+ b2(a3 + a4γ) +
a1a4λ+a2(a3+a4γ)√∑4

i=1 a
2
i

= 0,

a1b1 + a2b2 +
a21+a22√∑4

i=1 a
2
i

= 0,

a2b1λ+ b2(a1 + a2γ) +
a1a2λ+a2(a1+a2γ)√∑4

i=1 a
2
i

= 0.

Corollary 3.7. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on
the left invariant connected 4-dimensional para-hypercomplex Lie group with
Lie algebra g4. Then geodesic vectors depending only on ã(X,E1), ã(X,E2),
λ and γ.

Theorem 3.8. Suppose that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X =
b3E3 + b4E4 on the left invariant connected 4-dimensional para-hypercomplex
Lie group with Lie algebra g4. Then Y ∈ g4 is a geodesic vector of (M,F ) if
and only if Y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. □

3.5. Case (5). In this case by using equation (3.5) we have:

a3b1 +
a1a3√∑4

i=1 a
2
i

= 0,

a4b2 +
a2a4√∑4

i=1 a
2
i

= 0,

a1b1 +
a21√∑4
i=1 a

2
i

= 0,

a2b2 +
a22√∑4
i=1 a

2
i

= 0.

Corollary 3.9. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on the
left invariant connected 4-dimensional para-hypercomplex Lie group with Lie
algebra g5. Then geodesic vectors depending only on ã(X,E1) and ã(X,E2).

Theorem 3.10. Suppose that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X =
b3E3 + b4E4 on the left invariant connected 4-dimensional para-hypercomplex
Lie group with Lie algebra g5. Then Y ∈ g5 is a geodesic vector of (M,F ) if
and only if Y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. □
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3.6. Case (6). In this case by using equation (3.6) we have:
a4b2 − a2b4 = 0,

a4b1 + a1b4
2a1a4√∑4

i=1 a
2
i

= 0,

a2b1 + a1b2 +
2a1a2√∑4

i=1 a
2
i

= 0.

Corollary 3.11. Assume that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X on
the left invariant connected 4-dimensional para-hypercomplex Lie group with
Lie algebra g6. Then geodesic vectors depending only on ã(X,E1), ã(X,E2)
and ã(X,E4).

Theorem 3.12. Suppose that (M,F ) be a Finsler space with Randers metric
defined by the Riemannian metric ã and the left invariant vector field X = b3E3

on the left invariant connected 4-dimensional para-hypercomplex Lie group with
Lie algebra g6. Then Y ∈ g6 is a geodesic vector of (M,F ) if and only if Y is
a geodesic vector of (M, ã).

Proof. The proof is the same as before. □

4. Conclusion

In this paper, we show that for a Finsler space (M,F ) with Randers metric
defined by the Riemannian metric ã and the special left invariant vector field
X on the left invariant connected 4-dimensional para-hypercomplex Lie group
with algebra gi, i = 1, 2, 3, 4, 5, 6, Y ∈ gi is a geodesic vector of (M,F ) if and
only if Y is a geodesic vector of (M, ã).
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