تعداد نشریات | 31 |
تعداد شمارهها | 484 |
تعداد مقالات | 4,713 |
تعداد مشاهده مقاله | 7,347,796 |
تعداد دریافت فایل اصل مقاله | 5,492,740 |
Deep Point Correspondence Estimation and SyN-Based Refinement for Multimodal Brain Image Registration | ||
Contributions of Science and Technology for Engineering | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 30 اردیبهشت 1404 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22080/cste.2025.29117.1040 | ||
نویسندگان | ||
Mehrdad Hashemi Kamangar1؛ Amir Hossein Jalalzadeh* 2 | ||
1Department of Electrical and Electronic Engineering, Engineering Faculty, Shomal University, Amol, Iran | ||
2Department of Biomedical Engineering, Engineering Faculty, Shahed University, Tehran, Iran | ||
تاریخ دریافت: 08 اردیبهشت 1404، تاریخ بازنگری: 30 اردیبهشت 1404، تاریخ پذیرش: 30 اردیبهشت 1404 | ||
چکیده | ||
Accurate registration of preoperative Magnetic Resonance Imaging (MRI) with intraoperative ultrasound (US) is essential for effective neuronavigation, particularly in brain tumor surgeries where brain shift compromises anatomical fidelity. This study proposes a hybrid framework integrating a deep learning-based Multi-Layer Perceptron (MLP) with an optimization pipeline to enhance MR-to-US registration. The MLP is trained on paired anatomical landmarks extracted from the BITE and RESECT datasets to predict US coordinates from corresponding MRI points. An ensemble of five MLPs, weighted by inverse validation errors, is employed to estimate dense point correspondences, which are used to initialize an affine transformation. This transformation is refined using Symmetric Normalization (SyN) within the ANTs registration toolkit to model non-linear deformations. Quantitative evaluation demonstrates a mean squared error (MSE) of 0.1954 and a mean Euclidean distance of 4.97 mm—significantly outperforming a baseline rigid registration approach with 60% improvement in spatial alignment. The proposed pipeline executes in under 4 minutes per case on standard hardware, indicating potential for clinical integration. The results suggest combining learning-based correspondence prediction and classical registration yields accurate and computationally efficient multimodal Registration. | ||
کلیدواژهها | ||
Image Registration؛ MRI؛ iUS؛ MLP؛ Deep Learning | ||
آمار تعداد مشاهده مقاله: 21 |