تعداد نشریات | 31 |
تعداد شمارهها | 499 |
تعداد مقالات | 4,850 |
تعداد مشاهده مقاله | 7,491,434 |
تعداد دریافت فایل اصل مقاله | 5,593,187 |
Analysis of Panoramic Dental Images for Dental Symptom Differentiation based on Deep Learning | ||
Future Research on AI and IoT | ||
مقاله 1، دوره 1، شماره 1، شهریور 2025، صفحه 1-9 اصل مقاله (609.88 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/frai.2025.29272.1013 | ||
نویسندگان | ||
Hatef Hosseinpour1؛ Jamal Ghasemi* 2؛ Farida Abesi3 | ||
1Department of Engineering and Technology, University of Mazandaran, Iran, | ||
2Faculty of Engineering & Technology, University of Mazandaran | ||
3Department of Oral and Maxillofacial Radiology, Babol University of Medical Sciences, Babol, Iran | ||
تاریخ دریافت: 28 اردیبهشت 1404، تاریخ بازنگری: 12 خرداد 1404، تاریخ پذیرش: 13 خرداد 1404 | ||
چکیده | ||
This research presents a hierarchical approach using deep learning methods to categorize panoramic dental images and identify various dental conditions. The images were initially preprocessed, during which the areas of interest were cropped and labeled meticulously. During the initial stage, a pre-trained deep learning model was utilized to differentiate between images with caries and those without caries. Afterwards, in the second stage, the images without caries were classified into healthy and amalgam-filled categories. Following its preparation, the dataset was preprocessed to a great level of accuracy, after which a number of models were tested and compared. Among those under test, DenseNet121 performed better in the initial stage of caries detection, with a total accuracy rate of 83.95%. Also, in the subsequent stage, EfficientNet-B4 performed best in the detection of amalgam fillings and differentiating them from healthy dentition, with an accuracy rate of 98.28%. This research shows that hierarchical methods, when integrated with deep learning models, can yield accurate and trustworthy outcomes in dental image assessment. Moreover, the application of various deep neural network structures is very helpful to enhance classification precision. The results indicate that the suggested method shows significant potential for the automatic detection of dental abnormalities, such as caries and amalgam fillings, thus serving as a complementary tool in clinical diagnostic procedures. In summary, this study presents an efficient and scalable solution for the analysis of complex dental images, which can be integrated into artificial intelligence-based healthcare systems. | ||
کلیدواژهها | ||
Deep learning؛ panoramic images؛ caries؛ healthcare | ||
مراجع | ||
[1] Luo, S.-C., Wei, S.-M., Luo, X.-T., Yang, Q.-Q., Wong, K.-H., Cheung, P. C., & Zhang, B.-B. (2024). How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. npj Biofilms and Microbiomes, 10(1), 14. doi.org/10.1038/s41522-024-00488-7
[2] Radha, R., Raghavendra, B., Subhash, B., Rajan, J., & Narasimhadhan, A. (2023). Machine learning techniques for periodontitis and dental caries detection: A narrative review. International journal of medical informatics, 178, 105170. doi.org/10.1016/j.ijmedinf.2023.105170
[3] Akhter, M. N., Hussain, S. S., Riaz, N., & Zulfiqar, R. (2023). Using Technological Diagnostic Tools to Find Early Caries: A Systematic Review. Dinkum Journal of Medical Innovations, 2(07), 271-283. Available on: www.researchgate.net
[4] Chauhan, R. B., Shah, T. V., Shah, D. H., Gohil, T. J., Oza, A. D., Jajal, B., & Saxena, K. K. (2023). An overview of image processing for dental diagnosis. Innovation and Emerging Technologies, 10, 2330001.doi.org/10.1142/S2737599423300015
[5] Walsh, T., Macey, R., Ricketts, D., Carrasco Labra, A., Worthington, H., Sutton, A. J., Freeman, S., Glenny, A. M., Riley, P., Clarkson, J., & Cerullo, E. (2022). Enamel Caries Detection and Diagnosis: An Analysis of Systematic Reviews. Journal of Dental Research, 101(3),261-269. doi.org/10.1177/00220345211042795
[6] Zhu, J., Chen, Z., Zhao, J., Yu, Y., Li, X., Shi, K., Zhang, F., Yu, F., Shi, K., & Sun, Z. (2023). Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study. BMC Oral Health, 23(1), 358. doi.org/10.1186/s12903-023-03027-6
[7] Kühnisch, J., Meyer, O., Hesenius, M., Hickel, R., & Gruhn, V. (2021). Caries Detection on Intraoral Images Using Artificial Intelligence. Journal of Dental Research, 101, 158 - 165. doi.org/10.1177/00220345211032524
[8] Fawaz, P., El Sayegh, P., & Vannet, B. V. (2023). What is the current state of artificial intelligence applications in dentistry and orthodontics? Journal of Stomatology, Oral and Maxillofacial Surgery, 124(5), 101524. doi.org/10.1016/j.jormas.2023.101524
[9] Yoon, K., Jeong, H.-M., Kim, J.-W., Park, J.-H., & Choi, J. (2024). AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation. Journal of Dentistry, 141, 104821. doi.org/10.1016/j.jdent.2023.104821
[10] Qayyum, A., Tahir, A., Butt, M. A., Luke, A., Abbas, H. T., Qadir, J., Arshad, K., Assaleh, K., Imran, M. A., & Abbasi, Q. H. (2023). Dental caries detection using a semi-supervised learning approach. Scientific Reports, 13(1), 749. doi.org/10.1038/s41598-023-27808-9
[11] Chen, I. D. S., Yang, C.-M., Chen, M.-J., Chen, M.-C., Weng, R.-M., & Yeh, C.-H. (2023). Deep learning-based recognition of periodontitis and dental caries in dental x-ray images. Bioengineering, 10(8), 911. doi.org/10.3390/bioengineering10080911
[12] Batra, A. M., & Reche, A. (2023). A new era of dental care: harnessing artificial intelligence for better diagnosis and treatment. Cureus, 15(11). doi.org/10.7759/cureus.49319
[13] Anil, S., Porwal, P., & Porwal, A. (2023). Transforming dental caries diagnosis through artificial intelligence-based techniques. Cureus, 15(7).doi.org/10.7759/cureus.41694
[14] Huang, C., Wang, J., Wang, S., & Zhang, Y. (2023). A review of deep learning in dentistry. Neurocomputing, 554, 126629. doi.org/10.1016/j.neucom.2023.126629
[15] Haghanifar, A., Majdabadi, M. M., Haghanifar, S., Choi, Y., & Ko, S.-B. (2023). PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier. Multimedia Tools and Applications, 82(18), 27659-27679. doi.org/10.1007/s11042-023-14435-9
[16] Oztekin, F., Katar, O., Sadak, F., Yildirim, M., Cakar, H., Aydogan, M., Ozpolat, Z., Talo Yildirim, T., Yildirim, O., & Faust, O. (2023). An explainable deep learning model to prediction dental caries using panoramic radiograph images. Diagnostics, 13(2), 226.doi.org/10.3390/diagnostics13020226
[17] Chen, S.-L., Chen, T.-Y., Huang, Y.-C., Chen, C.-A., Chou, H.-S., Huang, Y.-Y., Lin, W.-C., Li, T.-C., Yuan, J.-J., & Abu, P. A. R. (2022). Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs. IEEE Access, 10, 118654-118664. doi.org/10.1038/s41522-024-00488-7
[18] Shon, H. S., Kong, V., Park, J. S., Jang, W., Cha, E. J., Kim, S.-Y., Lee, E.-Y., Kang, T.-G., & Kim, K. A. (2022). Deep Learning Model for Classifying Periodontitis Stages on Dental Panoramic Radiography. Applied Sciences, 12(17), 8500. doi.org/10.3390/app12178500
[19] Hasnain, M. A., Ali, Z., Saeed, A., Aijaz, S., & Khurram, M. S. (2024). PDDNet: Deep Learning Based Dental Disease Classification through Panoramic Radiograph Images. VFAST Transactions on Software Engineering, 12(4), 180-198. doi.org/10.21015/vtse.v12i4.2028
[20] Son, J.-Y., Park, Y., Park, J.-Y., Kim, M.-J., & Han, D.-H. (2024). Overdiagnosis of dental caries in South Korea: a pseudo-patient study. BMC Oral Health, 24(1), 1-10. doi.org/10.1186/s12903-024-05061-4
[21] Park, W., Huh, J.-K., & Lee, J.-H. (2023). Automated deep learning for classification of dental implant radiographs using a large multi-center dataset. Scientific Reports, 13(1), 4862. doi.org/10.1038/s41598-023-32118-1
[22] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition. Available on :www.openaccess.thecvf.com
[23] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. Available on :www.openaccess.thecvf.com
[24] Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning. Available on:www.proceedings.mlr
[25] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. doi.org/10.48550/arXiv.1704.04861
[26] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Available on: www.arxiv.org/pdf/2010.11929/1000
[27] Fariza, A., Asmara, R., Rojaby, M. O. F., Astuti, E. R., & Putra, R. H. (2022). Evaluation of Convolutional Neural Network for Automatic Caries Detection in Digital Radiograph Panoramic on Small Dataset. 2022 International Conference on Data and Software Engineering (ICoDSE). doi.org/ 10.1109/ICoDSE56892.2022.9972183 | ||
آمار تعداد مشاهده مقاله: 28 تعداد دریافت فایل اصل مقاله: 67 |