- Parsaie, A., Haghiabi, A. H., Saneie, M., Torabi, H. Applications of Soft Computing Techniques for Prediction of Energy Dissipation on Stepped Spillways. Neural Computing and Applications, 2018; 29 (12): 1393–1409. doi:10.1007/s00521-016-2667-z.
- Mohammad Rezapour Tabari, M., Tavakoli, S. Effects of Stepped Spillway Geometry on Flow Pattern and Energy Dissipation. Arabian Journal for Science and Engineering, 2016; 41 (4): 1215–1224. doi:10.1007/s13369-015-1874-8.
- Mishra, C.S., Ojha, S. P. Prediction of energy dissipation in skimming flow of stepped spillway by using machine learning approach. In: Pandey M, Umamahesh NV, Ahmad Z, Oliveto G, editors. Hydraulics and fluid mechanics. Volume 1. Singapore: Springer Nature Singapore; 2025. p. 423–38.
- Mojtahedi, A., Soori, N., Mohammadian, M. Energy Dissipation Evaluation for Stepped Spillway Using a Fuzzy Inference System. SN Applied Sciences, 2020; 2 (8). doi:10.1007/s42452-020-03258-0.
- Mei, J., Zhou, Y., Xu, K., Xu, G., Shu, Z., Gan, Q., et al. Energy dissipation on inclined stepped spillways. Water. 2025;17(2):251. doi:10.3390/w17020251.
- Li, S., Zhang, J., Nie, J., Peng, Y. Energy Dissipation and Flow Characteristics of Baffles and Sills on Stepped Spillways. Journal of Hydraulic Research, 2014; 52 (1): 140–142. doi:10.1080/00221686.2013.856040.
- Chanson, H. Jet Flow on Stepped Spillways. Journal of Hydraulic Engineering, 1995; 121 (5): 441–448. doi:10.1061/(asce)0733-9429(1995)121:5(441).
- Torabi, S., Rostami, A., Torabi, S., Boustani, F., Roushan, A. Energy Dissipation on Stepped Spillways with Reverse Inclination. Water Resources Engineering, 6 (Vol6/No17/Summer 2013): 63–78.
- hamani, M.R., Rajaratnam, N. Characteristics of skimming flow over stepped spillways. Journal of Hydraulic Engineering, 1999; 125(4): 361–368. doi:10.1061/(ASCE)0733-9429(1999)125:4(361).
- Asghari Pari, S. A., Kordnaeij, M., Razmkhah, A. Experimental study of flow characteristics in a stepped spillway with the installation of a continuous obstacle with different geometric characteristics. Journal of Hydraulics, 2025; 20(1): 91-109. doi: 10.30482/jhyd.2024.433085.1690.
- Zhou, Y., Wu, J., Ma, F., Qian, S. Experimental Investigation of the Hydraulic Performance of a Hydraulic-Jump-Stepped Spillway. KSCE Journal of Civil Engineering, 2021; 25 (10): 3758–3765. doi:10.1007/s12205-021-1709-y.
- Ikinciogullari, E. A Novel Design for Stepped Spillway Using Staggered Labyrinth Trapezoidal Steps. Flow Measurement and Instrumentation, 2023; 93: 102439. doi:10.1016/j.flowmeasinst.2023.102439.
- Salmasi, F., Özger, M. Neuro-Fuzzy Approach for Estimating Energy Dissipation in Skimming Flow over Stepped Spillways. Arabian Journal for Science and Engineering, 2014; 39 (8): 6099–6108. doi:10.1007/s13369-014-1240-2.
- Tabbara, M., Chatila, J., Awwad, R. Computational Simulation of Flow over Stepped Spillways. Computers and Structures, 2005; 83 (27): 2215–2224. doi:10.1016/j.compstruc.2005.04.005.
- Felder, S., Chanson, H. Energy Dissipation, Flow Resistance and Gas-Liquid Interfacial Area in Skimming Flows on Moderate-Slope Stepped Spillways. Environmental Fluid Mechanics, 2009; 9(4): 427–441. doi:10.1007/s10652-009-9130-y.
- Hamedi, A., Malekmohammadi, I., Mansoori, A., Roshanaei, H. Energy dissipation in stepped spillway equipped with inclined steps together with end sill. In: Proceedings of the Fourth International Conference on Computational Intelligence and Communication Networks; 2012 Nov 3–5; Mathura, India. p. 638–42. doi:10.1109/CICN.2012.109.
- Husain, S. M., Muhammed, J. R., Karunarathna, H. U., Reeve, D. E. Investigation of Pressure Variations over Stepped Spillways Using Smooth Particle Hydrodynamics. Advances in Water Resources, 2014; 66: 52–69. doi:10.1016/j.advwatres.2013.11.013.
- Hou, X., Chen, J., Yang, J. The numerical simulation of aeration and energy dissipation for stepped spillway. In: Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC 2013); 2013 Dec 20–22; Shenyang, China. IEEE; 2013. p. 2495–9. doi:10.1109/MEC.2013.6885456.
- Shahheydari, H., Nodoshan, E. J., Barati, R., Moghadam, M. A. Discharge Coefficient and Energy Dissipation over Stepped Spillway under Skimming Flow Regime. KSCE Journal of Civil Engineering, 2015; 19(4): 1174–1182. doi:10.1007/s12205-013-0749-3.
- Khatibi, R., Salmasi, F., Ghorbani, M. A., Asadi, H. Modelling Energy Dissipation Over Stepped-Gabion Weirs by Artificial Intelligence. Water Resources Management, 2014; 28(7): 1807–1821. doi:10.1007/s11269-014-0545-y.
- Mostefa, G., Kheira, B., Abdelkader, D., Naima, D. Study of the Effect of the Rate Flow and the Slope of the Channel on the Energy Dissipation in the Stepped Channels: Proposing an Empirical Models. Procedia Engineering, 2015; 118: 1044–1051. doi:10.1016/j.proeng.2015.08.547.
- Hanbay, D., Baylar, A., Ozpolat, E. Predicting Flow Conditions over Stepped Chutes Based on ANFIS. Soft Computing, 2009; 13(7): 701–707. doi:10.1007/s00500-008-0343-7.
- Roushangar, K., Akhgar, S., Salmasi, F., Shiri, J. Modeling Energy Dissipation over Stepped Spillways Using Machine Learning Approaches. Journal of Hydrology, 2014; 508: 254–265. doi:10.1016/j.jhydrol.2013.10.053.
- Ekmekcioğlu, Ö., Başakın, E. E., Özger, M. Tree-Based Nonlinear Ensemble Technique to Predict Energy Dissipation in Stepped Spillways. European Journal of Environmental and Civil Engineering, 2022; 26(8): 3547–3565. doi:10.1080/19648189.2020.1805024.
- Baharvand, S., Rezaei, R., Talebbeydokhti, N., Nasiri, R., Amiri, S. M. Investigation of Energy Dissipation Rate of Stepped Vertical Overfall (SVO) Spillway Using Physical Modeling and Soft Computing Techniques. KSCE Journal of Civil Engineering, 2022; 26(12): 5067–5081. doi:10.1007/s12205-022-1870-y.
- Tabari, M. M. R., Azari, T., Dehghan, V. A Supervised Committee Neural Network for the Determination of Aquifer Parameters: A Case Study of Katasbes Aquifer in Shiraz Plain, Iran. Soft Computing, 2021; 25(6): 4785–4798. doi:10.1007/s00500-020-05487-2.
- Jafari, S. M., Zahiri, A. R., Bozorg Hadad, O., Mohammad Rezapour Tabari, M. A Hybrid of Six Soft Models Based on ANFIS for Pipe Failure Rate Forecasting and Uncertainty Analysis: A Case Study of Gorgan City Water Distribution Network. Soft Computing, 2021; 25(11): 7459–7478. doi:10.1007/s00500-021-05706-4.
- Tabari, M. M. R., Sanayei, H. R. Z. Prediction of the Intermediate Block Displacement of the Dam Crest Using Artificial Neural Network and Support Vector Regression Models. Soft Computing, 2019; 23(19): 9629–9645. doi:10.1007/s00500-018-3528-8.
|