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Abstract: 

Accurate registration of preoperative Magnetic Resonance Imaging (MRI) with intraoperative 
ultrasound (iUS) is essential for effective neuronavigation, particularly in brain tumor surgeries 
where brain shift compromises anatomical fidelity. This study proposes a hybrid framework 
integrating a deep learning-based Multi-Layer Perceptron (MLP) with an optimization pipeline 
to enhance MR-to-US registration. The MLP is trained on paired anatomical landmarks extracted 
from the BITE and RESECT datasets to predict US coordinates from corresponding MRI points. 

An ensemble of five MLPs, weighted by inverse validation errors, is employed to estimate dense 
point correspondences, which are used to initialize an affine transformation. This transformation 
is refined using Symmetric Normalization (SyN) within the ANTs registration toolkit to model 
non-linear deformations. Quantitative evaluation demonstrates a mean squared error (MSE) of 
0.1954 and a mean Euclidean distance of 4.97 mm—significantly outperforming a baseline rigid 
registration approach with 60% improvement in spatial alignment. The proposed pipeline 
executes in under 4 minutes per case on standard hardware, indicating potential for clinical 
integration. The results suggest that combining learning-based correspondence prediction and 

classical registration yields accurate and computationally efficient multimodal Registration.  
© 2025 University of Mazandaran 
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1. Introduction 

Medical image registration is a crucial process that aligns 

multiple images from different modalities, time points, or 

subjects into a standard coordinate system to integrate 

complementary information for improved diagnosis, 

treatment planning, and disease monitoring [1, 2]. For 

example, aligning preoperative MRI with intraoperative 

ultrasound (iUS) can guide surgeons during tumor 

resection, while registering longitudinal CT scans can track 

disease progression. Its importance lies in providing a 

unified view of anatomical and functional information 

essential for clinical decision-making. In neurosurgical 

procedures, particularly for brain tumor management of 

infiltrative and heterogeneous gliomas, accurate 

localization and delineation of tumor margins are vital for 

maximizing resection while preserving surrounding 

functional brain tissue [3]. Preoperative Magnetic 

Resonance Imaging (MRI) provides high-resolution 

anatomical details. However, intraoperative changes like 

brain shift, brain tissue deformation due to CSF drainage, 

tumor resection, and gravity can significantly compromise 

the spatial accuracy of preoperative images. These 

deformations can lead to discrepancies of several 

millimetres. Consequently, relying solely on static 

preoperative MRI for surgical navigation can result in 

suboptimal tumor resection and increased risks. To address 

this challenge, image registration techniques align 

preoperative images with intraoperative imaging 

modalities, most commonly iUS, offering real-time brain 

anatomy feedback. Non-rigid (deformable) registration is 

particularly critical for compensating for brain shift and 

maintaining the accuracy of neuronavigation systems [4, 5]. 

However, registering iUS with preoperative MRI presents 

technical challenges due to significant differences in image 

appearance, spatial resolution, noise characteristics, and 

contrast. MRI provides detailed structural information, 

while iUS suffers from speckle noise and lower contrast, 

especially near tumor margins. These differences make 

traditional intensity-based similarity measures less 

effective. Historically, medical image registration relied on 

classical methods, broadly categorized into intensity-based 

and feature-based techniques. Intensity-based registration 

optimizes a similarity metric (e.g., mutual information, 

normalized cross-correlation) to align images by comparing 

https://cste.journals.umz.ac.ir/
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pixel or voxel intensities. Advanced Normalization Tools 

(ANTs) exemplify this approach, using iterative 

optimization to estimate dense displacement fields [6]. 

These methods are versatile and do not require prior training 

data. Classical methods have limitations, including slow 

computation times (minutes or hours for 3D volumes), 

making them impractical for real-time applications. They 

also rely heavily on low-level image information and cannot 

incorporate high-level anatomical context or weak 

supervision [7]. The advent of deep learning has 

revolutionized medical image registration, leading to Deep 

Learning for Image Registration (DLIR)[8]. DLIR uses 

neural networks to directly predict transformation 

parameters from image pairs, often in a single forward pass. 

This offers significant speed improvements, reducing 

registration times to seconds or milliseconds, which is 

crucial for intraoperative use. Advanced DLIR approaches 

include generative adversarial networks (GANs) for 

unsupervised registration and transformer-based models to 

model long-range dependencies, improving accuracy for 

complex deformations [9, 10].  

In this study, we utilize a multi-layer perceptron (MLP) to 

predict anatomical correspondences, initializing an affine 

transformation, which is subsequently refined by Advanced 

Normalization Tools (ANTs) Symmetric Normalization 

(SyN). While traditional registration methods have proven 

valuable, deep learning-based approaches offer significant 

advantages in speed and the ability to learn complex 

transformations. This has paved the way for more accurate 

and timely intraoperative guidance. Continued research 

endeavours are focused on addressing the residual 

challenges to enhance further the reliability and clinical 

utility of these advanced registration techniques. 

2. Related Work 

Recent advancements in medical image registration have 
employed deep learning to address challenges such as large 

deformations, multimodal alignment, and computational 

efficiency. The following section will review the seminal 

contributions that have shaped this field. 

Tang et al. [11] introduced ADMIR, a deep learning-based 

method for registering brain images of individuals with drug 

addiction. This approach employs a convolutional neural 

network (CNN) to handle global misalignments through 

affine transformations (e.g., adjusting position, orientation, 

and scale) and local anatomical differences via deformable 

transformations. By learning complex spatial features 

directly from image data, ADMIR addresses the significant 

anatomical variability in this population, making it a 

valuable tool for studying the structural effects of drug 

addiction on the brain. 

Mok and Chung [12] proposed LapIRN, a Laplacian 

Pyramid Registration Network designed for large 

deformation diffeomorphic image registration. LapIRN 

utilizes a multi-scale Laplacian pyramid architecture to 

decompose images into different resolutions, enabling the 

network to capture coarse deformations at lower scales 

before refining them at higher resolutions. The method 

ensures diffeomorphic transformations—smooth, 

invertible, and topology-preserving—by learning a time-

stationary velocity field and applying the scaling-and-

squaring method, rooted in Lie group theory. This approach 

excels in aligning images with substantial anatomical 

differences. 

Kim et al. [13] developed DiffuseMorph, an unsupervised 

deformable registration framework leveraging diffusion 

models. Unlike traditional CNN-based methods, 

DiffuseMorph consists of two networks: a diffusion 

network that models the forward process of adding noise to 

images and a deformation network that learns the reverse 

process to recover the clean image, conditioned on the fixed 

image. During registration, the deformation network 

estimates the deformation field in a single step using latent 

features from the diffusion process, bypassing iterative 

refinement. This innovative approach enables complex 

deformation learning without requiring paired ground truth 

data. 

Mok and Chung [14] presented SYMNet, a convolutional 

neural network for fast symmetric diffeomorphic image 

registration. SYMNet enforces symmetry by ensuring that 

the transformation from the moving image to the fixed 

image is the inverse of the reverse transformation, achieved 

through a symmetric consistency loss that jointly learns 

forward and backward mappings. This design accelerates 

registration compared to traditional optimization-based 

diffeomorphic methods while maintaining accuracy, 

making it suitable for applications requiring inverse-

consistent transformations. 

Jia et al. [15] introduced LKU-Net to investigate whether 

transformer architectures outperform the widely used U-Net 

in medical image registration. U-Net relies on multi-scale 

processing and skip connections to capture local features, 

while transformers use attention mechanisms to model 

long-range dependencies. LKU-Net, likely incorporating a 

specialized kernel or attention mechanism, compares these 

architectures to determine if transformers’ global context 

modelling offers advantages for registration tasks, 

providing insights into the evolution of network designs for 

medical imaging. 

Pielawski et al. [16] addressed multimodal image 

registration using contrastive learning to create robust 

representations for visible and near-infrared images. 

Through a contrastive loss, Comir learns embeddings that 

bring semantically similar regions closer in the feature 

space while separating dissimilar ones, producing modality-

invariant representations sensitive to anatomical structures. 

This enables effective alignment across modalities, which is 

critical for applications involving diverse imaging data, 

such as those evaluated on the Zurich dataset. 

Jalalzadeh et al. [17] addressed the challenge of brain shift 

during brain tumor surgery, which misaligns pre-operative 

MRI with iUS images. They proposed a two-step 

registration method combining rigid and non-rigid 

approaches. Initially, Elastix performs rigid registration 

using the Euler transform and Normalized Mutual 

Information as the similarity metric. Subsequently, a pre-

trained unsupervised VoxelMorph network handles non-
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rigid registration to capture complex deformations. 

Evaluated on MR-iUS image pairs from 22 patients with 

grade 2 glioma tumors in the EASY-RESECT database, the 

method reduced the mean Target Registration Error from 

5.37 ± 4.27 mm to 3.56 ± 1.72 mm, demonstrating improved 

alignment without relying on landmarks during training. 

Dalca et al. [18] proposed VoxelMorph-diff, an 

unsupervised framework for probabilistic diffeomorphic 

registration. This method, built on convolutional neural 

networks, models the deformation field with a graph 

Laplacian prior for smoothness regularization and 

represents the approximate posterior as a multivariate 

normal distribution. By integrating these probabilistic 

constraints into an end-to-end learning pipeline, 

VoxelMorph-diff enhances the robustness of unsupervised 

deformable registration, marking a significant advancement 

in the field. 

Balakrishnan et al. [19] introduced VoxelMorph, a fully 

convolutional network for unsupervised deformable image 

registration. VoxelMorph learns spatial transformations 

directly from image pairs by optimizing image similarity 

metrics as the loss function, offering a computationally 

efficient alternative to traditional iterative optimization 

methods. Its flexible architecture and unsupervised 

paradigm have made it a foundational framework, 

influencing subsequent deep learning-based registration 

research. 

3. Materials and Method 

3.1. Introduction to the Proposed Framework 

Accurate alignment of Multimodal medical images, 

particularly between MRI and US, is critical for applications 

such as image-guided neurosurgery, where precision 

directly impacts clinical outcomes. The overall pipeline of 

the proposed method is depicted in Figure 1, which includes 

data preprocessing, MLP ensemble-based initial alignment, 

affine transformation optimization, and ANTs-based 

multimodal registration. This study introduces a novel 

hybrid framework that synergistically combines a deep 

learning-based Multi-Layer Perceptron (MLP) for initial 

point correspondence estimation with the ANTs for precise 

affine and non-linear registration. 

3.2. Dataset Description 

In this study, anatomical landmarks served as critical 

ground truth for training the MLP and initializing the 

registration of MRI and US images. Landmarks were 

sourced from two distinct datasets, BITE and RESECT, 

which are described in detail below. Each of the 37 image 

pairs (23 from RESECT and 14 from BITE) was annotated 

with approximately 15 corresponding 3D landmarks, stored 

in .tag files, representing key anatomical structures such as 

ventricular boundaries and cortical surfaces. To enhance the 

robustness of the MLP and mitigate the sparsity of 

annotations, data augmentation techniques were employed, 

including the addition of controlled Gaussian noise with a 

standard deviation of 1 mm to the landmark coordinates. 

This process increased the number of landmarks from 15 to 

approximately 530 across all pairs, ensuring comprehensive 

coverage of anatomical variations and improving the 

model’s generalization across modalities. To maintain 

accuracy in regions surrounding the tumor, augmented 

landmarks located more than 2 mm from the original 

landmarks were discarded. 

3.2.1. BITE Dataset 

The MNI BITE (Brain Images of Tumors for Evaluation) 

database [20], was created in 2010 at the Montreal 

Neurological Institute to address the challenge of finding 

real clinical images for validating new image processing 

algorithms. This pioneering database includes pre- and 

postoperative T1-weighted MR scans (dimensions: 

394×466×378, voxel spacing: 0.5 mm) with gadolinium 

enhancement, as well as multiple intraoperative tracked B-

mode ultrasound images (dimensions: 323×366×371, voxel 

spacing: 0.3 mm) acquired before and after tumor resection 

from 14 patients with brain tumors, all of which were 

gliomas. As depicted in Figure 2, a representative sample 

images from the database is provided for visual reference. 

The MNI BITE database is freely accessible online 

(https://nist.mni.mcgill.ca). 

 

Figure 1. The Proposed Framework 

https://nist.mni.mcgill.ca/
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Figure 2. Representative MRI and US images from the BITE 

dataset [20] 

3.2.2. RESECT Dataset 

The RESECT (REtroSpective Evaluation of Cerebral 

Tumors) database [5], is a more recent clinical database 

established to provide high-quality multi-modal data for 

validating and comparing image registration algorithms that 

can improve the accuracy and efficiency of brain tumor 

resection. This database contains pre-operative 

Gadolinium-enhanced T1w and T2-FLAIR MRI scans 

(dimensions: 192×256×256, voxel spacing: 1 mm), and 

intra-operative 3D ultrasound volumes (dimensions: 

348×313×275, voxel spacing: 0.216352 mm) acquired 

before, during, and after tumor resection from 23 adult 

patients with low-grade gliomas who underwent surgeries 

at St. Olavs University Hospital between 2011 and 2016. As 

illustrated in Figure 3, a representative sample images from 

the database is provided for visual reference. The RESECT 

database is freely accessible online 

(https://archive.norstore.no). 

  

Figure 3. Representative MRI and US images from the 

RESECT dataset [5] 

3.3. Methodology Overview 

The methodology is structured into four primary phases: 

(1) data preprocessing and Landmarks extraction, (2) MLP 

ensemble-based initial alignment, (3) affine transformation 

optimization, and (4) ANTs-based multimodal registration. 

Each phase is meticulously designed to address specific 

challenges in multimodal registration, contributing to the 

overall precision and robustness of the framework. 

3.3.1.  Data Preprocessing and Landmarks 

Extraction 

The initial step involved extracting 3D Landmarks from 

.tag files, which contain paired MRI and US x, y, z 

coordinates. The resultant arrays had a shape of [𝑁, 3], 
where 𝑁 ≈ 530. To mitigate scale disparities between 

modalities, coordinates were normalized using min-max 

normalization: 

𝑥norm =
𝑥 − min(𝑋)

max(𝑋) − min(𝑋) + 𝜖
 , 𝜖 = 10−8 (1) 

where 𝑋 represents the coordinate set for each axis, and 𝜖 

prevents division by zero. This preprocessing ensured that 

inputs were standardized, facilitating robust training and 

registration. 

3.3.2.  MLP Ensemble-Based Initial Alignment 

An MLP model was designed to establish initial point 

correspondences. The MLP architecture is defined as: 

MLP(𝑥) = 𝑊4 ⋅ 𝜎(𝑊3

⋅ 𝜎(𝑊2 ⋅ 𝜎(𝑊1 ⋅ 𝑥 + 𝑏1) + 𝑏2)
+ 𝑏3) + 𝑏4 

(2) 

where, 𝑥 ∈ ℝ3 is the input MRI coordinate. 𝑊𝑖 and 𝑏𝑖 are 

the weight matrices and biases for the layer 𝑖. 𝜎 is the ReLU 

activation function, 𝜎(𝑧) = max(0, 𝑧). The MLP 

architecture is illustrated in Figure 4, comprises four fully 

connected layers: 

1. Input Layer: 3 units ( 𝑥, 𝑦, 𝑧 coordinates). 

2. Hidden Layer 1: 128 units, followed by batch 

normalization, ReLU, and dropout ( 𝑝 = 0.2 ). 

3. Hidden Layer 2: 128 units, with identical normalization 

and activation. 

4. Hidden Layer 3: 128 units, with identical normalization 

and activation. 

5. Output Layer: 3 units (predicted US coordinates). 

 

Figure 4. MLP Architecture 

The MLP was trained using the Adam optimizer with a 

learning rate of 10⁻³, decaying by a factor of 0.5 every 50 

epochs. The batch size was 32, and the training spanned 200 

epochs. The Mean Squared Error (MSE) loss function was 

minimized, defined as follows: 

ℒ =
1

𝑁
∑  

𝑁

𝑖=1

‖�̂�𝑖 − 𝑦𝑖‖2
2 (3) 

where �̂�𝑖 is the predicted US coordinate, and 𝑦𝑖 is the 

ground-truth US coordinate. To enhance robustness and 

mitigate overfitting, a 5-fold cross-validation scheme was 

employed, resulting in five independently trained models. 

Each model was validated on a distinct fold, yielding 

https://archive.norstore.no/
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validation errors 𝑑𝑖 ∈ [0.048534,0.054824] mm. The 

models were saved for ensemble inference. 

The ensemble approach combined predictions from the 

five MLPs using inverse-distance weighting. The validation 

errors for each fold were 0.054824, 0.054423, 0.052767, 

0.059614, and 0.053609 mm, respectively. These errors 

were then normalized to obtain computed weights of 

approximately [0.2011, 0.2018, 0.2081, 0.1842, 0.2048]. 

This ensured that models with lower errors and higher 

accuracy contributed more significantly to the ensemble. 

For dense correspondence estimation, a 3D grid of 3375 

points (15 × 15 × 15) was generated within the MRI 

coordinate range: 

𝑋𝑘 =  linspace (min(𝑋𝑘), max(𝑋𝑘), 15),
𝑘 ∈ {𝑥, 𝑦, 𝑧} 

(4) 

yielding grid points [𝑥𝑔 , 𝑦𝑔 , 𝑧𝑔]. These points were 

normalized, passed through the MLP ensemble, and 

denormalized to US coordinates using the US scale, 

producing a dense set of correspondences for affine 

initialization. 

3.3.3.  Affine Transformation Optimization 

The MLP-predicted US coordinates were used to estimate 

an initial affine transformation, capturing translation, 

rotation, and scaling. The transformation is defined as: 

𝑇(𝑥) = 𝑅 ⋅ (𝑆 ⋅ 𝑥) + 𝑡 (5) 

where 𝑅 ∈ ℝ3×3 is the rotation matrix, 𝑆 is the scaling 

matrix and 𝑡 is the translation vector. The optimization was 

performed using the Levenberg-Marquardt algorithm, with 

an initial guess of [0,0,0,0,0,0,1,1,1]. The resulting 

parameters, such as [-1.4387, -6.5131, 4.9401, -0.0255, -

0.0056, 0.0393, 0.8662, 0.7781, 1.0116], were normalized 

by the US voxel spacing to align with the image coordinate 

system. 

3.3.4.  ANTs-Based Multimodal Registration 

The affine transformation served as the initialization for a 

sophisticated registration pipeline using ANTs[21-23]. The 

MRI and US images, stored in NifTI and MINC format, 

were loaded using ants.image_read. The affine matrix was 

inverted (as ANTs applies inverse transforms) and saved as 

a .mat file, with the structure: 

 AffineTransform = [𝑅 ⋅ 𝑆 𝑡
0 1

]
−1

 (6) 

where 𝑅 ⋅ 𝑆 represents the rotation-scaling component, and 

𝑡 is the translation. The affine transformation was applied to 

the MRI image to produce an intermediate aligned image, 

which was saved for debugging. The final registration was 

performed using ANTs' registration function, configured 

with Symmetric Normalization (SyN) to model complex 

non-linear deformations, optimizing Mutual Information 

(MI) as defined by: 

𝐻(𝐼) =  − ∑ 𝑝𝑖(𝑥) log 𝑝𝑖(𝑥) (7) 

where 𝐻 denotes shannon entropy, 𝑝𝑖 represents the 

probability distribution of pixel intensity 𝑖 in image 𝐼 and  

the logarithm is natural. So: 

MI(𝐼𝑓 , 𝐼𝑚) = 𝐻(𝐼𝑓) + 𝐻(𝐼𝑚) − 𝐻(𝐼𝑓 , 𝐼𝑚) (8) 

where 𝑀𝐼 denotes Mutual Information, and 𝐼𝑓 and 𝐼𝑚 are the 

fixed (US) and moving (MRI) images. MI was chosen for 

its robustness to intensity differences [24]. The registration 

was optimized using gradient descent with default step 

sizes, iterated until convergence, while Gaussian kernels 

with tuned variances balanced detail preservation and 

smoothness. 

3.4. Implementation Details 

The framework was implemented in Python 3.12, using 

PyTorch 2.6 for MLP training and ANTsPyX for image 

registration. All experiments were performed on a 

workstation with an NVIDIA GeForce RTX 3050 GPU with 

4 GB of dedicated GDDR6 memory, an Intel Core i7 12th 

generation processor, 2.3 GHz, and 32 GB of DDR4 RAM. 

This hardware setup provided computational resources to 

handle  the RESECT and BITE datasets, which consisted of 

36 paired MRI and US images with approximately 530 

augmented landmarks, with Processing time of 

approximately 3-4 minutes per pair. 

4. Result 

We evaluated the proposed multimodal registration 

framework on the RESECT dataset, which comprises 

preoperative MRI and intraoperative US images. The 

registration pipeline integrated MLP to predict 

corresponding anatomical landmarks and the ANTs to 

compute affine and non-linear transformations. Below, we 

report our method's quantitative and qualitative outcomes, 

emphasizing registration accuracy and computational 

performance. 

4.1. Quantitative Evaluation 

The MLP was trained on tag files from the RESECT and 

BITE datasets, containing 3D coordinates of anatomical 

landmarks. A grid of 3375 points was generated within the 

MRI coordinate space, with a mean spatial extent of 127.20 

mm, as determined by the bounding box of the landmark 

coordinates. The MLP, consisting of five independently 

trained models with weights [0.2011, 0.2018, 0.2081, 

0.1842, 0.2048], predicted corresponding points in the US 

space with high consistency. The training process of the 

MLP network was evaluated through 5-fold cross-

validation, with detailed performance visualized in Figure 

5. This figure illustrates that fold 3 achieved the best 

performance among all folds, highlighting its superior 

alignment accuracy. The inverse weighting method was 

selected due to its simplicity and efficiency. A comparison 

with Bayesian model averaging demonstrated that inverse 

weighting improved the Euclidean error by 2.9% (4.97 mm 

versus 5.12 mm) and reduced computational time (4 

seconds versus 15 seconds). These predictions informed an 

initial affine transformation, parameterized by nine degrees 
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of freedom (translation: [-2.3241, -0.4567, -0.2643], 

rotation: [-0.0250, -0.0057, 0.0388], scale: [0.8529, 0.8854, 

0.8879]). The affine transformation was applied to the MRI, 

producing an intermediate registered image. 

 

Figure 5. Visualization of the MLP network training process, 

showing that fold 3 achieved the best performance among all 

cross-validation folds 

Registration performance was assessed using Euclidean 

Distance Error: 

 Distance =
1

𝑀
∑  

𝑀

𝑖=1

√∑  

3

𝑘=1

  (�̂�𝑖,𝑘 − 𝑇(𝑥𝑖,𝑘))
2

⋅ 𝑆MRI (9) 

where 𝑆MRI = 127.20 mm, and 𝑀 = 3375. Subsequently, 

a non-linear registration was performed using ANTs with 

Symmetric Normalization and Mutual Information (MI) as 

the similarity metric. The transformation pipeline utilized 

multi-resolution shrink factors [8, 4, 2, 1] and smoothing 

sigmas [3, 2, 1, 0] voxels, optimizing alignment between the 

affine-transformed MRI and the target US image. The 

hyperparameters for SyN (shrink factors and smoothing 

sigma) were determined through a grid search on an 

independent validation set, achieving a balance between 

accuracy and computational time. Data augmentation 

reduced the Euclidean error from 5.83 mm (without 

augmentation) to 4.97 mm, representing an improvement of 

14.8%. Registration accuracy was assessed using two 

primary metrics: Mean Squared Error (MSE) and mean 

Euclidean distance. The MSE, computed as the normalized 

intensity difference between the registered MRI and the 

reference US, yielded a value of 0.1954. This indicates 

robust intensity alignment, considering the inherent 

modality differences. The mean Euclidean distance, 

calculated between MLP-predicted points and their 

transformed counterparts in the US space, was 4.97 mm, 

averaged over 3375 grid points scaled by the US voxel 

spacing. This distance reflects the spatial accuracy of the 

combined MLP and ANTs pipeline, achieving sub-

centimetre precision. Qualitative registration results, 

including the alignment of MRI and US images after 

registration, are shown in Figure 6, demonstrating improved 

alignment of anatomical structures such as ventricles and 

cortical surfaces. 

4.2. Comparison with Baseline 

To contextualize our results, we compared the proposed 

method against a baseline rigid registration using ANTs 

with MI, applied directly to MRI and US. The baseline 

achieved an MSE of 0.3217 and a mean Euclidean distance 

of 12.43 mm, underscoring the superiority of our hybrid 

approach. The MLP-guided affine initialization reduced 

initial misalignment, enabling SyN to converge to a more 

accurate solution, as evidenced by a 39.2% reduction in 

MSE and a 60.02% improvement in Euclidean distance. 

 

Figure 6. Registered MRI with US Fusion for image pair #21 

4.3. Supplementary Findings 

Exploratory experiments incorporating structural priors 

were conducted to assess the potential for further 

improvement. By weighting the SyN metric to prioritize 

ventricular alignment, preliminary results indicated a 

reduced Euclidean distance of approximately 7.46 mm in 

targeted regions, suggesting avenues for enhancing clinical 

relevance. These findings are reported as supplementary to 

guide future optimization. 

5. Discussion 

The proposed multimodal registration framework 

integrates an MLP for anatomical point prediction with 

ANTs for transformation optimization, and has 

demonstrated promising results in aligning preoperative 
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MRI with intraoperative US images. Achieving a mean 

Euclidean distance of 4.97 mm and an MSE of 0.1954, our 

method significantly outperforms a baseline rigid 

registration approach, which yielded a distance of 12.43 mm 

and an MSE of 0.3217. These improvements underscore the 

potential of combining deep learning with traditional 

registration techniques to address the challenges of 

multimodal alignment, particularly in scenarios involving 

substantial intensity and structural disparities. The error of 

4.97 mm is insufficient for eloquent areas requiring a 2 mm 

safety margin; however, it is suitable as an initial alignment 

for intraoperative registration, necessitating manual 

correction or more advanced registration techniques. 

5.1. Interpretation of Findings 

The Euclidean distance of 4.97 mm, while not yet reaching 

the sub-4 mm precision often desired for neurosurgical 

applications, represents a notable advancement over 

conventional methods. The MLP’s ability to predict 

anatomical correspondences facilitated a robust initial 

affine transformation, reducing the burden on the 

subsequent non-linear registration stage. This hybrid 

approach enabled the Symmetric Normalization algorithm 

to focus on refining local deformations, as evidenced by the 

qualitative alignment of critical structures such as ventricles 

and cortical surfaces. The MSE of 0.1954, though higher 

than the ideal threshold, reflects the inherent difficulty of 

intensity-based metrics in multimodal registration, given 

the distinct contrast mechanisms of MRI and US.  

5.2. Strengths and Innovations 

A key innovation of this study lies in the seamless 

integration of deep learning for point correspondence 

prediction within a traditional registration pipeline. Unlike 

purely data-driven approaches, which may struggle with 

generalization, our method leverages predictive modelling 

and optimization-based alignment strengths. The ensemble 

MLP architecture, weighted inversely by validation errors, 

ensured stable performance across the dataset. Furthermore, 

the computational efficiency of the pipeline— completing 

in approximately 4 minutes on a standard workstation—

positions it as a viable candidate for clinical workflows 

where time is critical. The qualitative improvement in 

aligning anatomical landmarks suggests potential 

applicability in image-guided interventions, particularly 

neurosurgery. 

5.3. Limitations and Challenges 

Despite these advancements, several limitations warrant 

consideration. While improved, the Euclidean distance of 

4.97 mm falls short of the precision required for high-stakes 

applications such as tumor resection. This may be attributed 

to the intrinsic noise in US images and the limited resolution 

of the RESECT dataset. Additionally, the MSE of 0.1954 

indicates room for improvement in intensity alignment, 

potentially achievable through biomechanical constraints or 

region-specific weighting. The current framework assumes 

a fixed set of anatomical landmarks, which may not fully 

capture patient-specific variations. Addressing these 

challenges could involve expanding the training dataset or 

employing transfer learning to enhance generalization. 

6. Conclusion 

This study presents a novel framework for multimodal 

registration, combining deep learning and optimization 

techniques to align MRI and US images with improved 

accuracy. The pipeline’s computational efficiency and 

robust performance underscore its potential for clinical 

applications, particularly in image-guided neurosurgery. 

Future work aims to enhance medical image registration by 

integrating anatomical constraints using methods like 

Physics-Informed Neural Networks (PINNs) or uncertainty-

aware models to achieve sub-4 mm precision, with the 

potential for real-time surgical applications to manage tissue 

shifts. The field is moving toward hybrid approaches that 

combine classical techniques with deep learning for 

improved robustness and efficiency. Addressing data 

limitations through domain adaptation and synthetic data 

generation, standardizing evaluation protocols, and 

incorporating multimodal data are essential to developing 

fast, accurate, and clinically adaptable registration systems. 
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