تعداد نشریات | 31 |
تعداد شمارهها | 485 |
تعداد مقالات | 4,738 |
تعداد مشاهده مقاله | 7,372,486 |
تعداد دریافت فایل اصل مقاله | 5,504,752 |
Molecular Characterization of Cressa cretica L. Using SCoT and ISSR Markers | ||
Journal of Genetic Resources | ||
دوره 11، شماره 1، 2025، صفحه 126-131 اصل مقاله (1.44 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/jgr.2025.28944.1434 | ||
نویسندگان | ||
Mozhdeh Jahangir؛ Fatemeh Nasernakhaei* | ||
Department of Plant Production Engineering and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
تاریخ دریافت: 21 مهر 1403، تاریخ بازنگری: 24 اردیبهشت 1404، تاریخ پذیرش: 25 دی 1403 | ||
چکیده | ||
Cressa cretica L. (Convolvulaceae) is a halophytic species with remarkable adaptability to saline environments, holding significant ecological and economic value. In this study, we conducted a comprehensive assessment of genetic diversity and structure in thirteen accessions collected from the eastern and western sides of the Karun River in Ahvaz, Iran. Two types of molecular markers, start codon targeted (SCoT) and inter-simple sequence repeat (ISSR), were employed to detect genetic variation and patterns of differentiation between geographical groups. Ten SCoT primers produced 92 amplified fragments, 87.9% of which were polymorphic, while ten ISSR primers generated 114 fragments with 85.6% polymorphism. Most of the genetic variation was found within groups rather than between them, indicating low genetic differentiation. Although both UPGMA and PCoA analyses grouped the accessions into two main clusters, these clusters did not correspond clearly to their geographical origins. Bayesian model-based grouping revealed three genetic subgroups with SCoT data, while ISSR data supported two subgroups, suggesting a higher resolution of SCoT markers in detecting subtle genetic subdivisions. Although ISSR markers displayed higher average values for polymorphism information content, Nei's gene diversity, and Shannon’s index, the ability of SCoT markers to uncover finer genetic structures highlights their complementary role. These results indicate moderate differentiation with significant gene flow among accessions, likely influenced by both reproductive strategies and local environmental conditions. The combined use of both marker systems provided a more comprehensive picture of genetic variation in this salt-tolerant species. These findings provide valuable baseline information for future conservation efforts and sustainable utilization of C. cretica in saline ecosystems. | ||
کلیدواژهها | ||
Alkali weed؛ Genetic diversity؛ Genetic structure؛ Molecular markers؛ Polymorphism | ||
مراجع | ||
Abideen, Z., Qasim, M., Rizvi, R. F., Gul, B., Ansari, R., & Khan, M. A. (2015). Oilseed halophytes: a potential source of biodiesel using saline degraded lands. Biofuels, 6(5-6), 241-248. https://doi.org/10.1080/17597269.2015.1090812
Agha, F. (2009). Seasonal variation in productivity of Cressa cretica from coastal population along the arabian sea. Pakistan Journal of Botany, 41(6), 2883-2892. https://www.pakbs.org/pjbotnew/index.php
Akbari, M., Salehi, H., & Niazi, A. (2018). Evaluation of diversity based on morphological variabilities and ISSR molecular markers in Iranian Cynodon dactylon (L.) Pers. accessions to select and introduce cold-tolerant genotypes. Molecular Biotechnology, 60, 259-270. https://doi.org/10.1007/s12033-018-0068-5
Al-Snafi, A. E. (2016). The chemical constituents & therapeutic importance of Cressa cretica-A review. IOSR Journal of Pharmacy, 6(6), 39-46. https://www.iosrjournals.org/IOSR-PHR.html
Alvarez Cruz, N. S. (2013). Cressa cretica L. In G. H. Schmelzer & A. Gurib-Fakim (Eds.), PROTA 11(2): Medicinal plants/Plantes médicinales 2. PROTA.
Atapour, Y., Ghanbari, A., Estaji, A., & Haghjooyan, R. (2022). Evaluation of genetic diversity of twenty-eight sweet cherry genotypes by morphological traits & SCoT markers in the Northwest of Iran. Journal of Genetic Resources, 8(2), 138-146. https://doi.org/10.22080/jgr.2022.22815.1293
Austin, D. F. (2000). A revision of Cressa L. (Convolvulaceae). Botanical Journal of the Linnean Society, 133(1), 27-39. https://doi.org/10.1111/j.1095-8339.2000.tb01535.x
Chintaluri, P. G., Ganapathy Vilasam Sreekala, A., Gupta, K. K., Sivadasan, A., & Nathan, V. K. (2025). Network pharmacological evaluation of Cressa cretica L.-an integrated approach of modern & ancient pharmacology. Journal of Biomolecular Structure and Dynamics, 1-16. https://doi.org/10.1080/07391102.2025.2472403
Collard, B. C., & Mackill, D. J. (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27, 86-93. https://doi.org/10.1007/s11105-008-0060-5
Earl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output & implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
El-Alfy, T. S., Ammar, N. M., Al-Okbi, S. Y., Salama, M. M., Aly, H. F., & Amer, A. A. (2019). Cressa cretica L. growing in Egypt: phytochemical study & potential antioxidant & hepato-protective activities. Journal of Applied Pharmaceutical Science, 9(1), 046-057. https://doi.org/10.7324/JAPS.2019.S106
Etminan, A., Pour-Aboughadareh, A., Noori, A., Ahmadi-Rad, A., Shooshtari, L., Mahdavian, Z., & Yousefiazar-Khanian, M. (2018). Genetic relationships & diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnology and Biotechnological Equipment, 32(3), 610-617. https://doi.org/10.1080/13102818.2018.1447397
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Gemmill, C. E., & Grierson, E. R. (2021). Inter-simple sequence repeats (ISSR), microsatellite-primed genomic profiling using universal primers. Molecular Plant Taxonomy: Methods and Protocols, 249-262. https://doi.org/10.1007/978-1-0716-0997-2_14
Hadian, J., Karami, A., Azizi, A., & Khadivi-Khub, A. (2015). Ubiquitous genetic diversity among & within wild populations of Satureja rechingeri assessed with ISSR markers. Plant Systematics and Evolution, 301, 923-930. https://doi.org/10.1007/s00606-014-1126-5
Hussain, H., & Nisar, M. (2020). Assessment of plant genetic variations using molecular markers: a review. Journal of Applied Biology and Biotechnology, 8(5), 99-109. http://dx.doi.org/10.7324/JABB.2020.80514
Jahangir, M., & Nasernakhaei, F. (2020, January). Morphological variation of Cressa cretica L. in Ahvaz. 16th National Iranian Crop Science Congress, Ahvaz, Iran. https://doi.org/10.13140/RG.2.2.28084.19842
Joshi, A., Kanthaliya, B., Rajput, V., Minkina, T., & Arora, J. (2020). Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica & Cressa critica. Biologia Futura, 71, 301-312. https://doi.org/10.1007/s42977-020-00038-0
Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change & the option value of genetic diversity. Trends in Pant Science, 14(1), 51-58. https://doi.org/10.1016/j.tplants.2008.10.002
Kropf, M., Huppenberger, A. S., & Karrer, G. (2018). Genetic structuring & diversity patterns along rivers-local invasion history of Ambrosia artemisiifolia (Asteraceae) along the Danube River in Vienna (Austria) shows non‐linear pattern. Weed Research, 58(2), 131-140. https://doi.org/10.1111/wre.12284
Nagaraju, J., Reddy, K. D., Nagaraja, G. M., & Sethuraman, B. N. (2001). Comparison of multilocus RFLPs & PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 86(5), 588-597. https://doi.org/10.1046/j.1365-2540.2001.00861.x
Naz, N., Asghar, A., Basharat, S., Fatima, S., Hameed, M., Ahmad, M. S. A., ... & Ashraf, M. (2024). Phytoremediation through microstructural & functional alterations in alkali weed (Cressa cretica L.) in the hyperarid saline desert. International Journal of Phytoremediation, 26(6), 913-927. https://doi.org/10.1080/15226514.2023.2282044
Nazarzadeh, Z., Onsori, H., & Akrami, S. (2020). Genetic diversity of bread wheat (Triticum aestivum L.) genotypes using RAPD & ISSR molecular markers. Journal of Genetic Resources, 6(1), 69-76. https://doi.org/10.22080/jgr.2020.18262.1172
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
Ng, W. L., & Tan, S. G. (2015). Inter-simple sequence repeat (ISSR) markers: are we doing it right. ASM Science Journal, 9(1), 30-39. https://www.akademisains.gov.my/asmsj/
Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Pirasteh-Anosheh, H., Ranjbar, G., Akram, N. A., Ghafar, M. A., & Panico, A. (2023). Forage potential of several halophytic species grown on saline soil in arid environments. Environmental Research, 219, 114954. https://doi.org/10.1016/j.envres.2022.114954
Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107-112. https://doi.org/10.1007/s001220051046
Priyashree, S., Jha, S., & Pattanayak, S. P. (2010). A review on Cressa cretica Linn.: a halophytic plant. Pharmacognosy Reviews, (8), 161. http://dx.doi.org/10.4103/0973-7847.70910
Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.2 [Computer software]. Exeter Software.
Roldan-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., & De Loose, M. A. F. L. P. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6, 125-134. https://doi.org/10.1023/A:1009680614564
Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174. https://doi.org/10.3390/genes14010174
Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics, 393-430. https://www.annualreviews.org/content/journals/ecolsys
Tyagi, R., Sharma, V., Sureja, A. K., Das Munshi, A., Arya, L., Saha, D., & Verma, M. (2020). Genetic diversity and population structure detection in sponge gourd (Luffa cylindrica) using ISSR, SCoT and morphological markers. Physiology and Molecular Biology of Plants, 26, 119-131. https://doi.org/10.1007/s12298-019-00723-y
Weber, D. J., Ansari, R., Gul, B., & Khan, M. A. (2007). Potential of halophytes as source of edible oil. Journal of Arid Environments, 68(2), 315-321. http://dx.doi.org/10.1016/j.jaridenv.2006.05.010
Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183. https://doi.org/10.1006/geno.1994.1151 | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 3 |