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A  R  T  I  C  L  E I  N  F  O 

In this study, the bending vibration of a fatigue-cracked beam and associated constraint 

conditions have been solved by implementing the Homotopy Perturbation Method. A 

structure with a single degree of freedom, varying stiffness, and a periodic function is 

employed to simulate the dynamic behavior of the beam. The crack is represented as an 

ongoing disturbance function within the displacement field, which could be obtained from 

fracture mechanics. The governing equation's solution shows the super harmonics of the 

dominant frequency, resulting from nonlinear impacts on the dynamic vibration response 

of the cracked beam. The proposed method gives an analytical closed-form solution that 

can be easily used to analyze and design structures dynamically. The outcomes show that 

growing crack depth reduces the natural frequencies of a cracked beam. Moreover, 

increasing the severity of the crack and moving its location toward the center of the beam 

increases the system's damping. Perturbation methods rely on a small parameter, which is 

challenging to determine for real-life nonlinear problems. To overcome this shortcoming, 

a powerful analytical method is introduced to solve the motion equation of the cracked 

beam. 
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1. Introduction 

Mathematical modeling of beams and frames, incorporating various theories and effects, is a vital study area within structural 

engineering [1, 2]. This applied topic plays a crucial role in understanding and predicting the behavior of structural components 

under diverse loading conditions [3]. Numerous scientific issues and phenomena, including the vibration of a beam with fatigue 

cracks, occur in nonlinear models [4-6]. Identifying analytical solutions for these problems is challenging. Cracks are typically 

detected using a nonlinear approach that monitors variations in the dynamic response features, like natural frequencies, damping, 

and mode shapes [7–9]. In the analysis of linear vibrations in a cracked beam, the beam crack is assumed to stay open during the 

beam's vibrations [10, 11]. These linear vibration methods often fail to produce practical results due to low defect sensitivity. Ke et 

al. [12] examined how open-edge crack parameters affect free vibration and buckling features of cracked beams composed of 

functionally graded materials. The nonlinear performance of a cantilevered cracked beam modeled with bilinear stiffness under 

harmonic excitation was investigated to deliberate the crack closure effects [13, 14]. Kisa and Brandon [15] employed a bilinear 

stiffness model to assess the variations in beam stiffness at the crack position. They presented the contact flexural stiffness matrix 

within a finite element (FE) model to effectively simulate the impact of crack closure, which was integrated into the initial flexural 

stiffness matrix at the crack site during a half-cycle of shaking. This stiffness matrix deliberates only two conditions: entirely open 

and entirely closed states of the crack. Under this assumption, the assumed cracked beam exhibits just dual stiffness values: a more 

significant value for the closed crack state and a smaller value for the wide crack state. This approach suggests that the crack expands 

and contracts instantaneously. The experimental tests show that the transition between closed and open cracks, and contrarily, 

happens more smoothly [16]. Abraham and Brandon [17] have modeled the changes in stiffness at the position of the breathing 

crack by using several expressions of the Fourier transform series. 
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Cheng et al.  [18] have examined a single degree of freedom (SDOF) cracked cantilever beam through time-varying stiffness to 

investigate frequency-forced vibration behavior. The time-varying stiffness of the beam is shown as a regular periodic function. 

They presumed that the damping ratio of the flexural cracked beam is 0.01 and obtained forced vibration responses of the cracked 

beam through the numerical Runge-Kutta technique. Likewise, they stated that using an open crack model for crack detection does 

not provide high accuracy in monitoring fundamental frequency and tends to underestimate the severity of the crack. Following a 

similar methodology, Ariaei et al. announced a technique to assess the dynamic Euler-Bernoulli undamped beams with the effect of 

breathing cracks subjected to a moving point mass [19]. This approach utilizes the discrete element technique in conjunction with 

the FE method. Researchers have similarly employed signal processing methods to establish the above-mentioned model for beam 

crack detection [20, 21]. Zhang and Testa experimentally explored the closure properties of the vibration response of a fatigue-

cracked T-style steel structure [22]. Bovsunovsky and Surace investigated the super harmonic vibration of a flexural cracked 

cantilever beam caused by the nonlinear effects of crack closure [23]. They clarified that these nonlinear effects create considerable 

challenges in achieving analytical solutions. Consequently, they employed a FE model, enabling the prediction of alterations in 

damping due to the cracked beam. They exhibited that nonlinear effects in the vibration response depend on the crack parameters 

and the damping scale in the vibrating system. In another work, Curadelli et al. employed changes in system damping to identify 

structural damage through wavelet analysis [24]. Dimarogonas provided valuable, detailed surveys on crack modeling approaches, 

emphasizing the importance of utilizing practical numerical models in the diagnostic method [25]. The cracked beam's analytical 

response presents valuable physical insights into the issue at hand, allowing for an easy assessment of how all parameters affect the 

solution. Rezaee and  Hassan Nejad [26] applied an analytical method, the perturbation method, to solve the motion equation of a 

cracked beam. They demonstrated that the dynamic response of the cracked beam takes the form of an exponential function and a 

nonlinear oscillatory behavior function. The exponential part of the reaction introduces the decay rate due to the system damping, 

and the oscillatory portion is the solution of the Mathieu formula, showing super harmonics of the beam's dominant frequency. They 

also showed that the system response's damping rate can be derived from the constants of the Mathieu equation. 

A recent study of contemporary structural health monitoring evaluates infrastructure using high-resolution imaging techniques 

to identify and measure defects like cracks. Structural engineers rely on this data to refine structural models and assess the safety 

and integrity of the structures . The practical use of cracked beams is a critical indicator of structural integrity in various applications. 

By monitoring cracks in beams, engineers can assess the extent of deterioration over time. This is particularly important in civil 

engineering, where infrastructure such as bridges and buildings must remain safe and functional. Regularly monitoring cracked 

beams enables timely maintenance interventions and helps prevent catastrophic failures. Additionally, data gathered from cracked 

beams can inform predictive maintenance strategies, ensuring that resources are allocated efficiently and that infrastructure remains 

reliable for public use [27]. An experimental study examined the relationship between crack propagation and deflection in reinforced 

concrete beams. A four-point loading test was conducted on specimens with varied reinforcement ratios and concrete cover 

thicknesses [28]. 

As is well known, perturbation methods rely on a small parameter, which is often challenging to determine for real-life nonlinear 

phenomena problems. In this paper, to overcome this shortcoming, a novel, robust analytical technique is presented to solve the 

governing equation (GE) of motion of the fatigue-cracked beam. The Homotopy Perturbation Method (HPM) deforms a complex 

problem and turns it into an easily solvable issue. The analytical results for a specified case are compared with typical experimental 

and numerical methods to validate. This method gives an analytical solution for the nonlinear cracked beam equation, which does 

not need meshing like the numerical method. Also, this method's result is proposed in the closed-form formula, which can be easily 

used for further structural evaluations. 

2. Mathematical modeling 

In practical terms, cracked beams are central to a wide range of applications, from ensuring safety in infrastructure and buildings 

to informing design processes and enhancing material performance. Understanding cracked beams allows engineers and 

construction professionals to make informed decisions that improve safety and longevity. According to beam crack modeling, the 

model conforms to the Euler-Bernoulli assumptions and is excited in its first frequency mode. This assumption is valid when the 

beam is subject to the initial mode by ignoring the contributions of the higher modes. 

This mathematical modeling introduces a practical and credible model for examining the nonlinear dynamic characteristics of 

an SDOF fatigue-cracked beam. The beam's equivalent mass is located at its center in this model. For better visualization, see the 

beam's stiffness by the variations in location and depth of the crack (see Fig. 1). Consequently, the disparity of the flexibility of the 

beam as a result of the crack is assessed. Then, the change in the equivalent stiffness of the fatigue-cracked section through the 

vibration is assumed to be a time-varying function. However, the lumped parameters of the structure are decisive. 

2.1. Assess the flexibility of a beam supported by pins with a crack 

Assuming a bending moment is exerted on a fatigue-cracked beam, it will also experience additional rotation due to the crack. 

The extra rotation at the crack position is proportional to the beam flexure. According to Castigliano’s theorem, 𝑈𝑇  is the crack's 

strain energy, and the additional rotation takes the following form [29]: 



Asgari and Khabiri Civil Engineering and Applied Solutions 2025; 1(2): 43-54 
 

45 
 

 
Fig. 1. (a) The pinned-supported fatigue-Cracked beam with a specified damage location, and (b) The schematic SDOF mass, spring, 

and damping model. 

 

𝜃 =
𝜕𝑈𝑇

𝜕𝑀
  (1) 

The strain energy is presented in the form below [30]: 

𝑈𝑇 = ∫ 𝜍𝑠(𝛼)𝑑𝛼
𝐶𝑟𝑎𝑐𝑘

  (2) 

This equation is called the Paries’ Equation. The integral in Eq. 2 is an integral over a surface as follows [23]: 

𝑈𝑇 = ∫ ∫ 𝜍𝑠(𝛼)𝑑𝛼𝑑𝑦
𝑎

0

𝑤

2

−
𝑤

2

  (3) 

where the crack depth notation is 𝑎, also 𝜍𝑠 is the strain energy density, obtainable from the subsequent equation [31]: 

Plane strain: 𝜍𝑠 =
1−𝜈2

𝐸
[𝐾𝐼

2 + 𝐾𝐼𝐼
2 +

𝐾𝐼𝐼𝐼
2

1−𝜈
] 

(4) 

Plane stress: 𝜍𝑠 =
1

𝐸
[𝐾𝐼

2 + 𝐾𝐼𝐼
2 + (1 + 𝜈)𝐾𝐼𝐼𝐼

2 ] 

In the above formulas 𝐸 and 𝜈respectively are Young’s modulus and Poisson’s ratio. In this paper, the plain strain assumption 

is used. In addition, in Eq. 4, 𝐾𝐼 , 𝐾𝐼𝐼 ,and 𝐾𝐼𝐼𝐼are the Stress Intensity Factors (SIF) related to the fracture modes. In fracture mechanics, 

the SIF are established for a beam of unit thickness containing a transverse crack [22]. The intensity of stress concerning a single-

edge crack under pure bending is: 

𝐾𝐼 = 𝜎0√𝜋𝑎𝐹𝐼 (
𝑎

ℎ
)  (5) 

𝜎0 =
6𝑀

𝑤ℎ2  (6) 

𝜍𝑠 =
1−𝜈2

𝐸
𝜎0

2𝜋𝑎𝐹𝐼
2(𝛼), 𝐹𝐼(𝛼) = 1.12 − 1.4𝛼 + 7.33𝛼2 − 13.4 𝛼3 + 14 𝛼4  (7) 

By substituting Eq. 7 into Eq. 3 and integrating over the crack surface, the amount of the strain energy 𝑈𝑇  can be obtained as: 

𝑈𝑇 =
36 𝜋 (1−𝜈2)

𝐸

𝑀2

𝑤ℎ2 𝑔(𝛼)   (8) 

where 

𝑔(𝛼) = 19.6 𝛼10 − 40.7556 𝛼9 + 47.1063 𝛼8 − 33.051 𝛼7 + 20.2948 𝛼6 − 9.9736 𝛼5 + 4.5948 𝛼4 −
1.04533 𝛼3 + 0.6272 𝛼2  

(9) 

Conversely, the alterations in the beam's flexibility produced by the crack resulted from the formula presented by Dimarogonas 

and Paipatis [29]: 

𝛥𝐶 =
𝜕2𝑈𝑇

𝜕𝑃2 =
18 𝐿0

2𝜋(1−𝜈2)

𝐸𝑤ℎ2 𝑔(𝛼)  (10) 

This equation calculates the changes in flexibility of a pinned-supported beam caused by the crack. 
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2.2. Finding the motion GE 

Assume a uniform pinned-supported beam with a length 𝐿, which is shown in Fig. 1. The crack depth is presented as 𝑎, and it is 

situated at a distance of 𝐿0 from the beam's left end. The beam cross-section’s width and height are w and h, respectively. It is 

assumed that the beam vibrates at its fundamental frequency mode. So, the flexurally fatigued cracked beam can be modeled as an 

SDOF. The crack is modeled as a fatigue crack with breathing behaviors. Henceforward, the beam stiffness will change through the 

vibration caused by the crack's opening and closing, and the beam's dynamic response will have a nonlinear characteristic. 

To achieve the equivalent mass and stiffness of the system, the initial mode shape of the beam is considered to take the form 

below [32]: 

𝛷(𝑥) = 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)  (11) 

Additionally, the beam stiffness for the scenario of an entirely closed crack is provided by [33]: 

𝑘𝑐 =
1

𝐶
= ∫ 𝐸𝐼

𝐿

0
𝛷″2(𝑥) 𝑑𝑥 =

𝜋4𝐸𝐼

2𝐿3   (12) 

where 𝑘𝑐  and 𝐶 represent the stiffness and flexibility of the fatigue-cracked beam once the crack is completely closed, 𝐸𝐼 is the 

bending rigidity. Additionally, the notation of the beam's stiffness once the crack model is completely open is 𝑘𝑜 = 1 𝐶𝑜⁄ , and 𝐶𝑜 is 

the flexibility for the completely open beam’s crack as: 

𝐶0 = 𝐶 + 𝛥𝐶  (13) 

As previously noted, the flexural Fatigue-Cracked beam's vibration changes the system's equivalent stiffness due to the crack's 

opening and closing. Thus, the following time-varying function can be employed to model the equivalent stiffness variations of the 

SDOF structure[19]: 

𝑘(𝑡) = 𝑘0 + 𝑘𝛥𝑐  [1 + 𝑐𝑜𝑠(𝜔𝑏𝑡)]     (14) 

In the above formula, 𝑘𝛥𝑐  represents the amplitude of changes in equivalent stiffness in the following form: 

𝑘𝛥𝑐 =
1

2
(𝑘𝑐 − 𝑘𝑜)  (15) 

Eq. 14 states that the cracked beam at the static equilibrium position of the beam has a stiffness that represents the average of 

the maximum stiffness values for both entirely open and entirely closed crack scenarios. Consequently, as the beam vibrates and 

moves up and down around its equilibrium position, its equivalent stiffness fluctuates around this average value. It is logical to 

assume that when the beam is displaced in the direction that begins to open the crack, its stiffness gradually decreases; conversely, 

moving the beam in the opposite direction continuously increases stiffness. In Eq. 14, 𝜔𝑏 is the crack breathing frequency, and for 

the case of a fully closed crack, (𝑘(𝑡) = 𝑘𝑐), we have 𝜔𝑏𝑡 = 2 𝑛 𝜋, 𝑛 = 1,2,3, … . and for the case of a fully open crack (𝑘(𝑡) =
𝑘0), we have 𝜔𝑏𝑡 = (2 𝑛 − 1) 𝜋, 𝑛 = 1,2,3, … . The breathing frequency can be approximated as [34]: 

𝜔𝑏 =
2𝜔𝑐𝜔𝑜

𝜔𝑐+𝜔𝑜
  (16) 

where 𝜔𝑜 = √𝑘𝑜 𝑚⁄ , and 𝜔𝑐 = √𝑘𝑐 𝑚⁄  are the frequencies of the cracks that relate to completely open and closed crack cases. Eq. 

16 suggests that the system's dominant frequency consistently lies between the open and closed crack cases. 

In the above equations, the fraction 𝑚𝜔𝑏
2 can be written in terms of 𝑘𝑐  and 𝑘𝑜as: 

𝑚𝜔𝑏
2 =

4 𝑘𝑜𝑘𝑐

𝑘𝑜+𝑘𝑐+2√𝑘𝑜𝑘𝑐
  (17) 

In addition, to determine the beam's equivalent mass, one could proceed as follows: 

𝑚 = ∫ 𝑚(𝑥)
𝐿

0
𝛷2(𝑥)𝑑𝑥 = 0.5 �̄�𝐿      (18) 

The mass per unit length of the beam is �̄�. Taking into account c as the damping equivalent coefficient for the SDOF model of 

the damaged beam (refer to Fig. 1) and integrating the lumped modal parameters such as equivalent mass and time-varying flexural 

stiffness, we derive the GE of motion as: 

𝑚�̈� + 𝑐�̇� + {𝑘𝑜 + 𝑘𝛥𝑐 [1 + 𝑐𝑜𝑠(𝜔𝑏𝑡)]}𝑧 = 0  (19) 

An analytical solution for the equation mentioned above has not been reported, and there are numerical solutions that assume a 

constant damping coefficient [18]. 

By utilizing the subsequent variable change: 
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𝑡 =
2𝜏

𝜔𝑏
,

𝑑𝑧

𝑑𝑡
=

𝜔𝑏

2

𝑑𝑧

𝑑𝜏
,

𝑑2𝑧

𝑑𝑡2 =
𝜔𝑏

2

4

𝑑2𝑧

𝑑𝜏2  (20) 

and replacing the above relations into Eq. 19, and dividing Eq. 19 by 
4 𝑚

𝜔𝑏
2  and rearranging the equation, it becomes: 

𝑑2𝑧(𝜏)

𝑑𝜏2 + 4𝜉
𝑑𝑧(𝜏)

𝑑𝜏
+ [𝛿 + 4𝜉2 + 2𝜀 𝑐𝑜𝑠(2𝜏)] 𝑧(𝜏) = 0      (21) 

where, 𝛿, 𝜀 and 𝜉 are non-dimensional parameters and damping ratio, respectively, which are defined as: 

𝜀 =
2𝑘𝛥𝐶

𝑚 𝜔𝑏
2 =

𝑘𝑐−𝑘𝑜

𝑚 𝜔𝑏
2 , 𝜉 =

𝑐

2 𝑚 𝜔𝑏
, 𝛿 =

4 (𝑘𝑜−𝑘𝛥𝐶)

𝑚 𝜔𝑏
2 − 4 𝜉2 =

2(𝑘𝑜+𝑘𝑐)

𝑚𝜔𝑏
2 − 4𝜉2      (22) 

This equation exhibits a stable periodic solution when δ is expressed in terms of ε (with ε being much less than 1) as: 

𝛿 = ∑ 𝐺𝑖𝑝
𝑖∞

𝑖=0   (23) 

where 𝐺0  is an integer number (𝐺0  = 0, 1, 2, …) and 𝑝 ∈ [0,1] is an embedding parameter, and 𝐺𝑖(𝑖 = 1,2,3, . . . , ∞) represented as 

the unknown expansion coefficients, which will be determined later. For each value of𝐺0one can acquire the corresponding 

expansion coefficients, thus, the associated transition curves. Each individual point on the curves represents a stable and periodic 

result to Eq. 21 (Fig. 2). In this illustration, the hatched regions indicate the unstable areas. 

 
Fig. 2. The Transition curves distinguish among the regions of stability and instability plane. The hatched areas represent the 

unstable region [34]. 

By substituting Eq. 17 into Eq. 22, and using relations𝑘𝑜 = 1 𝐶𝑜⁄  and 𝑘𝑐 = 1 𝐶⁄ ,𝜀 and 𝛿 are obtained as: 

𝜀 =
𝜒2+2𝜒(1+√1+𝜒)

4(1+𝜒)
, 𝜒 =

𝛥𝐶

𝐶
  (24) 

𝛿 =
8+2 𝜒2+8 𝜒+4 (2+𝜒)(√1+𝜒)

4 (1+𝜒)
− 4 𝜉2  (25) 

It's evident from Eq. 24 and 25 that 𝜀 and 𝛿 are functions of 𝜒 and the damping ratio denoted by 𝜉. For a periodic result to the 

motion equation (Eq. 21), the 𝜀 − 𝛿 curve needs to align via a transition curve. Then, the variation limits of 𝜒 should be established 

since the Mathieu equation features a periodic solution. 

3. The HPM for solving the motion equation 

An analytical relation exists between a cracked beam's damping ratio and crack parameters. This division presents an analytical 

method for the free vibration of the supported beam. The initial conditions used for the solution of Eq. 21 are regarded as 𝑧(0) = 1 

and �̇�(0) = 0. The initial conditions relate to the deformation of the equivalent mass from its equilibrium position by a distance of 

𝐴, and the primary velocity of −𝐴𝑐 2𝑚⁄ . 

As noted in the previous section, the Motion equation should have a periodic solution any time 𝛿 can be expressed in terms of 𝜀 

as stated by Eq. 23. In Fig. 2, 𝐺0  should be equal to 2. 

 In this letter, we apply the HPM to solve the discussed problem. The structure of the HPM is shown as follows: 

(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑧0) + 𝑝𝐿(𝑧0) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0,      (26) 

The notations 𝑣(𝑟, 𝑝): 𝛺 × [0,1] → 𝑅, L represents the linear, N represents the nonlinear part of the differential equation and 

𝑓(𝜏)is a known analytical function. 

Considering Eq. 26 we have: 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑧0) = 0, 𝐻(𝑣, 1) = 𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑟) = 0      (27) 
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In that 𝑝 ∈ [0,1] is an embedding parameter and 𝑧0 is the initial estimate that satisfies the B.C. By substituting Eq. 21 into Eq. 

26, it becomes: 

𝐻(𝑣, 𝑝) = [
𝑑2𝑣(𝜏)

𝑑𝜏2 + 4 𝜉
𝑑𝑣(𝜏)

𝑑𝜏
+ [𝛿 + 4 𝜉2]𝑣(𝜏) − 𝐿(𝑧0)] + 𝑝𝐿(𝑧0) + 2 𝑝𝜀 𝑐𝑜𝑠(2 𝜏) 𝑣(𝜏)] = 0,      (28) 

The procedure for the changes in 𝑝 from 0 to unity is 𝑣(𝜏, 𝑝), which changing from 𝑧0 to 𝑧𝑟. 𝑧 is considered as: 

𝑣(𝜏) = ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0   (29) 

The most accurate estimate for the solution is: 

𝑧(𝜏) = lim
𝑝→1

∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0   (30) 

Inserting Eqs. 23 and 29 into Eq. 28 yields: 

𝐻(𝑣, 𝑝) = [∑ �̈�𝑖(𝜏)𝑝𝑖∞
𝑖=0 + 4 𝜉 ∑ �̇�𝑖(𝜏)𝑝𝑖∞

𝑖=0 + [∑ 𝐺𝑖𝑝
𝑖∞

𝑖=0 + 4 𝜉2] ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0 − 𝐿(𝑧0)] + 𝑝𝐿(𝑧0) +

[2 𝜀 𝑐𝑜𝑠(2 𝜏)] ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0 ] = 0,  

(31) 

Assuming 𝐿(𝑧0) = 0 and simplification and rearranging based on powers of 𝑝-terms and setting the coefficients to each power 

of  𝑝 equal to 0 would result in an infinite collection of differential equations as: 

𝑝0: �̈�0(𝜏) + 4 𝜉�̇�0(𝜏) + (4 𝜉2 + 4)𝑣0(𝜏) = 0, 𝑣0(0) = 1, �̇�0(0) = 0  (32-1) 

𝑝1: �̈�1(𝜏) + 4𝜉�̇�1(𝜏) + (4𝜉2 + 4)𝑣1(𝜏) = (2𝜀 − 𝐺1 − 4𝜀 𝑐𝑜𝑠2( 𝜏))𝑣0(𝜏), 𝑣1(0) = 0,  �̇�1(0) = 0  (32-2) 

𝑝2: �̈�2(𝜏) + 4𝜉�̇�2(𝜏) + (4𝜉2 + 4) 𝑣2(𝜏) = (2𝜀 − 𝐺1 − 4𝜀 𝑐𝑜𝑠2( 𝜏))𝑧1(𝜏) − 𝐺2𝑣0(𝜏), 𝑣2(0) = 0,
�̇�2(0) = 0    

(32-3) 

𝑝3: �̈�3(𝜏) + 4 𝜉�̇�3(𝜏) + (4𝜉2 + 4)𝑣3(𝜏) = (2 𝜀 − 𝐺1 − 4 𝜀 𝑐𝑜𝑠2( 𝜏))𝑣2(𝜏) − 𝐺2𝑣1(𝜏) −
𝐺3𝑣0(𝜏), 𝑣3(0) = 0, �̇�3(0) = 0  

(32-4) 

The infinite set outlined in Eq. 32 has been solved recursively. To derive solutions for this set of equations, certain conditions 

must be placed on 𝐺𝑖 . The first part of this set provides the zero-order estimate for the solution: 

𝑣0(𝜏) = 𝑒−2𝜉𝜏(𝐴0 𝑠𝑖𝑛( 2𝜏) + 𝐵0 𝑐𝑜𝑠( 2𝜏))  (33) 

The constants  𝐴0and  𝐵0in Eq. 33 are assessed by applying the initial conditions.  Solving Eq. 32-1 and taking into account suitable 

initial conditions, gives 𝑣0(𝜏) = 𝑒−2𝜉𝜏 𝑐𝑜𝑠( 2𝜏). Using Eq. 32-2, we have 

𝑣1(𝜏) = 𝜀𝑒−2𝜉𝜏 (−
1

3
+

1

6
𝑐𝑜𝑠( 2𝜏) +

1

6
𝑐𝑜𝑠2( 2𝜏) −

1

4
𝐺1𝜏 𝑠𝑖𝑛( 2𝜏))  (34) 

To meet the periodicity conditions for 𝑣0(𝜏),  𝐺1  is equal to zero. Henceforward, the answer to the second part of Eq. 32 is: 

𝑣1(𝜏) = 𝜀𝑒−2𝜉𝜏 (−
1

3
+

1

6
𝑐𝑜𝑠( 2𝜏) +

1

6
𝑐𝑜𝑠2( 2𝜏))  (35) 

Knowing that 𝐺1 = 0, and using Eq. 32-3, 𝑣2(𝜏) is obtained in the following form: 

𝑣2(𝜏) =
1

288
𝑒−2𝜉𝜏(3𝜀2 𝑐𝑜𝑠3( 2𝜏) + 8𝜀2 𝑐𝑜𝑠2( 2𝜏) + 5𝜀2 𝑐𝑜𝑠( 2𝜏) +30 (𝜀2 −

12

5
𝐺2) 𝜏 𝑠𝑖𝑛( 2𝜏) − 16 𝜀2)  (36) 

𝑣2(𝜏) will be periodic when the term's coefficient is set equal to zero, so 𝐺2 = 5 12⁄ 𝜀2. Thus, similar procedures can be used; 

other equations of Eq. 32 can be solved recursively. 

𝑣3(𝜏) =
1

2880
𝑒−2𝜉𝜏(𝜀3 𝑐𝑜𝑠4( 2𝜏) + 5 𝜀3 𝑐𝑜𝑠3( 2𝜏) + 29 𝜀3 𝑐𝑜𝑠2( 2𝜏)−77 𝜀3 𝑐𝑜𝑠( 2𝜏) − 720 𝐺3 𝜏 𝑠𝑖𝑛( 2𝜏) + 42 𝜀3),

𝐺3 = 0  
(37) 

𝑣4(𝜏) =
1

1658880
𝑒−2𝜉𝜏(12 𝜀4 𝑐𝑜𝑠5( 2𝜏) + 96 𝜀4 𝑐𝑜𝑠4( 2𝜏) + 1299 𝜀4 𝑐𝑜𝑠3( 2𝜏) − 5408 𝜀4 𝑐𝑜𝑠2( 2𝜏) −

16415 𝜀4 𝑐𝑜𝑠( 2𝜏) − 22890 (
13824

763
𝐺4 + 𝜀4) 𝜏 𝑠𝑖𝑛( 4𝜏) + 20416 𝜀4),   𝐺4 = −

763

13824
𝜀4  

(38) 

𝑣5(𝜏) =
1

116121600
𝑒−2𝜉𝜏(12 𝜀5 𝑐𝑜𝑠6( 2𝜏) + 140𝜀5 𝑐𝑜𝑠5( 2𝜏) + 3335 𝜀5 𝑐𝑜𝑠4( 2𝜏) − 20685 𝜀5 𝑐𝑜𝑠3( 2𝜏) −

226585 𝜀5 𝑐𝑜𝑠2( 2𝜏) + 501113 𝜀5 𝑐𝑜𝑠( 2𝜏) − 29030400 𝐺5𝜏 𝑠𝑖𝑛( 2𝜏) − 257330 𝜀5), 𝐺5 = 0  
(39) 

Continuing with this process results in additional terms of 𝑣𝑖(𝜏), a few first terms will ensure suitable precision for the solution, 

and the other terms make a minor impact on the solution. By using a variable transformation 𝜏 = 𝜔𝑏𝑡 2⁄  and 𝑝 → 1, the solution 
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for Eq. 19 in relations of  𝜔𝑏 at the actual time  𝑡  is achieved: 

𝑧(𝑡) = 𝑒−
𝑐

2 𝑚
𝑡 [𝑐𝑜𝑠( 𝜔𝑏𝑡) +

1

6
𝜀(𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 2) +

1

288
𝜀2(3 𝑐𝑜𝑠3( 𝜔𝑏𝑡) + 8 𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 5 𝑐𝑜𝑠( 𝜔𝑏𝑡) −

16) +
1

2880
𝜀3(𝑐𝑜𝑠4( 𝜔𝑏𝑡) + 5 𝑐𝑜𝑠3( 𝜔𝑏𝑡) + 29 𝑐𝑜𝑠2( 𝜔𝑏𝑡) − 77 𝑐𝑜𝑠( 𝜔𝑏𝑡) + 42) +

1

1658880
𝜀4 (12 𝑐𝑜𝑠5( 𝜔𝑏𝑡) +

96 𝑐𝑜𝑠4( 𝜔𝑏𝑡) + 1299 𝑐𝑜𝑠3( 𝜔𝑏𝑡) −5408 𝑐𝑜𝑠2( 𝜔𝑏𝑡) − 16415 𝑐𝑜𝑠( 𝜔𝑏𝑡) + 20416 +
1

116121600
𝜀5(12 𝑐𝑜𝑠7( 𝜔𝑏𝑡) +

140 𝑐𝑜𝑠5( 𝜔𝑏𝑡) + 3335 𝑐𝑜𝑠4( 𝜔𝑏𝑡)) −20685 𝑐𝑜𝑠3( 𝜔𝑏𝑡) − 226585 𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 501113 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 257330 +
1

58060800
𝜀6(72 𝑐𝑜𝑠7( 𝜔𝑏𝑡) + 1152 𝑐𝑜𝑠6( 𝜔𝑏𝑡) + 4224 𝑐𝑜𝑠5( 𝜔𝑏𝑡)) − 367968 𝑐𝑜𝑠4( 𝜔𝑏𝑡) − 8571195 𝑐𝑜𝑠3( 𝜔𝑏𝑡) +

30518176 𝑐𝑜𝑠2( 𝜔𝑏𝑡)+ 176434669 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 198057152)+. . . . ]  

(40) 

, and 

𝛿 = 4 +
5

12
𝜀2 −

763

13824
𝜀4 +

1002401

79626240
𝜀6 −

1669068401

458647142400
𝜀8 +  …  .      (41) 

Eq. 41 has a clear physical interpretation. Eq. 22 shows 𝛿  , which is a function of the SDOF model parameters, breathing 

frequency, and the structural stiffness modifications caused by the crack. Also, Eq. (41) formulates 𝛿  in terms of ε for a periodic 

solution of D.E. (Eq. 21). 

 Thus, applying Eq. 25 alongside Eq. 41 establishes a relationship for the damping ratio of the fatigue-cracked beam based on 

its geometric dimensions, mechanical properties, and crack characteristics, as follows 

𝜉 =
1

3317760

1

1+𝜒
(√6((1 + 𝜒)(−917294284800 − 917294284800𝜒 − 191102976000 𝜀2 − 191102976000 𝜀2𝜒 +

25314508800 𝜀4 + 253145088000 𝜀4𝜒 − 5773829760 𝜀6 − 5773829760 𝜀6𝜒 + 1669068401 𝜀8 +

1669068401 𝜀8𝜒 + 229323571200 𝜒2 + 917294284800 √1 + 𝜒 + 458647142400 √1 + 𝜒𝜒))1 2⁄ )  

(42) 

where ε is a function of 𝜒 (See: Eq. 22). The Motion equation has an analytical and periodic solution only if  𝛿 and  ε parameters of 

Eq. 21)are situated on the transition curves. An unbounded solution exists for any plane and location in the unstable region 

(highlighted sections in Fig. 2) . Nonetheless, considering the cited crack’s physical evidence, beam 𝜀  is always positive, and the 

associated transition curve 𝛿 − 𝜀 emanates from the point  𝛿 = 4 on the  𝛿  axis. It is illustrated that when  𝜀  approaches zero, the 

precision of the asymptotic response will rise. Thus, utilizing Eq. 24, which illustrates the relationship between 𝜀 and  𝜒 , it is observed 

that when 𝜒 is less than 1.5, the value of  ε will always be below unity. The formula between 𝜒 and the mechanical properties of the 

considered flexural fatigue-cracked beam takes the dimensionless form: 

𝜒 =
𝛥𝐶

𝐶
=

3𝜋5(1−𝜈2)

4
(

𝐿0

𝐿
)

2

(
ℎ

𝐿
) 𝑔(𝛼)  (43) 

Utilizing this dimensionless equation, 𝜒 can plot against the crack depth ratio 𝛼 = 𝑎 ℎ⁄ , and the crack location ratio 𝛽 = 𝐿0 𝐿⁄  

to establish the valid domain of the solution. The region of 𝜒 > 1.5 is valid for the analytical solution. This method enables the 

derivation of the analytical solution for the free vibration response. Additionally, the beam's damping ratio can be computed based 

on the specified geometric dimensions, mechanical characteristics, and crack depth. 

4. Results and discussion 

Using the HPM outlined in section 3, this study investigates both the quantitative and qualitative parameters affecting the 

behavior of a fatigue-cracked beam. To compare the proposed method's results and the experimental findings reported in the 

reference [34], an aluminum pinned-supported with a length of 235 mm and a cross-sectional area of 7×23 mm2 serves as a case 

example in this study. The material density and Young’s modulus of elasticity of the beam are 2800 kg/m3 and 72 GPa. As mentioned 

in section 2.2, the stiffness of a beam with a fatigue crack varies continuously over time as the beam vibrates, i.e., during each half-

cycle of beam vibration, the stiffness of the beam transitions smoothly between the two extremes that represent a fully open crack 

and a fully closed crack case. Fig. 3 illustrates the change in stiffness overtime during a half-cycle vibration for a beam with a crack 

position ratio β = 0.2 and variable crack depth ratios of α. In this figure, the extreme values of the curve relate to entirely closed 

cases of the crack (i.e., the unaltered beam), and the lowest values relate to completely open cases of the crack. Additionally, this 

figure shows that a deeper crack leads to a broader range of stiffness variations, consequently decreasing the dominant frequency. 



Asgari and Khabiri Civil Engineering and Applied Solutions 2025; 1(2): 43-54 
 

50 
 

 
Fig. 3. The fatigue-Cracked beam’s stiffness changes over time(s) with the position ratio for β = 0.2 and various crack depth ratios. 

The recommended analytical method can assess a fatigue-cracked beam's free deformation and acceleration results for a specified 

crack depth and position. The computed free vibration responses of the fatigue-cracked beam for the crack parameters illustrated in 

Fig. 3 are presented in Figs. 4 and 5. In both scenarios, the initial deformation is z (0) = 1 cm. These figures indicate that greater 

crack depth results in a more significant decay of the fatigue-cracked beam's response. The emergence of the dominant frequency's 

super harmonics results from variations in the stiffness of the fatigue-cracked beam during vibration. 

 
 

β = 0.2 α=0.4 

Fig. 4. The deformation response of the beam with (a) a constant crack position ratio (β = 0.2) and varying crack depth ratios, and (b) 

a constant crack depth ratio (α = 0.4) and varying crack position ratios. 
 

  
(a) (b) 

Fig. 5. The beam deformation response of the crack position ratio β = 0.2 and dual crack depth ratios of (a) α=0.2, and (b) α=0.4. 

One major advantage of the given analytical method is its capability to estimate the system's damping due to the crack. Fig. 6 

illustrates how the damping factor varies with the crack position ratio at dissimilar crack depth ratios. The figure indicates that the 

system damping reaches its peak for a specific crack depth when the crack is situated at the beam's midpoint. Consequently, the 
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damping factor is responsive to the crack's depth and location. 

 
Fig. 6. Damping factor variation of the vibration flexural cracked beam concerning the crack position ratio for various crack depth 

ratios. 

To verify the analytical solution for the beam for the crack parameters α = 0.4 and β = 0.2, the motion equation is resolved 

numerically via the fourth-order Runge-Kutta technique, with the results presented in Table 1. The primary conditions match those 

used in the analytical case. The comparison of HPM and numerical results shows strong agreement between the analytical and 

numerical solutions. It's important to note that the beam's damping factor is not included in numerical methods; thus, an assumed 

value is necessary. In this context, some researchers have taken values of 0.01 and 0.15 for the damping factor in the vibration 

analysis of flexural fatigue-cracked beams. As previously mentioned, the system's damping relies on the crack parameters, and the 

damping factor for a fatigue-fractured beam changes based on crack depth and location. Consequently, the damping factor is derived 

from the suggested analytical method and applied in the numerical analysis to enhance the accuracy of the numerical method [21]. 

Table 1. Comparison of the free vibration response of the crack parameters β = 0.2 and α = 0.4 measured from HPM and numerical 

model . 

Time 
Displacement (cm) Velocity (cm/s) 

Numerical result (HPM) Numerical result (HPM) 

0 1 1 0 0 

0.001 0.796182 0.803836 2020.033 1907.988 

0.005 -0.20705 -0.19625 2773.582 2796.619 

0.01 -0.19011 -0.19387 -991.598 -965.217 

0.05 8.49E-04 8.58E-04 3.231528 3.10251 

0.1 4.32E-07 4.507453432 E-07 5.55E-03 5.446 E-03 

0.5 8.90E-12 7.656194548 E-031 -1.07E-07 -5.1E-27 

1 -9.84E-12 -9.7E-62 5.06E-08 -7.6E-57 

To ensure a legitimate analytical closed-form solution, ΔC/C must be less than 1.5. Consequently, the shaded area defines the 

allowable variation limits for the crack parameters (see Fig. 7). The crack terms of the referenced beams are situated within the 

hatched area. Thus, the analytical solutions acquired are considered valid. To evaluate the accuracy of the results produced by the 

proposed analytical solution, a comparison is made with the experimental results presented by Chondros et al. [34]. The crack is 

situated at the center of the bending beam (with assumption β = 0.5); the suggested analytical method applies to both the breathing 

and the open crack models.  

The solid curve in Fig. 8 illustrates how the fundamental frequency ratio changes for the transverse dynamic vibration of a 

pinned-supported beam with a breathing crack situated at the midpoint. This variation is plotted against the depth of the crack ratios. 

In Fig. 8, the experimental results reported by Chondros et al. [34]. The solid curve comparison with the experimental data shows 

that the proposed method's results agree with the experimental findings reported in the literature. Furthermore, this figure illustrates 

that the frequency decrease in the open crack mode for a specific crack location ratio is more significant than that in the breathing 

model. This finding has been established earlier [18]. 
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Fig. 7. The area of the flexural crack terms necessary for acquiring a legitimate analytical solution for the vibration analysis of an 

aluminum-pinned supported beam measuring 7 × 23 × 235 mm³. 
 

 
Fig. 8. The variation in the dominant frequency ratio of a cracked pinned-supported bending beam compared to the depth ratio for 

the crack in the position ratio β = 0.5. 

5. Conclusion 

This study introduces an analytical alternative novel technique for analyzing the vibrations of a flexural cracked beam. The 

cracked beam behaves as a nonlinear SDOF structure, with nonlinearity stemming from the crack's breathing behavior. The GE is 

addressed using the perturbation technique. The solution is valid across a broad spectrum of crack parameters, mechanical 

characteristics of the beam, and geometric dimensions. This approach estimates the cracked beam's damping ratio due to the crack's 

existence. 

The findings reveal that the crack's depth and location influence the damping factor. Moreover, the super harmonics of the 

dominant frequency in the response spectra of the cracked beam illustrate its nonlinear dynamic behavior, potentially serving as an 

indicator of cracks in structural health monitoring applications. 

A numerical method is employed alongside the proposed approach to confirm the analytical findings. The free vibration of the 

flexural cracked beam, calculated using the analytical approach at a specific crack depth and position, matches the numerical results. 

The outcomes confirm that the solution is consistent with the analytical numerical response. 

To confirm the results, a plot of the fundamental frequency ratio against the crack depth ratio for a given crack location ratio is 

generated according to the breathing flexural crack model, juxtaposed with the experimental findings from the literature. The results 

indicate compatibility with similar experimental data. 
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