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Abstract. Recently, Gasimov and Yenilmez proposed an approach
for solving two kinds of fuzzy linear programming (FLP) problems.
Through the approach, each FLP problem is first defuzzified into an
equivalent crisp problem which is non-linear and even non-convex.
Then, the crisp problem is solved by the use of the modified subgra-
dient method. In this paper we will have another look at the earlier
defuzzification process developed by Gasimov and Yenilmez in view
of a perfectly acceptable remark in fuzzy contexts. Furthermore, it
is shown that if the modified defuzzification process is used to solve
FLP problems, some interesting results are appeared.
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1. INTRODUCTION

Since Gasimov and Yenilmez [6] investigated an approach for solving
fuzzy linear programming (FLP) problems, it has been used frequently
by a number of authors in various fields [5, 7]. Through Gasimov and
Yenilmez’s approach a FLP problem with fuzzy technological coefficients
and fuzzy right-hand-side numbers corresponds to a crisp problem using
the defuzzification process, known as the symmetric method of Bellman
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and Zadeh [1]. Then, the modified subgradient method is applied for
solving the obtained crisp problem.

Our main purpose of this paper is to present a revised formula for
the membership function of fuzzy constraints with respect to a perfectly
acceptable remark in fuzzy contexts. We will compare and show that this
revision has some advantages rather than the Gasimov and Yenilmez’s
definition from points of view of (i) The number of required iterations
to get the desired solution is reduced. (ii) The maximum satisfaction
degree of the fuzzy decision set, that is, the objective of NLP problem, λ,
reaches a more accurate optimum. (iii) The sequence {‖g(xk)‖}, which
evaluates how much constraints are violated, is controlled by a smaller
upper bound.

The organization of this paper is as follows. Section 2 is devoted
to recall a defuzzification process, known as the symmetric method of
Bellman and Zadeh [1]. Also the proposed revision of defuzzification
process is given in Section 2. The modified subgradient method and
fuzzy decisive set method are presented algorithmically in Section 3.
Finally, some comparative examples are provided in Section 4 to verify
the main assertion of this contribution.

2. FLP PROBLEM AND DEFUZZIFICATION PROCESS

In this section, we restrict our attention to the following FLP prob-
lem involving fuzzy technological coefficients and fuzzy right-hand-side
numbers.

(FLP) max
∑n

j=1 cjxj
s.t.

∑n
j=1 ãijxj ≤ b̃i, 1 ≤ i ≤ m,
xj ≥ 0,

where at least one xj > 0, for j = 1, . . . , n.
In the sequel, we shall state that all fuzzy numbers in (FLP) are

supposed to be described by linear membership functions. Hence, We
assume that ãij and b̃i are fuzzy numbers with the following membership
functions (for x ∈ <):

µaij (x) =


1, x < aij ,
1
dij

(aij + dij − x), aij ≤ x < aij + dij ,

0, aij + dij ≤ x,
(2.1)

µbi(x) =


1, x < bi,
1
pi

(bi + pi − x), bi ≤ x < bi + pi,

0, bi + pi ≤ x.
(2.2)
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In order to defuzzify (FLP), we can now proceed as follows. Firstly,
we shall obtain the lower and upper bounds of the optimal values which
are referred to as zl and zu, respectively.
Consider the four standard LP problems as follows:

(LP_1) z1 = max
∑n

j=1 cjxj
s.t.

∑n
j=1(aij + dij)xj ≤ bi, 1 ≤ i ≤ m,
xj ≥ 0,

(LP_2) z2 = max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj ≤ bi + pi, 1 ≤ i ≤ m,
xj ≥ 0,

(LP_3) z3 = max
∑n

j=1 cjxj
s.t.

∑n
j=1(aij + dij)xj ≤ bi + pi, 1 ≤ i ≤ m,
xj ≥ 0,

(LP_4) z4 = max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj ≤ bi, 1 ≤ i ≤ m,
xj ≥ 0.

In the case that all the above LP problems have the finite optimal values,
choosing the technological coefficient from the interval [aij , aij+dij ] and
the right-hand-side numbers from the interval [bi, bi+pi] guarantees that
the value of the objective function

∑n
j=1 cjxj is in the interval [zl, zu]

where zl = min{zi, i = 1, 2, 3, 4} and zu = max{zi, i = 1, 2, 3, 4}.
Based on the above arguments, we may define the fuzzy set of optimal
values G as follows:

µG(x) =


0,

∑n
j=1 cjxj < zl,∑n

j=1 cjxj−zl
zu−zl , zl ≤

∑n
j=1 cjxj < zu,

1, zu ≤
∑n

j=1 cjxj .

(2.3)

Now we are in a position to give two different characterizations of the
fuzzy set of the i-th constraint Ci. The first one is the Gasimov and
Yenilmez’s definition (GD) [3] and the second one is a new definition
that we referee to it as the revised definition (RD). The Gasimov and
Yenilmez’s definition for the fuzzy set of i-th constrain Ci is as

GD : µCi(x) =


0, bi <

∑n
j=1 aijxj ,

bi−
∑n

j=1 aijxj∑n
j=1 dijxj+pi

,
∑n

j=1 aijxj ≤ bi <
∑n

j=1(aij + dij)xj + pi,

1,
∑n

j=1(aij + dij)xj + pi ≤ bi.

Before attempting to present the revised definition (RD), we recall a
perfectly acceptable remark in fuzzy contexts. (See [1, 10]).
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Remark 1. A proper fuzzy membership function should be set
0 if the constraints are strongly violated in the crisp sense, and 1 if
they are very well satisfied in the crisp sense. Also it should increase
monotonously from 0 to 1.

As can be seen, (LP_1), (LP_2), (LP_3) and (LP_4) have the same
objective function, but their constraints are different. By shifting the
term P = (pi)1×m ≥ 0 in all constraints to the left-hand side, one gets

(A+D)x ≤ b,

Ax− P ≤ b,

(A+D)x− P ≤ b,

Ax ≤ b,

where x = (xi)n×1, b = (bi)1×m, A = (aij)m×n and D = (dij)m×n ≥ 0.
For any x ≥ 0, we define

b(x) = max{(A+D)x, Ax− P, (A+D)x− P, Ax}, (2.4)

b(x) = min{(A+D)x, Ax− P, (A+D)x− P, Ax}. (2.5)

Hence, by virtue of Remark 1 and (2.4)-(2.5), a fuzzy constraint Ci
should be characterized by

µCi(x) =


0, b < b(x),

∈ [0, 1], b(x) ≤ b ≤ b(x),

1, b(x) ≤ b.
(2.6)

One can easily verify that for any x ≥ 0,

b(x) = (A+D)x, (2.7)

b(x) = Ax− P. (2.8)

Consequently, by virtue of µCi(x) defined in (2.6) and (2.7)-(2.8), the
revised definition for a fuzzy constraint, Ci, may be defined by

RD : µCi(x) =


0, bi <

∑n
j=1 aijxj − pi,

bi−
∑n

j=1 aijxj+pi∑n
j=1 dijxj+pi

,
∑n

j=1 aijxj − pi ≤ bi <
∑n

j=1(aij + dij)xj ,

1,
∑n

j=1(aij + dij)xj ≤ bi.

Now, by making use of the definition of the fuzzy decision proposed
by Bellman and Zadeh [1], we can characterize the fuzzy decision set D
as follows:

D = G ∩ {
m⋂
i=1

Ci}.
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In this regards, an optimum solution can be selected as the design for
which one may get the maximum of the membership function. That is,

µD(x∗) = max
x≥0
{µD(x)}, (2.9)

where µD(x) = minx≥0{µG(x), µC1(x), . . . , µCm(x)}. (See [1, 10]).
Suppose that λ = µD(x). Therefore, the optimization problem (2.9) can
be restated in the form of

(D-SET) max λ

s.t. µG(x) ≥ λ,

µCi(x) ≥ λ, 1 ≤ i ≤ m,
x ≥ 0,

0 ≤ λ ≤ 1.

Putting together the definition of objective function G in (2.3), the
two different definitions of constraints Ci labeled by GD and RD and the
optimization problem (D-SET), one can defuzzify (FLP) into the two
following non-convex optimization problems:

(P_GD) max λ

s.t. λ(zu − zl)− Σn
j=1cjxj + zl ≤ 0,

Σn
j=1(aij + λdij)xj + λpi − bi ≤ 0, 1 ≤ i ≤ m,

x ≥ 0,

0 ≤ λ ≤ 1,

and

(P_RD) max λ

s.t. λ(zu − zl)− Σn
j=1cjxj + zl ≤ 0,

Σn
j=1(aij + λdij)xj + λpi − pi − bi ≤ 0, 1 ≤ i ≤ m,

x ≥ 0,

0 ≤ λ ≤ 1,

Needless to say that the non-convexity of (P_GD) and (P_RD) is due to
the presence of λxj in their constraints.

3. TWO METHODS FOR SOLVING NON-CONVEX
OPTIMIZATION PROBLEMS

Let us emphasize that this section will not contain all definitions
and theorems which are required for implementing both the well-known
methods: the modified subgradient method [2] and the fuzzy decisive
set method [8]. The interested reader is referred to [2, 3] and [8].



322 B. Farhadinia

In the modified subgradient algorithm instead of focussing on the pri-
mal problem, it focuses on the dual problem obtained with respect to the
sharp Lagrangian. Let us consider the following primal mathematical
programming problem:

(P_I) minimize f(x) over all x ∈ S satisfying g(x) = 0,

where S is a compact subset of <n, and both functions f : <n −→ <
and g : <n −→ <m are continuous. Let <+, ‖.‖ and 〈., .〉 be the set of
nonnegative real numbers, the Euclidean norm and the Euclidean inner
product on <m, respectively. The augmented Lagrangian L : <n×<m×
<+ −→ < associated with (P_I) is defined in the form of

L(x, u, c) = f(x) + c‖g(x)‖ − 〈u, g(x)〉, (3.1)

where x ∈ <n, u ∈ <m and c ∈ <+.
The dual function H : <m ×<+ −→ < is defined in the form of

H(u, c) = min
x∈S
{f(x) + c‖g(x)‖ − 〈u, g(x)〉}. (3.2)

By virtue of (11), we define the dual problem of (P_I) by

(P_II) minimize H(u, c) over all (u, c) ∈ <m ×<+.

Theorems 1,2,3 and 4 in [3] show that zero duality gap and saddle
point properties hold. Theorem 5 in [3] which is restated below is used
to define a stopping criteria for the modified subgradient algorithm.

Theorem 1. Suppose that (P_I) and (P_II) have a finite solution
and assume that for some (ū, c̄) ∈ <m ×<+, and x̄ ∈ S,

min
x∈S

L(x, ū, c̄) = f(x̄) + c̄‖g(x̄)‖ − 〈ū, g(x̄)〉.

Then, x̄ is a solution to (P_I) and (ū, c̄) is a solution to (P_II) if and
only if

g(x̄) = 0.

We now outline the modified subgradient algorithm as follows.

Modified Subgradient Algorithm

Initialization Step. Choose (u0, c0) with c0 ≥ 0. Set k = 0.

Main Step. Given (uk, ck):

Step 1. Solve the following subproblem:

min
x∈S
{f(x) + ck‖g(x)‖ − 〈uk, g(x)〉}.
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Let xk be a solution. If g(xk) = 0, then stop and by Theorem 1

(uk, ck) is a solution of (P_II) and xk is solution of (P_I).

Step 2. Set

uk+1 = uk − skg(xk),

ck+1 = ck + (sk + εk)‖g(xk)‖,

where sk, εk > 0. Set k = k + 1 and repeat Main Step.

The convergence results of the modified subgradient algorithm are given
in [6].

Here, we outline another algorithm known as the fuzzy decisive set
method [8] and is implemented for solving problems in the form of

max{λ| G(x, λ) = 0 and x ≥ 0, 0 ≤ λ ≤ 1}.

Fuzzy Decisive Set Algorithm

Initialization Step. Set k = 0. Let λ0 = 1. If there exists a set which
satisfies G(x, λ0) = 0 and x ≥ 0 then, λ∗ = λ0. If this is not the case,
set λL0 = 0 and λR0 = 1 and go to Main Step.

Main Step. Set k = k + 1, and let λk =
λLk−1+λRk−1

2 .

If G(x, λk) = 0 does not hold for a x ≥ 0, then set λLk = λk and

λRk = λRk−1.

If G(x, λk) = 0 does hold for a x ≥ 0, then set λRk = λk and λLk = λLk−1.

Set k = k + 1. If | λk+1 − λk |< ε, where ε > 0 is a small
constant, then stop and output λ∗ = λk+1.

4. COMPARISON RESULTS

In order to apply the modified subgradient algorithm for solving
(P_GD) and (P_RD), they should be transformed into the (P_I) form.
Hence, by the use of slack variables qri , for r = 1, 2, i = 0, 1, . . . ,m, and
the relation maxλ = −min(−λ), problems (P_GD) and (P_RD) may be
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restated as

((P_GD)) max λ = −min (−λ)

s.t. g1
0(x, λ, q1

0) = λ(zu − zl)−
n∑
j=1

cjxj + zl + q1
0 = 0,

g1
i (x, λ, q

1
i ) =

n∑
j=1

(aij + λdij)xj + λpi − bi + q1
i = 0,

1 ≤ i ≤ m,
x ≥ 0, q1

0, q
1
i ≥ 0, 0 ≤ λ ≤ 1,

and

((P_RD)) max λ = −min (−λ)

s.t. g2
0(x, λ, q2

0) = λ(zu − zl)−
n∑
j=1

cjxj + zl + q2
0 = 0,

g2
i (x, λ, q

2
i ) =

n∑
j=1

(aij + λdij)xj + λpi − pi − bi + q2
i = 0,

1 ≤ i ≤ m,
x ≥ 0, q2

0, q
2
i ≥ 0, 0 ≤ λ ≤ 1,

where

S1 = {(x, λ, q1) | x = (x1, . . . , xn), q1 = (q1
0, q

1
1, . . . , q

1
m), xj ≥ 0, q1

i ≥ 0, 0 ≤ λ ≤ 1},

S2 = {(x, λ, q2) | x = (x1, . . . , xn), q2 = (q2
0, q

2
1, . . . , q

2
m), xj ≥ 0, q2

i ≥ 0, 0 ≤ λ ≤ 1}.

In what follows, we will apply the modified subgradient algorithm
in accordance with the Gasimov and Yenilmez’s definition GD and the
revised definition RD for a fuzzy constraint to some test problems.
For the comparison of the results obtained by the use of the Gasimov
and Yenilmez’s definition GD and the revised definition RD, we solve the
(FLP) given in [3] with respect to the cases in which (pi) = [p1, p2]> are,
but may not be limited to,

Case 1. (pi) = [2.9, 3.9]>,
Case 2. (pi) = [8, 10]>.

Now, consider the following (FLP) discussed in [3]

max x1 + x2

s.t. 1̃x1 + 2̃x2 ≤ 3̃
2̃x1 + 3̃x2 ≤ 4̃

x1, x2 ≥ 0,
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where fuzzy parameters 1̃ = L(1, 1), 2̃ = L(2, 1), 3̃ = L(3, 2), b̃1 = 3̃ =

L(3, p1) and b̃2 = 4̃ = L(4, p2) are taken as defined in [9]. That is,

(aij) =

[
1 2
2 3

]
, (dij) =

[
1 1
2 2

]
=⇒ (aij + dij) =

[
2 3
4 5

]
,

(bi) =

[
3
4

]
, (pi) =

[
p1

p2

]
=⇒ (bi + pi) =

[
3 + p1

4 + p2

]
.

For more convenience, we use the following notations to interpret the
results which have been reported in Tables 1-4.

• k is the number of iteration,
• (uk, ck) is a vector of Lagrange multipliers at k-th iteration,
• xk is a minimizer of Lagrange function L(x, uk, ck) over x ∈
Sr, r = 1, 2,
• H̄ is the upper bound for the values of dual function,
• sk is the stepsize parameter calculated at the k-th iteration by

the formula sk = H̄−H(uk,ck)
5‖g(xk)‖2 ,

• εk = 0.95 sk.

We have taken ‖g(xk)‖ ≤ 10−5, as the stopping criteria in each example.

Example 1. (Case 1.) Let

(pi) =

[
2.9
3.9

]
=⇒ (bi + pi) =

[
5.9
7.9

]
.

For solving (FLP) in this case, we must solve the two subproblems
(LP_1) and (LP_2) which are expressed by the use of (2.7) and (2.8) as
follows:

z1 = max x1 + x2 z2 = max x1 + x2

s.t. 2x1 + 3x2 ≤ 3, s.t. x1 + 2x2 ≤ 5.9,
4x1 + 5x2 ≤ 4, 2x1 + 3x2 ≤ 7.9,

x1, x2 ≥ 0, x1, x2 ≥ 0.

The optimal solutions are

z∗1 = 1, z∗2 = 3.95,
(x∗1, x

∗
2) = (1, 0), (x∗1, x

∗
2) = (3.95, 0).
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Now, bearing the solution of the latter subproblems in mind, we establish
problems ((P_GD)) and ((P_RD)) in the forms of

((P_GD)) max λ

s.t. −x1 − x2 + 2.95λ+ 1 + q1
0 = 0,

(1 + λ)x1 + (2 + λ)x2 + 2.9λ− 3 + q1
1 = 0,

(2 + 2λ)x1 + (3 + 2λ)x2 + 3.9λ− 4 + q1
2 = 0,

1 ≤ x1 ≤ 3.95, 0 ≤ x2 ≤ 0, 0 ≤ λ ≤ 1,

and

((P_RD)) max λ

s.t. −x1 − x2 + 2.95λ+ 1 + q2
0 = 0,

(1 + λ)x1 + (2 + λ)x2 + 2.9λ− 5.9 + q2
1 = 0,

(2 + 2λ)x1 + (3 + 2λ)x2 + 3.9λ− 7.9 + q2
2 = 0,

1 ≤ x1 ≤ 3.95, 0 ≤ x2 ≤ 0, 0 ≤ λ ≤ 1.

We have solved ((P_GD)) and ((P_RD)) firstly by using the fuzzy deci-
sive set method and secondly by using the modified subgradient method.

• By the use of the fuzzy decisive set method, the solution of both
problems ((P_GD)) and ((P_RD)) are obtained at the twenty
first iterations, but with different optimal values λ20((P_GD)) =
0.1574 and λ20((P_RD)) = 0.4142.
• The results obtained by the use of the modified subgradient

method are illustrated in Table 1 and Table 2.

Table 1. The results of using the modified subgradient method for solving ((P_GD))

k uk
0 uk

1 uk
2 ck xk

1 xk
2 λ H Hk ‖g(xk)‖ sk

1 0 0 0 0 1 0 1 0 -1 5.2462 0.0073
2 -0.0214 -0.0138 -0.0283 0.0743 1 0 1 0 -0.4100 5.2462 0.0029
3 -0.0302 -0.0195 -0.0400 0.1048 1 0 0.5102 0 -0.2345 1.8129 0.0142

4 -0.0517 -0.0193 -0.0544 0.1553 1.4635 0 0.1571 0 − 5.2× 10−6 −

Table 2. The results of using the modified subgradient method for solving ((P_RD))

k uk
0 uk

1 uk
2 ck xk

1 xk
2 λ H Hk ‖g(xk)‖ sk

1 0 0 0 0 1 0 1 0 -1 3.1149 0.0206
2 -0.0608 -0.0206 0 0.1252 0.1257 0 1 0 -0.4800 2.9224 0.0112

3 -0.0910 0.0152 -0.1159 0.1893 2.2219 0 0.4142 0 − 1.3× 10−6 −
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Once again remember that problems ((P_GD)) and ((P_RD)) have
been generated according to the Gasimov and Yenilmez’s definition GD

and the revised definition RD for a fuzzy constraint, respectively.

Discussion. By comparing the results reported in Table 1 and Table
2, the following observations are evident: (i) The number of iterations
for solving ((P_RD)), k = 3, is less than one for solving ((P_GD)),
k = 4. (ii) The satisfaction level of constraints in the problem ((P_RD))

is more desirable than the counterpart in ((P_GD)), because ‖g(xk)‖ =
1.3× 10−6 for ((P_RD)) is less than ‖g(xk)‖ = 5.2× 10−6 for ((P_GD)).
(iii) The maximum satisfaction degree of fuzzy decision set, that is, the
optimum of ((P_RD)), λ = 0.4142, has been more improved rather than
the counterpart of ((P_GD)), λ = 0.1571.

We note that all the above observations are in agreement with the
results of the next experiment.

By the same manner as described in Example 1, we have examined
the next example and consequently the results are summarized in Table
3 and Table 4.

Example 2. (Case 2.) Let

(pi) =

[
8
10

]
=⇒ (bi + pi) =

[
11
14

]
.

We have solved ((P_GD)) and ((P_RD)) firstly by using the fuzzy deci-
sive set method and secondly by using the modified subgradient method.

• By the use of the fuzzy decisive set method, the solution of prob-
lems ((P_GD)) and ((P_RD)) are obtained at the twenty four
first and at the sixteen first iterations, respectively, while optimal
values are λ24((P_GD)) = 0.0801 and λ16((P_RD)) = 0.4143.
• The results obtained by the use of the modified subgradient

method are illustrated in Table 3 and Table 4.

Table 3. The results of using the modified subgradient method for solving ((P_GD))

k uk
0 uk

1 uk
2 ck xk

1 xk
2 λ H Hk ‖g(xk)‖ sk

1 0 0 0 0 1 0 1 0 -1 13.6015 0.0011
2 -0.0065 0.0076 -0.0108 0.0287 1 0 1 0 -0.4100 13.6015 0.0004
3 -0.0091 -0.0107 -0.0152 0.0404 1 0 1 0 -0.1681 13.6015 0.0002
4 -0.0102 -0.0119 -0.0176 0.0452 1 0 0.2755 0 -0.1328 2.1600 0.0057
5 -0.0196 -0.0147 -0.0245 0.0692 1 0 0.1900 0 -0.8131 1.2100 0.0111

6 -0.0323 -0.0115 -0.0276 0.0954 1.4807 0 0.0801 0 − 1.4× 10−6 −
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Table 4. The results of using the modified subgradient method for solving ((P_RD))

k uk
0 uk

1 uk
2 ck xk

1 xk
2 λ H Hk ‖g(xk)‖ sk

1 0 0 0 0 1 0 1 0 -1 6.0828 0.0054

2 -0.0324 0.0054 0 0.0641 8.4852 0 0.4143 0 -0.4420 0.2× 10−6 −

5. CONCLUSIONS

In this article we have suggested a revised formula for the member-
ship function of fuzzy constraints involved in fuzzy linear programming
problems with fuzzy technological coefficients and fuzzy right-hand side.
Comparing the results obtained based on the Gasimov and Yenilmez’s
formula and the revised formula indicates that the proposed formula
has some advantages such as: the number of required iterations to get
the desired solution is reduced; the maximum satisfaction degree of the
fuzzy decision set reaches a more accurate optimum; and the sequence
which evaluates how much constraints are violated, is controlled by a
smaller upper bound.
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