- Nematzadeh, M., Nazari, A., Tayebi, M. Post-Fire Impact Behavior and Durability of Steel Fiber-Reinforced Concrete Containing Blended Cement–Zeolite and Recycled Nylon Granules as Partial Aggregate Replacement. Archives of Civil and Mechanical Engineering, 2022; 22 (1). doi:10.1007/s43452-021-00324-1.
- Tayebi, M., Nematzadeh, M. Post-Fire Flexural Performance and Microstructure of Steel Fiber-Reinforced Concrete with Recycled Nylon Granules and Zeolite Substitution. Structures, 2021; 33: 2301–2316. doi:10.1016/j.istruc.2021.05.080.
- Ziamiavaghi, B., Toufigh, V. Fracture Toughness Evaluation of Ground Granulated Blast Furnace Slag Concrete Using Experimental Study and Machine Learning Techniques. Engineering Fracture Mechanics, 2023; 291: 109577. doi:10.1016/j.engfracmech.2023.109577.
- Jafarzadeh, H., Nematzadeh, M. Evaluation of Post-Heating Flexural Behavior of Steel Fiber-Reinforced High-Strength Concrete Beams Reinforced with FRP Bars: Experimental and Analytical Results. Engineering Structures, 2020; 225: 111292. doi:10.1016/j.engstruct.2020.111292.
- Juki, M. I., Awang, M., Annas, M. M. K., Boon, K. H., Othman, N., Kadir, A. A., Roslan, M. A., Khalid, F. S. Relationship between Compressive, Splitting Tensile and Flexural Strength of Concrete Containing Granulated Waste Polyethylene Terephthalate (PET) Bottles as Fine Aggregate. Advanced Materials Research, 2013; 795: 356–359. doi:10.4028/www.scientific.net/AMR.795.356.
- Mohammed, A. A. Flexural Behavior and Analysis of Reinforced Concrete Beams Made of Recycled PET Waste Concrete. Construction and Building Materials, 2017; 155: 593–604. doi:10.1016/j.conbuildmat.2017.08.096.
- Bažant, Z. P., Becq-Giraudon, E. Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard. Cement and Concrete Research, 2002; 32 (4): 529–556. doi:10.1016/S0008-8846(01)00723-2.
- Comité Euro-International du Béton (CEB), Fédération Internationale de la Précontrainte (FIP). CEB-FIP model code 1990: design code. Lausanne (CH): Comité Euro-International du Béton (CEB); 1993.
- Uomoto, T., Ishibashi, T., Nobuta, Y., Satoh, T., Kawano, H., Takewaka, K., et al. Standard specifications for concrete structures—2007. Tokyo (JP): Japan Society of Civil Engineers; 2008.
- Paul, S., Das, P., Kashem, A., Islam, N. Sustainable of Rice Husk Ash Concrete Compressive Strength Prediction Utilizing Artificial Intelligence Techniques. Asian Journal of Civil Engineering, 2024; 25 (2): 1349–1364. doi:10.1007/s42107-023-00847-3.
- Nematzadeh, M., Mousavimehr, M., Shayanfar, J., Omidalizadeh, M. Eccentric Compressive Behavior of Steel Fiber-Reinforced RC Columns Strengthened with CFRP Wraps: Experimental Investigation and Analytical Modeling. Engineering Structures, 2021; 226: 111389. doi:10.1016/j.engstruct.2020.111389.
- Shirvani, M. A., Khodaparast, A., Herozi, M. R., Mousavi, R., Fallah-Valukolaee, S., Ghorbanzadeh, A., Nematzadeh, M. Pre- and Post-Heating Mechanical Properties of Concrete Containing Recycled Fine Aggregate as Partial Replacement of Natural Sand and Nano-Silica as Partial Replacement of Cement: Experiments and Predictions. Archives of Civil and Mechanical Engineering, 2023; 23 (4). doi:10.1007/s43452-023-00760-1.
- Parsa-Sharif, M., Nematzadeh, M., Bahrami, A. Post-Fire Load-Reversed Push-out Performance of Normal and Lightweight Concrete-Filled Steel Tube Columns: Experiments and Predictions. Structures, 2023; 51: 1414–1437. doi:10.1016/j.istruc.2023.03.091.
- Nemati, M., Nematzadeh, M., Rahimi, S. Effect of Fresh Concrete Compression Technique on Pre- and Post-Heating Compressive Behavior of Steel Fiber-Reinforced Concrete: Experiments and RSM-Based Optimization. Construction and Building Materials, 2023; 400: 132786. doi:10.1016/j.conbuildmat.2023.132786.
- Hammoudi, A., Moussaceb, K., Belebchouche, C., Dahmoune, F. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Prediction in Compressive Strength of Recycled Concrete Aggregates. Construction and Building Materials, 2019; 209: 425–436. doi:10.1016/j.conbuildmat.2019.03.119.
- Hu, T., Zhang, H., Zhou, J. Machine Learning-Based Model for Recognizing the Failure Modes of FRP-Strengthened RC Beams in Flexure. Case Studies in Construction Materials, 2023; 18: 2076. doi:10.1016/j.cscm.2023.e02076.
- Nematzadeh, M., Shahmansouri, A. A., Fakoor, M. Post-Fire Compressive Strength of Recycled PET Aggregate Concrete Reinforced with Steel Fibers: Optimization and Prediction via RSM and GEP. Construction and Building Materials, 2020; 252: 119057. doi:10.1016/j.conbuildmat.2020.119057.
- Tajeri, S., Sadrossadat, E., Bazaz, J. B. Indirect Estimation of the Ultimate Bearing Capacity of Shallow Foundations Resting on Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 2015; 80: 107–117. doi:10.1016/j.ijrmms.2015.09.015.
- Rostami, M. F., Sadrossadat, E., Ghorbani, B., Kazemi, S. M. New Empirical Formulations for Indirect Estimation of Peak-Confined Compressive Strength and Strain of Circular RC Columns Using LGP Method. Engineering with Computers, 2018; 34 (4): 865–880. doi:10.1007/s00366-018-0577-7.
- Alavi, A. H., Aminian, P., Gandomi, A. H., Esmaeili, M. A. Genetic-Based Modeling of Uplift Capacity of Suction Caissons. Expert Systems with Applications, 2011; 38 (10): 12608–12618. doi:10.1016/j.eswa.2011.04.049.
- Ashrafian, A., Shahmansouri, A. A., Akbarzadeh Bengar, H., Behnood, A. Post-Fire Behavior Evaluation of Concrete Mixtures Containing Natural Zeolite Using a Novel Metaheuristic-Based Machine Learning Method. Archives of Civil and Mechanical Engineering, 2022; 22 (2). doi:10.1007/s43452-022-00415-7.
- Li, Z., Gao, Y., Zhu, Z., Tian, W. Data-Guided for Discovering High-Strength, Cost-Effective, and Low-Carbon Rice Husk Ash Concrete. Journal of CO2 Utilization, 2024; 83: 102786. doi:10.1016/j.jcou.2024.102786.
- Hrstka, O., Kučerová, A., Lepš, M., Zeman, J. A Competitive Comparison of Different Types of Evolutionary Algorithms. Computers and Structures, 2003; 81 (18–19): 1979–1990. doi:10.1016/S0045-7949(03)00217-7.
- Koza, J. R., Poli, R. Chapter 5, Genetic programming. In: Ghosh A, Tsutsui S, editors. Advances in evolutionary computing. Berlin: Springer; 2003.
- Gandomi, A. H., Alavi, A. H., Sahab, M. G., Arjmandi, P. Formulation of Elastic Modulus of Concrete Using Linear Genetic Programming. Journal of Mechanical Science and Technology, 2010; 24 (6): 1273–1278. doi:10.1007/s12206-010-0330-7.
- Chen, L., Wang, Z., Khan, A. A., Khan, M., Javed, M. F., Alaskar, A., Eldin, S. M. Development of Predictive Models for Sustainable Concrete via Genetic Programming-Based Algorithms. Journal of Materials Research and Technology, 2023; 24: 6391–6410. doi:10.1016/j.jmrt.2023.04.180.
- Alaskar, A., Alfalah, G., Althoey, F., Abuhussain, M. A., Javed, M. F., Deifalla, A. F., Ghamry, N. A. Comparative Study of Genetic Programming-Based Algorithms for Predicting the Compressive Strength of Concrete at Elevated Temperature. Case Studies in Construction Materials, 2023; 18: 2199. doi:10.1016/j.cscm.2023.e02199.
- Gandomi, A. H., Mohammadzadeh S., D., Pérez-Ordóñez, J. L., Alavi, A. H. Linear Genetic Programming for Shear Strength Prediction of Reinforced Concrete Beams without Stirrups. Applied Soft Computing Journal, 2014; 19: 112–120. doi:10.1016/j.asoc.2014.02.007.
- Nikbin, I., Rahimi R., S., Allahyari, H. A New Empirical Formula for Prediction of Fracture Energy of Concrete Based on the Artificial Neural Network. Engineering Fracture Mechanics, 2017; 186: 466–482. doi:10.1016/j.engfracmech.2017.11.010.
- Smith, G. N. Probability and statistics in civil engineering. Glasgow (UK): Collins Professional and Technical Books; 1986.
- Francone, F. Discipulus Lite™ owner’s manual. Version 4.0. Bozeman (MT): Register Machine Learning Technologies; 2004.
|