- Hu, J., Zhou, T., Ma, S., Yang, D., Guo, M., & Huang, P. (2022). Rock mass classification prediction model using heuristic algorithms and support vector machines: a case study of Chambishi copper mine. Scientific Reports, 12(1), 928. doi:10.1038/s41598-022-05027-y.
- Yang, B., Zhao, W., & Duan, Y. (2022). Critical damage threshold of brittle rock failure based on Renormalization Group theory. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5), 135. doi:10.1007/s40948-022-00441-y.
- Cui, X., & Yan, E. chuan. (2020). Fuzzy C-Means Cluster Analysis Based on Variable Length String Genetic Algorithm for the Grouping of Rock Discontinuity Sets. KSCE Journal of Civil Engineering, 24(11), 3237–3246. doi:10.1007/s12205-020-2188-2.
- Xu, L. M., Chen, J. P., Wang, Q., & Zhou, F. J. (2013). Fuzzy C-means cluster analysis based on mutative scale chaos optimization algorithm for the grouping of discontinuity sets. Rock Mechanics and Rock Engineering, 46(1), 189–198. doi:10.1007/s00603-012-0244-z.
- Ye, J. (2017). A netting method for clustering-simplified neutrosophic information. Soft Computing, 21(24), 7571–7577. doi:10.1007/s00500-016-2310-z.
- Shanley, R. J., & Mahtab, M. A. (1976). Delineation and analysis of clusters in orientation data. Journal of the International Association for Mathematical Geology, 8(1), 9–23. doi:10.1007/BF01039681.
- Tokhmechi, B., Memarian, H., Moshiri, B., Rasouli, V., & Noubari, H. A. (2011). Investigating the validity of conventional joint set clustering methods. Engineering Geology, 118(3–4), 75–81. doi:10.1016/j.enggeo.2011.01.002.
- Zhou, W., & Maerz, N. H. (2002). Implementation of multivariate clustering methods for characterizing discontinuities data from scanlines and oriented boreholes. Computers & Geosciences, 28(7), 827–839. doi:10.1016/S0098-3004(01)00111-X.
- Hammah, R. E., & Curran, J. H. (1999). On distance measures for the fuzzy K-means algorithm for joint data. Rock Mechanics and Rock Engineering, 32(1), 1–27. doi:10.1007/s006030050041.
- Hammah, R. E., & Curran, J. H. (2000). Validity Measures for the Fuzzy Cluster Analysis of Orientations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1467–1472. doi:10.1109/34.895981.
- Jimenez, R. (2008). Fuzzy spectral clustering for identification of rock discontinuity sets. Rock Mechanics and Rock Engineering, 41(6), 929–939. doi:10.1007/s00603-007-0155-6.
- Jimenez-Rodriguez, R., & Sitar, N. (2006). A spectral method for clustering of rock discontinuity sets. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1052–1061. doi:10.1016/j.ijrmms.2006.02.003.
- Liu, J., Zhao, X. D., & Xu, Z. he. (2017). Identification of rock discontinuity sets based on a modified affinity propagation algorithm. International Journal of Rock Mechanics and Mining Sciences, 94, 32–42. doi:10.1016/j.ijrmms.2017.02.012.
- Li, Y., Wang, Q., Chen, J., Xu, L., & Song, S. (2015). K-means Algorithm Based on Particle Swarm Optimization for the Identification of Rock Discontinuity Sets. Rock Mechanics and Rock Engineering, 48(1), 375–385. doi:10.1007/s00603-014-0569-x.
- Ma, G. W., Xu, Z. H., Zhang, W., & Li, S. C. (2015). An enriched K-means clustering method for grouping fractures with meliorated initial centers. Arabian Journal of Geosciences, 8(4), 1881–1893. doi:10.1007/s12517-014-1379-x.
- Song, S., Wang, Q., Chen, J., Li, Y., Zhang, W., & Ruan, Y. (2017). Fuzzy C-means clustering analysis based on quantum particle swarm optimization algorithm for the grouping of rock discontinuity sets. KSCE Journal of Civil Engineering, 21(4), 1115–1122. doi:10.1007/s12205-016-1223-9.
- Song, T., Chen, J., Zhang, W., Xiang, L. J., & Yang, J. H. (2015). A method for multivariate parameter dominant partitioning of discontinuities of rock mass based on artificial bee colony algorithm. Rock Soil Mech 36: 861–868.
- Ding, Q., Huang, R., Wang, F., Chen, J., Wang, M., & Zhang, X. (2018). Multi-Parameter Dominant Grouping of Discontinuities in Rock Mass Using Improved ISODATA Algorithm. Mathematical Problems in Engineering, 2018(1), 5619404. doi:10.1155/2018/5619404.
- Shirazy, A., Hezarkhani, A., Shirazi, A., Khakmardan, S., & Rooki, R. (2021). K-Means Clustering and General Regression Neural Network Methods for Copper Mineralization probability in Char-Farsakh, Iran. Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey, 65(1), 79–92. doi:10.25288/tjb.1010636.
- Mikaeil, R., Haghshenas, S. S., Haghshenas, S. S., & Ataei, M. (2018). Performance prediction of circular saw machine using imperialist competitive algorithm and fuzzy clustering technique. Neural Computing and Applications, 29(6), 283–292. doi:10.1007/s00521-016-2557-4.
- Esmaeilzadeh, A., & Shahriar, K. (2019). Optimized fuzzy cmeans – fuzzy covariance – fuzzy maximum likelihood estimation clustering method based on deferential evolutionary optimization algorithm for identification of rock mass discontinuities sets. Periodica Polytechnica Civil Engineering, 63(2), 674–686. doi:10.3311/PPci.13885.
- Zheng, S., Jiang, A. N., Yang, X. R., & Luo, G. C. (2020). A New Reliability Rock Mass Classification Method Based on Least Squares Support Vector Machine Optimized by Bacterial Foraging Optimization Algorithm. Advances in Civil Engineering, 2020(1), 3897215. doi:10.1155/2020/3897215.
- Ruan, Y., Chen, J., Fan, Z., Wang, T., Mu, J., Huo, R., Huang, W., Liu, W., Li, Y., & Sun, Y. (2023). Application of K-PSO Clustering Algorithm and Game Theory in Rock Mass Quality Evaluation of Maji Hydropower Station. Applied Sciences (Switzerland), 13(14), 8467. doi:10.3390/app13148467.
- Ruan, Y., Liu, W., Wang, T., Chen, J., Zhou, X., & Sun, Y. (2023). Dominant Partitioning of Discontinuities of Rock Masses Based on DBSCAN Algorithm. Applied Sciences (Switzerland), 13(15), 8917. doi:10.3390/app13158917.
- Wang, R., Ni, Y., Zhang, L., & Gao, B. (2025). Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering. Deep Underground Science and Engineering, 4(1), 55–71. doi:10.1002/dug2.12082.
- Yong, R., Wang, H., Ye, J., Du, S., & Luo, Z. (2024). Neutrosophic genetic algorithm and its application in clustering analysis of rock discontinuity sets. Expert Systems with Applications, 245, 122973. doi:10.1016/j.eswa.2023.122973.
- Zarean, A., & Poormirzaee, R. (2016). Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm. In Journal of Mining and Environment 7(1), 67–79.
- Hezarkhani, A., & Williams-Jones, A. E. (1998). Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Economic Geology, 93(5), 651–670. doi:10.2113/gsecongeo.93.5.651.
- Calagari, A. A. (1997). Geochemical, stable isotope, noble gas and fluid inclusion studies of mineralization and alteration at Sungun porphyry copper deposit, East Azarbaidjan, Iran: Implications for genesis. PhD Thesis, The University of Manchester, Manchester, United Kingdom.
- Edwards, A. C. (Ed.). (2001). Mineral resource and ore reserve estimation - the AusIMM guide to good practice (monograph 23). Minerals Engineering, 14(9), II. doi:10.1016/s0892-6875(01)80033-9.
- Bagheryan, A. (2006). Copper concentration process in the Sungun copper complex (Internal report). National Iranian Copper Industries Company, Tabriz, Iran.
- Aggarwal, V., Gupta, V., Singh, P., Sharma, K., & Sharma, N. (2019). Detection of spatial outlier by using improved Z-score test. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, 2019-April, 788–790. doi:10.1109/icoei.2019.8862582.
- Wong, L. N. Y., & Liu, G. (2010). An improved K-means clustering method for the automatic grouping of discontinuity sets. 44th US Rock Mechanics Symposium - 5th US/Canada Rock Mechanics Symposium, 10, 27 June, 2010, Salt Lake City, United States.
- Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: An analysis and critique. Strategic Management Journal, 17(6), 441–458. doi:10.1002/(sici)1097-0266(199606)17:6<441::aid-smj819>3.0.co;2-g.
- Adolfsson, A., Ackerman, M., & Brownstein, N. C. (2016). To cluster, or not to cluster: How to answer the estion. TKDD, 17, 1-9.
- MacQueen, J. (1967). Multivariate observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistic sand Probability, 1, 281-297, Volume 1: Statistics, University of California Press, Berkeley, United States.
- Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4(1), 95–104. doi:10.1080/01969727408546059.
- Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203. doi:10.1016/0098-3004(84)90020-7.
- Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76(2), 60–68. doi:10.1177/003754970107600201.
- Wang, X., Gao, X.-Z., & Zenger, K. (2015). An Introduction to Harmony Search Optimization Method. Springer, Cham, Switzerland. doi:10.1007/978-3-319-08356-8.
- Haghshenas, S. S., Haghshenas, S. S., Geem, Z. W., Kim, T. H., Mikaeil, R., Pugliese, L., & Troncone, A. (2021). Application of harmony search algorithm to slope stability analysis. Land, 10(11). doi:10.3390/land10111250.
- Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. doi:10.1109/icnn.1995.488968.
- Kennedy, J. (1998). The behavior of particles. Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Germany. doi:10.1007/BFb0040809.
- Shen, J., Wang, C., Wang, R., Huang, F., Fan, C., & Xu, L. (2015). A Band Selection Method for Hyperspectral Image Classification based on improved Particle Swarm Optimization. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(4), 325–338. doi:10.14257/ijsip.2015.8.4.28.
- Gao, H., Yang, Y., Zhang, X., Li, C., Yang, Q., & Wang, Y. (2019). Dimension reduction for hyperspectral remote sensor data based on multi-objective particle swarm optimization algorithm and game theory. Sensors (Switzerland), 19(6). doi:10.3390/s19061327.
- Caliñski, T., & Harabasz, J. (1974). A Dendrite Method Foe Cluster Analysis. Communications in Statistics, 3(1), 1–27. doi:10.1080/03610927408827101.
- Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. doi:10.1109/TPAMI.1979.4766909.
- Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. doi:10.1016/0377-0427(87)90125-7
|