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Abstract: 

Stroke is a leading cause of death and long-term disability globally, and a complex gene–-drug 

interaction affects treatment outcomes. Through systematic and network meta-analysis of all drug 

combinations targeting genes and proteins involved in stroke, along with AI-driven modeling, 

this study aims to propose the optimal drug combinations and their recommended dosages. A 

systematic review was undertaken on major databases till March 2025. Natural Language 

Processing (NLP), using MeSH-term expansion and semantic similarity models, increased 

article retrieval and reduced selection bias. Network meta-analysis using extracted data was 

performed and combined with a Reinforcement Learning (RL) framework for drug combination 

strategies optimization. We trained an RL agent with a reward function based on gene–-disease 

association p-values, enabling the dynamic selection of drug combinations which that maximally 

heal pathogenic gene expression. Various combinations of medications—Salicylic Acid, tPA, and 

Warfarin—were noted as effective, but doses needed to be judiciously balanced for safety. RL-

based optimization resulted in personalized recommendations that were concordant with 

pathway-level evidence. Therapeutic decision-making with Reinforcement Learning (RL) 

alongside Literature analysis with Natural Language Processing (NLP) offers the path to 

endocrine-like precision for drug combinations targeting stroke. This strategy could thereby aid 

future translational and clinical applications. 
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1. Introduction 

A stroke, or Stroke (CVA), is a sudden interruption of blood 

flow to the brain or its blood vessels. Ischemic strokes 

constitute approximately 85% of cases, with hemorrhagic 

strokes comprising the remaining 15%. Over recent decades, 

the incidence of stroke-related deaths and occurrences has 

gradually decreased. Strokes remain the leading cause of 

adult disability worldwide, underscoring the critical need for 

early symptom detection and prompt treatment to minimize 

morbidity and mortality risks. Various factors can trigger a 

stroke, with high blood pressure (hypertension) being the 

primary cause of ischemic strokes. Additional factors, 

particularly in younger individuals, include clotting disorders, 

carotid dissection, and illicit drug use. [1–3]. 

1.1. Foundation 

Several medications have been suggested to target receptors 

of specific human genes to treat this condition. These include 

Tissue Plasminogen Activator, Prasugrel Hydrochloride, 

Tenecteplase, Warfarin, Edoxaban, Danaparoid, Salicylic 

Acid, Clopidogrel, Ticlopidine, Ticagrelor, Rivaroxaban, and 

Apixaban. Numerous studies have highlighted certain drugs 

from this list as particularly effective in managing Strokes, 

such as: 

Salicylic Acid is a compound derived from white willow 

bark and wintergreen leaves, or synthesized in labs. It 

prevents bacterial and fungal growth and acts as a keratolytic, 

sloughing off dead skin cells. 

Tissue Plasminogen Activator is a naturally occurring 

enzyme in the body that breaks down blood clots. A lab-

produced version is used to treat heart attacks, strokes, and 

pulmonary embolisms, and is under study for cancer 

treatment. Known as tPA, it is a systemic thrombolytic agent. 

Warfarin, an anticoagulant, is used to prevent blood clot 

formation and migration. It is the most commonly prescribed 

https://cste.journals.umz.ac.ir/
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oral anticoagulant in North America, despite its primary 

usage as a pesticide under brands like Rodex and d-Con. 

When used medically, Warfarin has notable considerations, 

including its ability to cross the placental barrier, potentially 

causing fetal bleeding, spontaneous abortion, preterm birth, 

stillbirth, or neonatal death in pregnant women. Other adverse 

effects include necrosis, purple toe syndrome, osteoporosis, 

valve and artery calcification, and drug interactions. Warfarin 

does not affect blood viscosity but inhibits the vitamin K-

dependent production of active clotting and regulatory 

factors.

1.2.  Aims 

We opted to perform a thorough review of existing research 

to deliver a detailed and comprehensive meta-analysis of how 

drug combinations affect Stroke management. Various studies 

have noted adverse drug effects in this context, yet global 

statistics remain unavailable (Figure 1). This study purposes 

to thoroughly examine the literature and analyze published 

data on the effects of prescribed medicine combinations for 

treating Stroke.

 

Figure 1. The influence of recommended medicine combinations on the treatment of strokes

2. Methodology 

This approach involves three phases. Initially, we applied an 

AI model (specifically reinforcement learning) to suggest 

medication combinations for the condition. In the second 

phase, to assess the RL outcomes, we conducted an extensive 

systematic review, examining recent studies on the effects of 

these combinations across diverse populations (varying in 

age, sex, etc.) [4–11].  

For article retrieval, we utilized Natural Language 

Processing (NLP) due to its contextual understanding. 

Comparisons between physical and NLP-based searches 

revealed that NLP effectively identified articles using MeSH 

terms, beyond just the keywords provided to search engines 

[12, 13].  

In the third phase, after validating RL results with the 

systematic review findings, we further evaluated the RL 

outcomes through a network meta-analysis.  

2.1. Step I: Deep Reinforcement Learning 

In the initial phase of this study, an RL model proposed 

various medication combinations for managing Strokes. The 

RL model's states include data on significances connecting 

diseases to related biological information, specifically human 

genes, and significances linking those genes to effective 

drugs.  

2.1.1. Reward 

The reward function was established by identifying features 

with a statistically significant correlation to stroke. 

Specifically, the reward signal was defined as a significance 

derived from meta-analysis, which was inverted and 

normalized as follows: 

𝑅𝑒𝑤𝑎𝑟𝑑 = − log10  (𝑝𝑣𝑎𝑙𝑢𝑒)  (13) 

We assigned higher rewards to actions (drug selections) that 

targeted genes more closely linked to stroke (indicated by 

smaller significances). For combinations affecting multiple 

genes, the reward was computed as the average of individual 

gene rewards, weighted based on their normalized expression 

levels from relevant studies. 

2.1.2. Policies  

Given the large action space, we modeled the policy π 

using Deep Q-learning. A discount factor of γ=0.9 was 

applied to favor multi-step treatment paths with long-term 

benefits. The selection of γ was determined through 

preliminary runs testing values from 0.6 to 0.95, with γ=0.9 

demonstrating optimal convergence and biological relevance 

by supporting stable and synergistic drug sequences. 

2.1.3. Deep backbone 

     
          

                
         

          

                         

                        
      

                                
               

                               

                

                     
                          

                                
              

                                
                

                                                  



Tabatabaei and Kiaee /Contrib. Sci. & Tech Eng, 2025, 2(2) 

3 
 

The Advanced Artificial Neural Network (AANN) 

framework evaluates an input coefficient that signifies the 

relationship between the Objective (cerebrovascular event) 

and Related Factors (pharmaceuticals), structured as a 

Connection Element comprising physiological information 

(genetic markers). This coefficient is determined using a 

statistical significance metric. The structure of the AANN 

framework is illustrated in Figure 2. Initially, the statistical 

significance metric connecting the Objective to genetic 

markers is evaluated—for instance, 𝑃1
𝐹𝑇  represents the 

significance metric between the genetic marker F1 (acting as 

the Connection Element) and the cerebrovascular event (the 

Objective). The framework also incorporates significance 

metrics between these genetic markers and various 

medications, such as 𝑃13
𝐴𝐹 , which indicates the significance 

metric between the first Related Factor and the third 

Connection genetic marker. By utilizing these physiological 

data inputs, the AANN framework predicts the aggregated 

significance metric between Related Factors and the 

Objective, such as 𝑐𝑝2
𝐴𝑇 , which denotes the aggregated 

significance metric between the second Related Factor and 

the Objective. 

 

Figure 2. Overview of the AANN Framework for 

Recommending Optimal Pharmaceutical Combinations in 

Disease Management Using Genetic Markers as Connection 

Elements 

After the Advanced Artificial Neural Network (AANN) 

framework determines the related factor with the smallest 

aggregated significance metric, it recalibrates each coefficient 

based on the impact of the selected related factor on the 

Connection attributes. This recalibration ensures that related 

factors with similar influences on genetic markers as the 

chosen factor receive elevated significance metrics post-

adjustment. The cycle continues iteratively until the AANN 

framework satisfies its termination conditions. 

Pharmaceuticals exhibiting low significance metrics linked 

to cerebrovascular events were pinpointed using the AANN 

framework. The medication with the smallest aggregated 

significance metric is selected via the pharmaceutical 

selection algorithm, which computes significance metrics for 

each drug relative to the condition. Subsequently, it 

recalibrates the coefficients for the cerebrovascular event and 

associated genetic markers based on the significance metrics 

tied to those markers and the initially chosen medication. As 

a result, all aggregated significance metrics between 

pharmaceuticals and the condition are updated. In each 

iteration, the method adjusts the coefficients based on the 

drug with the lowest aggregated significance metric. The 

algorithm’s primary objective was to foster synergistic 

interactions, and the drug selection process generated a 

sequence of scenario suggestions, each comprising a 

combination of pharmaceuticals. 

2.2. Step II: Systematic Review 

To confirm the outcomes of the Reinforcement Learning 

(RL) framework from the initial phase, we conducted an in-

depth assessment of the suggested pharmaceuticals in the 

subsequent phase. A comprehensive review was carried out to 

substantiate the findings from our prior work, ensuring the 

reliability of the initial phase’s results for further application. 

We accessed pertinent studies from databases including 

Science Direct, Embase, Scopus, PubMed, Web of Science 

(ISI), and Google Scholar. For example, a semantic search for 

“artificial intelligence” encompasses related concepts such as 

“Deep Learning,” “RL,” “Transformer techniques,” “Transfer 

Learning,” “SVM,” “Reinforcement Learning,” and other 

less obvious terms, facilitating broader and more precise 

article retrieval in a shorter timeframe.  

2.2.1. Sources: 

While our proprietary Reinforcement Learning (RL) model 

generated the proposed drug combination, the primary 

significance of this study lies in validating this combination, 

rather than the model itself. This validation was bolstered by 

analyzing data from large-scale clinical trials through the 

systematic review.  

2.2.2. Search and Selection 

To comprehensively identify relevant studies, we employed 

a hybrid approach combining Natural Language Processing 

(NLP) and manual verification. The NLP pipeline consisted 

of: 

- Keyword expansion: Utilizing the Unified Medical 

Language System (UMLS) for MeSH-term broadening. For 

instance, "Stroke" was expanded to include terms like 

Strokes, CVA (Stroke), CVAs (Stroke), Strokes, Stroke, and 

others in semantic searches. 

 

- Semantic similarity scoring: The pre-trained BioBERT 

model facilitated contextual analysis by comparing sentence 

embeddings against inclusion criteria. 

- De-duplication: Automated using cosine similarity of 

abstract embeddings, followed by relevance ranking. 

To minimize article selection bias, two independent 

researchers conducted a manual review of the NLP-filtered 

results. Each applied inclusion and exclusion criteria to the 

top 200 abstracts. Discrepancies were resolved through 

consensus or third-party adjudication. This hybrid strategy 

enhanced the recall and precision of the selected articles.  

2.2.3. Eligibility 
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The systematic review included studies meeting these 

criteria: 1) Studies featuring at least one proposed stroke 

medication, 2) Empirical study, 3) Text-based studies 

fulfilling the evaluation’s inclusion criteria, which were: a) 

Reference to "Stroke" and at least one potential drug, b) 

Observational (non-interventional) studies, c) Full-text 

availability for three studies. Exclusion criteria were: 1) 

Irrelevant study, 2) Studies missing enough data, 3) Identical 

sources, and 4) Researches with indistinct methodologies. 

Five intrusion studies were incorporated. 

2.2.4. Study 

At the outset, redundant studies are removed. During the 

assessment stage, a compilation of titles from the remaining 

studies is created for methodical screening. In the initial stage 

of the systematic review, titles and abstracts are carefully 

examined, leading to the elimination of numerous studies 

based on predefined inclusion criteria. In the subsequent 

stage, the proficiency evaluation, the full texts of studies 

retained from the initial screening are thoroughly evaluated 

against the criteria, resulting in the exclusion of further 

irrelevant studies. The specialist offers a transparent and 

thorough rationale for excluding any study, while the QA 

system assesses each article by responding to targeted 

questions, such as, "Does this pharmaceutical effectively treat 

cerebrovascular events? Disagreements between the 

specialist and the QA system’s conclusions are addressed by 

a second specialist reviewing the disputed studies. Following 

these steps, 44 studies were chosen for the third phase of the 

research. 

2.2.5. Evaluation 

The STROBE checklist, widely used for assessing 

observational studies, was employed. This checklist is 

organized into six key sections—title, abstract, introduction, 

methods, results, and discussion—and comprises 32 

subscales. Each subscale focuses on a specific element of a 

research’s methodology, including the title, research question, 

objectives, study design, target population, sampling strategy, 

sample size, variable definitions and procedures, data 

collection methods, statistical analysis techniques, and result 

presentation. The highest possible score on the STROBE 

checklist is 32. Consequently, 31 articles with scores below 

16 were excluded due to insufficient methodological rigor. 

The study’s operational framework is based on the RAIN 

model [14]. 

2.2.6. Risk 

At this phase, the significance metric is employed to 

evaluate each pharmaceutical’s efficacy in influencing 

genetic markers, with results presented visualized through 

circular bar charts and radar charts. 

2.3. Step III: Meta-Analysis 

A network meta-analysis was performed to concurrently 

assess multiple pharmaceuticals within a single study. This 

approach integrates direct and indirect evidence, using 

genetic markers and proteins as connection elements, within 

a framework of randomized controlled trials. Its ability to 

determine the comparative effectiveness of frequently 

prescribed medications in clinical practice has made it 

increasingly preferred by healthcare professionals. 

3. Results 

3.1. Step I: Deep Reinforcement Learning 

The Reinforcement Learning (RL) model proposed a 

medication mixture of Tissue Plasminogen Activator, 

Salicylic Acid, and Warfarin. Table 1 details the significances 

for this combination. For instance, in Scenario 1 (S1), the 

significance between Stroke and Salicylic Acid was 0.037, 

which dropped to 0.008 when Tissue Plasminogen Activator 

was added in Scenario 2 (S2). Additionally, Table 1 indicates 

that the significance in Scenario 3 demonstrates the proposed 

drug combination effectively managed the condition. 

Table 1 shows changes in significances linking human genes 

to Strokes under new conditions. The ‘Sce1’ column lists the 

significance for the relationship between Strokes and affected 

human genes. In the ‘Sce3’ column, significances for many 

human genes and Strokes reach 1, indicating reduced 

significance of the targeted genes.

Table 1. significance between scenarios and Stroke 

Scenario Medication Combinations Significance 

Sce1 Salicylic Acid 0.037 

Sce2 Salicylic Acid + Tissue Plasminogen Activator 0.008 

Sce3 Salicylic Acid + Tissue Plasminogen Activator + Warfarin 0.004 

3.2. Step II: Systematic Review (SR) 

This step explores the adequacy of indicated drugs in 

treating cerebrovascular mishaps. Important articles were 

accumulated and methodicallly surveyed taking after 

PRISMA rules and the RAIN system, covering periods up to 

November 2020 and July 2022. At first, 458 possibly 

important papers were distinguished and introduced into the 

EndNote framework. Of these, 198 copies were prohibited. 

After assessing the titles and simultunasely abstracts of the 

residual 142 considers and applying incorporation and 

prohibition criteria, 41 ponders were avoided amid the 

screening stage. Of the 101 ponders evaluated for 

qualification, 56 were expelled after full-text audit based on 

the same criteria. Amid the quality appraisal, 12 of the 

remaining 45 ponders were prohibited due to moo 

methodological quality, as decided by STROBE checklist 

scores, coming about in 44 cross-sectional thinks about for 

last examination. The examination included checking on full 

writings and scoring each think about utilizing the STROBE 
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checklist (see Figure 3). Figure 4 portrays the structures of the 

drugs. 

3.3. Step III: Network Meta-Analysis (NMA) 

Figure 5-a shows the significance connecting affected genes 

to Stroke, while Figure 5-b depicts these significance after 

applying the 3rd  scenario. Figure 6 comprises a radar chart 

that imagines the efficiency of medications designated by the 

medicine selection procedure, showing the significance 

between Stroke and human genes following the application of 

these medications. Each painted line indicates the efficacy of 

a particular medication in that scenario. 

4. Discussion 

In addition to the systematic review (SR) and network meta-

analysis (NMA), two additional components were integrated. 

The initial step involved pinpointing appropriate 

pharmaceutical combinations for the systematic review by 

employing reinforcement learning (RL) on online databases, 

a technique previously utilized in numerous medical studies. 

The final step of prescribing these pharmaceutical 

combinations necessitated collecting relevant online data. In 

the second phase, a systematic review of these proposed 

combinations was conducted to validate the initial results. In 

the third phase, a network meta-analysis assessed the efficacy 

of these combinations on genetic markers and proteins. 

Finally, comprehensive prescription details for each 

combination, including drug interactions, adverse effects, and 

drug-food interactions, were investigated.

 

Figure 3. PRISMA (2020) flow diagram indicating the stages of sieving articles in this systematic review and network meta-analysis 

 

  
(a) (b) 

 
(c) 

Figure 4. Chemical Structures of Pharmaceuticals from drugbank  
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(a) 

 
(b) 

Figure 5. Significance Metrics for Influenced Biological Traits and Cerebrovascular Events 

 

Figure 6. Radar Chart of Significance Metrics for Cerebrovascular Events and Influenced Traits Post-Drug Application 

4.1. Genes/Proteins 

Various thinks about and online organic databases have 

affirmed the significance of qualities distinguished as 

possible targets for the movement of stroke. These thinks 

about uncover that cerebrovascular mischance infection 

includes a wide extend of qualities and proteins.Those with 

the lowest significances include: PLG, CLDN5, PLAT, 

EEF1A2, NINJ2, CECR1, SLC12A3, MMP9, ABCD2, 

MTHFR, GP6, etc. 

4.2. Prescription 
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Data on medicine drugs was utilized to investigate medicate 

intuitive, drug-food combinations, side impacts, and 

concerns related to extreme conditions. Trustworthy 

databases such as Drugs, Drugbank, WebMD, and Medscape 

were referenced for sedate interaction considers. These 

databases facilitated side-by-side comparisons of 

medications. By examining drug pairs through these online 

drug interaction databases, it was found that certain 

medication combinations could result in drug interactions. 

4.2.1. Tissue Plasminogen Activator vs. Salicylic Acid 

Interactions (Moderate) 

The concurrent administration of blood thinners and non-

steroidal anti-inflammatory medications (NSAIDs) is 

associated with a heightened risk of hemorrhagic events. 

Combining blood thinners substantially increases the 

probability of gastrointestinal hemorrhage, while their use 

with paracetamol may raise the risk of bleeding at multiple 

sites. Ibuprofen and other NSAIDs, processed by the 

CYP2C9 enzyme, may disrupt the absorption of S-warfarin, 

thereby amplifying the bleeding risk linked to Warfarin. 

4.2.2. Warfarin and Salicylic Acid  

Blood thinners and non-steroidal anti-inflammatory 

medications (NSAIDs) can both exacerbate bleeding 

tendencies. When blood thinners are used with over-the-

counter NSAIDs, the chance of gastrointestinal bleeding 

may increase, and pairing them with paracetamol might 

amplify the risk of hemorrhage at various locations. NSAIDs 

such as ibuprofen, processed by the CYP2C9 enzyme, can 

interfere with S-warfarin metabolism, thus heightening the 

bleeding risk tied to Warfarin. 

4.2.3. Tissue Plasminogen Activator and Warfarin 

Anticoagulant medications, due to their mechanism, 

increase the likelihood of bleeding complications in patients. 

Using multiple such drugs together may significantly 

heighten this risk while offering minimal additional benefits.  

Although combinations like Warfarin + tPA yield 

statistically significant significances, most stroke treatment 

combinations carry the risk of heightened hemorrhagic 

events when used concurrently. Despite low significances 

indicating strong associations with stroke-related gene 

targets, pharmacodynamic interactions and potential toxicity 

may limit clinical applicability. For instance, while Warfarin 

+ tPA appears promising for modulating stroke pathways, 

both being anticoagulants, their combined use could amplify 

bleeding risks, outweighing benefits suggested by 

reinforcement learning models. Nonetheless, given the 

critical need for stroke treatment, we endorse these 

combinations, in line with recent authoritative studies, while 

urging physicians to closely monitor side effects. 

5. Conclusion 

This study, utilizing Compound Screening against Gene 

Targets Related to Stroke data up to March 2025, employs a 

comprehensive strategy integrating Systematic Review, 

Network Meta-Analysis, and Artificial Intelligence. Natural 

Language Processing (NLP) was used to automate and 

enhance literature retrieval, reducing bias and improving 

study selection relevance. Reinforcement Learning (RL) 

played a crucial role in dynamically identifying and 

optimizing drug combinations based on gene-disease 

associations, guided by a reward function tied to statistical 

significance (significances). These findings demonstrate the 

potential of an AI-driven framework to enhance evidence 

synthesis and therapeutic decision-making. The proposed 

framework can be further refined by incorporating real-

world patient data and clinical trial outcomes to validate AI-

generated drug recommendations. 
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