- Rezaei, G., & dorostkar yaghouti, b. (2024). Artificial intelligence in crime prevention; advantages and challenges. Journal of Information and Communication Technology in Policing, 5(19), -. doi:10.22034/pitc.2024.1279899.1303.
- Ozkan-Okay, M., Akin, E., Aslan, Ö., Kosunalp, S., Iliev, T., Stoyanov, I., & Beloev, I. (2024). A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and Machine Learning Techniques on Cyber Security Solutions. IEEE Access, 12, 12229–12256. doi:10.1109/access.2024.3355547.
- Dorrani, Z. (2025). Optimization of Photonic Nanocrystals for Invisibility Using Artificial Intelligence. Journal of Advanced Materials in Engineering, 44(1), 55–70. doi:10.47176/jame.44.1.1088.
- SabbaghGol, H., Saadatfar, H., & Khazaiepoor, M. (2024). Predicting alzheimer's disease: A machine learning approach using advanced feature selection techniques. Journal of Modern Medical Information Sciences, 10(3), 307-324.
- Shirazi, H. , Shadan, F. , & Qorbani Fouladi, M. (2024). Damage Detection of Truss Bridges Using Artificial Neural Network Considering the Effect of Non-Structural Elements. Contributions of Science and Technology for Engineering, 1(1), 43-49. doi:10.22080/cste.2024.5013.
- Dorrani, Z., & Abadi, H. J. (2024). Neural Network Design for Energy Estimation in Surge Arresters. Majlesi Journal of Telecommunication Devices, 13(4), 229-237. doi:10.71822/mjtd.2024.1130109.
- Notghimoghadam, S. M., Farsi, H., & Mohamadzadeh, S. (2023). Object Detection by a Hybrid of Feature Pyramid and Deep Neural Networks. Journal of Electrical and Computer Engineering Innovations, 11(1), 173–182. doi:10.22061/jecei.2022.9012.567.
- Ahmed, W., & Yousaf, M. H. (2024). A Deep Autoencoder-Based Approach for Suspicious Action Recognition in Surveillance Videos. Arabian Journal for Science and Engineering, 49(3), 3517–3532. doi:10.1007/s13369-023-08038-7.
- Veena, K., Meena, K., Kuppusamy, R., Teekaraman, Y., Angadi, R. V., & Thelkar, A. R. (2022). Cybercrime: Identification and Prediction Using Machine Learning Techniques. Computational Intelligence and Neuroscience, 2022, 8237421. doi:10.1155/2022/8237421.
- Farsi, H., Notghi Moghadam, S. M., Barati, A., & Mohamadzadeh, S. (2026). Development of a Deep Learning Model Inspired by Transformer Networks for Multi-class Skin Lesion Classification. International Journal of Engineering, 39(1), 135–147. doi:10.5829/ije.2026.39.01a.11.
- Rohani, M., Farsi, H., & Mohamadzadeh, S. (2025). Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation. International Journal of Engineering, 38(10), 2259–2272. doi:10.5829/ije.2025.38.10a.05.
- Rohani, M., Farsi, H., & Mohamadzadeh, S. (2023). Deep Multi-task Convolutional Neural Networks for Efficient Classification of Face Attributes. International Journal of Engineering, 36(11), 2102–2111. doi:10.5829/ije.2023.36.11b.14.
- Dorrani, Z. (2023). Road Detection with Deep Learning in Satellite Images. Majlesi Journal of Telecommunication Devices, 12(1), 43–47.
- Dorrani, Z., Farsi, H., & Mohammadzadeh, S. (2022). Edge Detection and Identification using Deep Learning to Identify Vehicles. Journal of Information Systems and Telecommunication, 10(39), 201–210. doi:10.52547/jist.16385.10.39.201.
- Dorrani, Z., Farsi, H., & Mohamadzadeh, S. (2022). Deep Learning in Vehicle Detection Using ResUNet-a Architecture. Jordan Journal of Electrical Engineering, 8(2), 165. doi:10.5455/jjee.204-1638861465.
- Dorrani, Z. (2024). Traffic Scene Analysis and Classification using Deep Learning. International Journal of Engineering, 37(3), 496–502. doi:5829/ije.2024.37.03c.06.
- Zhao, H., Min, S., Fang, J., & Bian, S. (2025). AI-driven music composition: Melody generation using Recurrent Neural Networks and Variational Autoencoders. Alexandria Engineering Journal, 120, 258–270. doi:10.1016/j.aej.2025.02.013.
- Zhao, X., Liu, P., Mahmoudi, S., Garg, S., Kaddoum, G., & Hassan, M. M. (2024). DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection. Alexandria Engineering Journal, 108, 436–444. doi:10.1016/j.aej.2024.07.013.
- Kasimu, A., Zhou, W., Meng, Q., Wang, Y., Wang, Z., Zhang, Q., & Peng, Y. (2025). Performance evaluation of pretrained deep learning architectures for railway passenger ride quality classification. Alexandria Engineering Journal, 118, 194–207. doi:10.1016/j.aej.2025.01.007.
- Abbas, Z. K., & Al-Ani, A. A. (2022). Anomaly detection in surveillance videos based on H265 and deep learning. International Journal of Advanced Technology and Engineering Exploration, 9(92), 910–922. doi:10.19101/IJATEE.2021.875907.
- Hussain, A., Khan, S. U., Khan, N., Ullah, W., Alkhayyat, A., Alharbi, M., & Baik, S. W. (2024). Shots segmentation-based optimized dual-stream framework for robust human activity recognition in surveillance video. Alexandria Engineering Journal, 91, 632–647. doi:10.1016/j.aej.2023.11.017.
- Said Elsayed, M., Le-Khac, N.-A., Dev, S., & Jurcut, A. D. (2020). Network Anomaly Detection Using LSTM Based Autoencoder. Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, 37–45. doi:10.1145/3416013.3426457.
- Elmetwally, A., Eldeeb, R., & Elmougy, S. (2025). Deep learning based anomaly detection in real-time video. Multimedia Tools and Applications, 84(11), 9555–9571. doi:10.1007/s11042-024-19116-9.
- Tutar, H., Güneş, A., Zontul, M., & Aslan, Z. (2024). A Hybrid Approach to Improve the Video Anomaly Detection Performance of Pixel- and Frame-Based Techniques Using Machine Learning Algorithms. Computation, 12(2), 19. doi:10.3390/computation12020019.
- Ganagavalli, K., & Santhi, V. (2024). YOLO-based anomaly activity detection system for human behavior analysis and crime mitigation. Signal, Image and Video Processing, 18(Suppl 1), 417–427. doi:10.1007/s11760-024-03164-7.
- Jebur, S. A., Alzubaidi, L., Saihood, A., Hussein, K. A., Hoomod, H. K., & Gu, Y. (2025). A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos. International Journal of Intelligent Systems, 2025(1). Portico. doi:10.1155/int/1947582.
- Natha, P., & Rajeswari, P. R. (2024). Skin Cancer Detection using Machine Learning Classification Models. International Journal of Intelligent Systems and Applications in Engineering, 12(6s), 139–145.
- Moazzami Gudarzi, A. , & Ozgoli, H. A. (2024). Optimal Selection and Efficient Utilization of Particle Swarm Optimization Methods for Designing Renewable Energy Microgrids. Contributions of Science and Technology for Engineering, 1(2), 20-30. doi:10.22080/cste.2024.27781.1002.
- Dorrani, Z., Farsi, H., & Mohamadzadeh, S. (2023). Shadow Removal in Vehicle Detection Using ResUNet-a. Iranian Journal of Energy and Environment, 14(1), 87–95. doi:10.5829/ijee.2023.14.01.11.
- Dorrani, Z. (2024). Deep Learning for Line Road Detection in Smart Cars. Majlesi Journal of Telecommunication Devices, 13(2). doi:10.30486/MJTD.2024.1107681
- Zakaria, N. J., Shapiai, M. I., Ghani, R. A., Yassin, M. N. M., Ibrahim, M. Z., & Wahid, N. (2023). Lane Detection in Autonomous Vehicles: A Systematic Review. IEEE Access, 11(1), 3729–3765. doi:10.1109/ACCESS.2023.3234442.
- Elharrouss, O., Hmamouche, Y., Idrissi, A. K., El Khamlichi, B., & El Fallah-Seghrouchni, A. (2023). Refined edge detection with cascaded and high-resolution convolutional network. Pattern Recognition, 138(1), 109361. doi:10.1016/j.patcog.2023.109361.
- Burgsteiner, H., Kandlhofer, M., & Steinbauer, G. (2016). IRobot: Teaching the Basics of Artificial Intelligence in High Schools. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). doi:10.1609/aaai.v30i1.9864.
- Mousavimehr S. M., & Kavianpour, M. R. (2025). Estimating Groundwater Levels in Tehran Province Using Ensemble Learning Algorithms, Contributions of Science and Technology for Engineering, 2(1), 51-63. doi:22080/cste.2025.29082.1036.
|