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Abstract: 

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system 

and can lead to neurological disabilities. Early and accurate diagnosis plays a key role in 

managing its long-term effects. This study proposes a novel model based on convolutional neural 

networks (CNN) for identifying MS lesions in MRI images. 

This study used an MRI dataset from 60 individuals divided into training, validation, and test 

sets. The preprocessing included removing initial slices and applying data augmentation 

(random rotations) to increase the number of training images to 1080. A customized CNN 

architecture was designed to learn the features related to MS lesions. The model's performance 

was evaluated using accuracy, sensitivity, and specificity metrics on validation and test data. 

The CNN performance was also compared with two machine learning algorithms: decision tree 

and support vector machine. 

The proposed CNN model showed promising performance in detecting MS lesions. It achieved 

an accuracy of 99% during training and 96.44% during validation, demonstrating its ability to 

generalize to new data. The test accuracy was 92.6%, with sensitivity and specificity reported as 

84% and 95%, respectively. Compared to other methods, the CNN outperformed the support 

vector machine (accuracy 85%, sensitivity 82.61%, specificity 98%) and the decision tree 

(accuracy 98%, sensitivity 95%, specificity 83.72%), highlighting its high capability in detecting 

MS lesions. 

This research successfully demonstrates the capability of convolutional neural networks (CNN) 

in the accurate and automated detection of MS lesions in MRI images, achieving a test accuracy 

of 92.6%. The superior performance of CNN compared to traditional machine learning methods 

offers a promising approach for improving diagnostic accuracy, reducing reliance on human 

factors, and accelerating therapeutic interventions. The development of such tools can assist 

clinical specialists, enhance diagnostic efficiency, and facilitate better patient management. In the 

future, it is recommended to focus on improving CNN architecture, utilizing broader datasets, 

and exploring its application in different types of MS and disease progression monitoring. 
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1. Introduction 

Multiple sclerosis (MS) is a chronic autoimmune disease of 

the central nervous system (CNS) that has become a 

significant concern with increased life expectancy and 

improvements in public health. This disease, which is more 

prevalent among women and typically affects young 

individuals between the ages of 20 and 40, leads to the 

destruction of the myelin sheath surrounding nerve cells 

(axons), resulting in various neurological disorders and 

disabilities [1]. Despite notable advancements in diagnosis 

and treatment over recent decades, MS remains one of the 

leading causes of non-traumatic disability in adults 

worldwide. Its rising prevalence brings with it widespread 

social and economic consequences. The exact causes of this 
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disease are still not fully understood; however, complex 

interactions between genetic predispositions and 

environmental factors, such as low vitamin D levels, 

smoking, childhood obesity, and infection with the Epstein-

Barr virus, are believed to play a significant role in its onset 

[2, 3]. Early and reliable diagnosis of MS, especially in its 

initial stages and through non-invasive methods, is crucial 

for reducing serious complications and the risk of mortality, 

particularly in older individuals [4]. This research addresses 

a fundamental medical need: developing low-cost and non-

invasive diagnostic methods. MRI has become a key tool 

for visualizing MS lesions, which indicate damage to the 

myelin sheath in the brain and spinal cord. The introduction 

of MRI in the 1980s revolutionized MS diagnosis by 

enabling live visualization of lesions and monitoring the 

progression of the disease [5]. 

This study uses convolutional neural networks (CNNs) to 

automate and accurately diagnose MS using brain and 

spinal cord MRI images. This research includes collecting 

MRI data from MS patients and healthy individuals, 

preprocessing the images to enhance quality, designing and 

training a CNN model to detect MS-related patterns, 

extracting relevant features using the trained model, and 

finally classifying the images into healthy and MS 

categories. 

This research aims to demonstrate that CNNs can reduce 

dependence on human interpretation, minimize errors, 

enable timely diagnosis, monitor disease progression, and 

ultimately contribute to improving therapeutic strategies 

and personalized medical approaches for MS patients. 

2. Research Background 

Today, the science of image processing plays a significant 

role in aiding physicians and surgeons in diagnosis, 

treatment, and planning, enhancing accuracy in many 

medical procedures [6]. Interpreting MRI images for 

diagnosing multiple sclerosis (MS) is time-consuming and 

may vary among specialists. For this reason, numerous 

studies have investigated artificial intelligence, especially 

deep learning and convolutional neural networks (CNNs), 

to achieve more automated and accurate disease diagnoses 

[7-9]. In a study by Cole et al. [10], deep CNNs were 

proposed as a superior method to traditional visual analysis 

for extracting relevant features from MRI data in MS 

diagnosis. The study included 319 individuals who had 

available brain MRI sequences for image analysis and 

clinical assessment within six months after an MS attack. 

Layer-wise Relevance Propagation (LRP) was used to 

analyze the model's decision-making process to generate 

attention maps. The analysis of these maps revealed that the 

temporal lobe and cerebellum played a significant role in 

the CNN model’s decisions. The model achieved an 

accuracy of 79%, and its effectiveness was confirmed by 

applying it to an independent external group without 

retraining, where it reached an accuracy of 71%. The results 

showed that CNNs are capable of identifying key 

anatomical features correlated with MS-related disability 

progression.  Cracchiani et al. [11] also examined 

microstructural differences between progressive MS and 

relapsing-remitting MS using diffusion MRI and structural 

T1 MRI. They extracted features related to water 

diffusion in brain tissue, trained CNN models on this 

data, and identified brain regions with the highest 

contribution to classification using heatmaps. The results 

indicated differences in gray matter texture between the 

two MS types. The LRP method was also used to 

explain the most influential imaging components in 

subtype differentiation, helping uncover hidden 

information and enhancing the understanding of the 

disease’s various forms. Filippi et al. [12] also 

highlighted the significant evolution of MRI diagnostic 

criteria for MS, including the 2017 McDonald criteria, 

which improved the sensitivity and accuracy of early 

diagnosis for the clinically isolated syndrome. While 

emphasizing the clinical efficiency of these criteria, they 

also pointed out the need to identify new biomarkers to 

improve diagnostic specificity and reduce the risk of 

misdiagnosis. Despite their high potential, indicators 

such as the central vein sign and chronic active lesions 

require further validation and standardization before 

clinical implementation. Nonetheless, there remains a 

strong emphasis on the need for up-to-date research on 

the clinical application of AI in MRI analysis for MS 

patients. 

In a review study, Moazami et al. [13] categorized the 

main applications of machine learning using MRI data in 

multiple sclerosis (MS) into four areas: automated MS 

diagnosis, disease progression prediction, differentiation of 

various MS stages, and distinguishing MS from similar 

disorders. In automated diagnosis, SVM models using 

features extracted from MRI images achieved a high 

accuracy of over 89% in distinguishing MS patients from 

healthy individuals. Transfer learning in CNNs 

outperformed deep networks and random forest algorithms 

for predicting disease progression in forecasting disease 

conversion within the next two years. Regarding the 

differentiation of MS stages, studies utilized metabolic 

features and lesion locations combined with LDA and SVM 

algorithms to classify MS subtypes. Moreover, in the 

differential diagnosis between MS and neuromyelitis optica 

spectrum disorder (NMOSD), CNNs and transfer learning 

achieved 71% and 75% accuracy rates. The ability of these 

models to directly extract meaningful information from 

images and overcome data limitations through transfer 

learning represents a significant advantage in this field. 

Beyond lesion detection and disease prognosis, artificial 

intelligence has also been used to enhance the quality of 

MRI images. Leomora et al. [14] emphasized that high-

resolution MRI imaging can offer a more accurate view of 

MS lesions. They utilized a novel deep learning-based 

image reconstruction technique (DLR) that reduces noise 

and sharp artifacts while preserving edges, thereby 

increasing the diagnostic value of thin 2D slices. A 

comparison between DLR-processed T2 images (1 mm slice 

thickness) and conventional MRI (5 mm slice thickness) in 

42 MS patients showed a significantly higher number of 

detected lesions in the processed images. The whole-brain 

lesion detection process using DLR took about 7 minutes, 

an acceptable time frame for automated analysis. 

Additionally, Mani et al. [15] proposed a deep learning-

based autoencoder model to enhance the quality of brain 

MRI sequences. Using a 2.5D approach, this model took a 



set of low-resolution MRI slices as input and generated high-

resolution outputs by leveraging information from 

neighboring slices. The model was trained on randomly 

degraded scans to minimize the L1 loss function between the 

reconstructed and original high-resolution images. This 

research demonstrates the ongoing efforts to improve the 

quality of base data for further analysis in MS-related studies. 

 

In another approach focusing on the automatic segmentation 

of lesions, Fenteo et al. [16] aimed to reduce user interaction 

and the time required for this task by leveraging deep learning, 

particularly CNNs. They noted that although various CNN 

architectures are commonly used, detailed justifications for 

their selection are often lacking. Therefore, they explored the 

impact of simplifications and modifications in architectural 

design. As a result, they developed a lightweight and 

competitive architecture named “U-net” with only about 

30,000 parameters. Experimental results on FLAIR MRI 

images showed that despite its low parameter count, this 

model achieved satisfactory performance in automatically 

segmenting MS lesions and reduced the need for human 

intervention. Despite the central role of brain MRI in 

diagnosing MS, research has also explored other imaging 

modalities and biomarkers. Ortiz et al. [17], while addressing 

the limitations of relying solely on brain lesions or atrophy for 

MS diagnosis, emphasized the importance of identifying new 

biomarkers. In a study aimed at detecting novel biomarkers 

for the early diagnosis of MS, spectral-domain optical 

coherence tomography (OCT) and artificial intelligence were 

employed. This study included 79 patients with relapsing-

remitting MS and 69 age-matched healthy individuals. Retinal 

thickness in both eyes and inter-eye differences were 

analyzed. The results showed that the most significant changes 

in retinal thickness and inter-eye differences occurred in the 

ganglion cell, inner plexiform, and inner retinal layers. Using 

these structural differences as input, a two-layer convolutional 

neural network achieved an accuracy of 92%, a sensitivity of 

87%, and a specificity of 82%. These findings suggest that 

analyzing the structure of retinal nerve layers using OCT can 

contribute to diagnostic criteria for MS. 
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3. Research Method 

Deep learning is an evolution of machine learning that 

involves algorithms learning from data to perform tasks 

without explicit programming. Traditional machine learning 

methods are less effective than deep learning techniques 

because they require a large amount of data to deliver 

significant results. Deep learning models use a layered 

network architecture known as an artificial neural network 

[18]. 

Convolutional neural networks (CNNs) are robust neural 

networks widely used in various image-processing tasks. 

These networks consist of convolution and pooling layers 

that extract relevant features from the input image [19, 20]. 

The input to such a network can be an MRI image. The input 

layer sends the image to the first hidden layer, where filters 

are applied to the image. Each filter extracts specific 

features from the image, such as edges or textures. The 

output of the first hidden layer is passed to the next hidden 

layer, where more filters are applied to extract higher-level 

features. This process is repeated through several hidden 

layers until it reaches the final hidden layer, producing a 

feature set passed to the output layer. The output layer 

provides a probability distribution across the number of 

classes. The network then decides based on the class with 

the highest probability. The filter weights in each layer are 

learned through backpropagation, which adjusts the weights 

to reduce the error between the predicted and actual output 

[9, 21]. 

 

3.1. Dataset 
 

The dataset utilized in this study, sourced from the public 

Mendeley Data repository consists of brain MRI scans from 

60 individuals, including 30 patients clinically diagnosed 

with Multiple Sclerosis (MS) and 30 age- and sex-matched 

healthy controls, encompassing both male and female 

subjects. The MS subset exhibits a variety of lesion 

characteristics, spanning different types, sizes (ranging 

from 3 to 15 mm), and anatomical locations (primarily 

periventricular, cortical, and spinal cord regions), which 

contributes to the model’s potential for generalization across 

heterogeneous disease presentations. However, the 

relatively small sample size and absence of longitudinal 

imaging data represent inherent limitations that may 

constrain the model's broader applicability as further 

discussed in the conclusion. Each patient’s MRI includes 23 

slices, totaling 1,280 samples after preprocessing, divided 

into 769 training samples, 253 validation samples, and 258 

test samples. Figure 2 illustrates two sample images with 

MS lesions.  
 

3.1.1. Data Augmentation and Preprocessing 

To ensure consistency and enhance the quality of the MRI 

dataset for training the convolutional neural network 

(CNN), a series of preprocessing steps were applied. All 

MRI slices were resized to a uniform resolution of 64×64 

pixels using bicubic interpolation to maintain spatial 

consistency while preserving computational efficiency. 

Slices containing less than 5% gray or white matter content, 

identified through pixel intensity thresholding, were 

excluded to focus on regions relevant to MS lesion 

detection. Intensity normalization was performed using z-

score normalization (mean = 0, standard deviation = 1) to 

standardize pixel intensities across FLAIR MRI sequences, 

which had a slice thickness of 1 mm to ensure high 

resolution for lesion identification. To augment the training 

dataset and improve model robustness, data augmentation 

techniques were applied exclusively during the training 

phase, increasing the number of training samples from 769 

to 3,845. These techniques included random rotations (±15 

degrees), horizontal flipping, and intensity scaling (±10%). 

These augmentation methods were not applied to validation 

or test datasets to avoid introducing bias during evaluation. 
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Figure 1. Architecture of the proposed convolutional neural network 
 
 

  

Figure 2. Multiple Sclerosis Lesion in Dataset Images 

 

3.1.2. Training data 

This dataset is used to train the model. The model learns to 

identify patterns and relationships between features and 

labels from this data. It forms the largest portion of the data. 

The model learns directly from this data and adjusts its 

internal weights and parameters accordingly. The quality 

and diversity of the training data have a direct impact on the 

model’s final performance. 

3.1.3. Validation data 

This dataset is used to tune model parameters and prevent 

overfitting. It is not used to train the model but to evaluate 

its performance on unseen data after training. Based on the 

performance of this set, hyperparameter optimization, such 

as learning rate, number of layers, etc., is performed. Poor 

performance on validation data indicates overfitting or 

underfitting of the model. The model's performance is 

assessed on data it has not previously seen. 

3.1.4. Test data 

This dataset is used to tune model parameters and prevent 

overfitting. It is not used to train the model but to evaluate 

its performance on unseen data after training. Based on the 

performance on this set, hyperparameter optimization, such 

as learning rate, number of layers, etc., is performed. Poor 

performance on validation data indicates overfitting or 

underfitting of the model. The model's performance is 

assessed on data it has not previously seen. 

3.2. Architecture of the proposed method and training 

of the convolutional neural network 

Figure 2 shows the sequence of different layers of the 

proposed CNN. 

1. Input Layer: The input data (images) are fed into the 

network in this layer. 

2. Convolutional Layers (Conv Layers): The 

convolutional layer is one of the most important 

components of convolutional neural networks and plays a 

key role in extracting features from the input image. In this 

layer, learnable filters, which are small matrices, are used. 

These filters slide over the input image and examine small 

patches at each position. At each location, the filter overlays 

a small window of the image. It performs the dot product 

(element-wise multiplication) operation between the filter 

values and those inside that window. 

Ultimately, the output of the convolutional layer is a set of 

feature maps, each corresponding to a specific feature in the 

image. These feature maps represent various characteristics 

of the input image. 

Input 
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3. Activation Layers (ReLU Layers): After each 

convolutional layer, a ReLU layer introduces non-linearity 

into the model, allowing the network to learn more complex 

features. 

Without a nonlinear activation function, the network would 

only learn linear combinations of inputs, which limits its 

power and accuracy in solving complex problems. ReLU 

sets negative values to zero and keeps positive values 

unchanged. Mathematically, if x is the input, the ReLU 

output is: 

4. Pooling Layers: This layer aims to reduce the spatial 

dimensions of the feature maps produced by the 

convolutional layer. This layer operates on each feature map 

individually and typically reduces its size by selecting the 

maximum or average value from small regions of the map. 

This work used the averaging method, leading to improved 

accuracy and sensitivity. Additionally, this layer helps the 

network become more robust to small shifts in the input 

image, meaning that if small parts of the image are 

displaced, it won't significantly affect the network’s output. 

 
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1) 

 

5. Fully Connected Layers: These layers convert the 

extracted features into the final output. In these layers, all 

neurons are connected to the neurons in the previous layer. 

6. Sigmoid Function: This function limits the output to a 

range between 0 and 1 and is commonly used in problems 

requiring probabilities (e.g., binary classification). The 

sigmoid function is defined as follows: 
 

1 
𝑓(𝑥) = 

1 + 𝑒−𝑥 
(2) 

7. Dropout Layer: This technique is commonly used to 

prevent overfitting. The dropout layer randomly deactivates 

a portion of the neurons from the previous layer at each 

training step. This means the selected neurons do not send 

any information to the subsequent layers during that step. 

This random removal of neurons prevents the network from 

relying on a specific path or set of neurons, encouraging it 

to learn more general and robust features. 

8. Final Softmax Layer: This layer is used for 

classification tasks. Its output provides probability values 

for each class. The Softmax function is used for multi-class 

problems in the network's output layer. This function 

transforms the output values into a probability distribution 

between 0 and 1, such that the sum of all outputs equals 1. 

This study designed a task-specific shallow CNN 

architecture rather than employing more complex and 

widely used models such as ResNet or U-Net. This decision 

was primarily informed by the dataset's relatively limited 

size and the classification task's binary nature. While 

powerful, Deep architectures like ResNet generally 

demand larger datasets to achieve stable generalization and 

mitigate overfitting risks. Similarly, U-Net is 

predominantly tailored for image segmentation tasks and 

may not offer clear advantages in binary classification 

scenarios. By contrast, our custom architecture provides a 

balanced trade-off between model complexity and 

performance, with a significantly reduced parameter count, 

making it more suitable for effective training on small-scale 

medical imaging datasets. 
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4. Finding analysis 

4.1. Assessment Criteria 

In statistical analyses, accuracy, sensitivity, and 

specificity are three important indicators for evaluating 

the results of a binary classification. When data can be 

divided into two groups—positive and negative—the 

accuracy of an experiment that categorizes data into these 

two classes can be measured and described using the 

sensitivity and specificity metrics. 

True Positive (TP): When a case under examination has 

MS and is correctly diagnosed with MS. 

False Negative (FN): When a case has MS but is 

incorrectly diagnosed as healthy. 

True Negative (TN): When a case does not have MS and 

is correctly diagnosed as not having MS. 

False Positive (FP): When a case does not have MS but 

is incorrectly diagnosed as having MS. 

Mathematically, sensitivity is the ratio of true positives 

to the sum of true positives and false negatives. 
 

𝑇𝑃 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 

𝑇𝑃 + 𝐹𝑁 
(3) 

TP stands for True Positive, and FN stands for False 

Negative. Similarly, specificity (or true negative rate) is 

calculated as the ratio of true negatives to the sum of true 

negatives and false positives. 
 

TN 
Specificity = 

TN + FP 

(4) 

TN refers to True Negative, and FP refers to False Positive. 

In addition to the two aforementioned metrics, accuracy 

percentage is one of the most well-known components 

for evaluating binary or multi-class classification results. 

Accuracy indicates the classifier's overall performance in 

correctly identifying the classes of different data within 

the system. This metric is calculated by dividing the total 

number of correct classifications by the sum of correct 

and incorrect classifications across all classes. 
 

TP + TN 
Accuracy = 

TP + TN + FN + FP 
(5) 

Figure 3 shows the training process of the network, and 

finally, the test accuracy is determined. Based on our 

data, 96.4% of the labels predicted by the model match the 

actual test data labels. This study used the ADAM 

optimization algorithm to optimize the model and 

achieve faster convergence. The learning rate was set to a 

fixed value of 0.0001. The training process of the 

proposed model was carried out with a maximum of 20 

epochs, and in total, it took 65 minutes. 
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Figure 3.Training Process of the Proposed Convolutional Network 

 

 

 

4.2. Results 

4.2.1. Results with Training Data 

 

Figure 4 shows the confusion matrices related to the 

training data. According to Figure 3, the model performs 

exceptionally well during the training phase. The 

accuracy for both classes (MS and Non-MS) is above 

99%, indicating that the model has effectively learned the 

patterns in the MRI images. The model’s performance on 

the training data is nearly perfect. However, such high 

accuracy and very low error may be a sign of 

overfitting, meaning that the model might have 

memorized specific details of the training data rather 

than learning general patterns, which could reduce its 

ability to generalize to new data. 

 

4.2.2. Results with Validation Data 

In Figure 5, the confusion matrices related to the validation 

data are shown, and the model’s performance on data not 

used during the training process is evaluated. An accuracy 

of 95.4% was recorded for the MS class and 98% for the 

Non-MS class. This drop in accuracy compared to the 

training data is expected and indicates that the model is 

generalizing to new data. However, the presence of errors in 

identifying MS patients (false negatives) is noteworthy, as 

failing to diagnose patients correctly can have serious 

clinical consequences. 

 

Figure 4. Confusion Matrix of the Training Data 
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4.2.3. Results with Test Data 

Figure 6 evaluates the model’s performance on previously 

unseen data. The model performs well on the test data, with 

an accuracy of 94.9% for detecting MS and 98.3% for non-

MS. These results indicate the model's good generalization 

capability; however, similar to the validation phase, the 

issue of many false negatives (FN) persists. 

 

 

Figure 6. Confusion Matrix of the Test Data 

 

4.3. Comparison of Results with Other Classifiers 

As shown in Figure 7, the convolutional neural network 

(CNN) has been compared with different classifiers, such 

as Decision Trees and SVM. The sensitivity of the CNN, 

Decision Tree, and SVM are 0.95, 0.8261, and 0.84, 

respectively. The specificity of the CNN, Decision Tree, and 

SVM are 0.98, 0.85, and 0.99, respectively. The accuracy 

of the CNN, Decision Tree, and SVM are 0.96, 0.8372, 

and 0.8813, respectively. 

Figure 7. Quantitative Comparison of the Results of Different 

Classifiers with the Proposed Method 

 

5. Conclusion 

In this study, the application of convolutional neural 

networks (CNNs) for the automatic and timely detection of 

multiple sclerosis (MS) lesions was investigated using 

magnetic resonance imaging (MRI). MS is identified as a 

demyelinating disorder of the central nervous system, 

disrupting nerve signal transmission. It includes several 

types, with the relapsing-progressive form being the most 

common. MRI images play a crucial role in diagnosing MS 

as they allow for visualizing disease-related lesions. 

This research aimed to develop and evaluate a CNN model 

for accurately identifying MS lesions in MRI images. The 

model's ultimate goal is to improve the accuracy of MS 

diagnosis and assist specialists, particularly neurologists 

and radiologists, in making faster and more precise clinical 

decisions. 

The performance of the proposed CNN model was 

evaluated in three phases: training, validation, and testing, 

using a dataset of MRI images from 60 individuals (both 

MS patients and healthy controls). The model achieved high 

accuracy in detecting MS cases, with reported accuracies of 

92.9% in training, 92.1% in validation, and 92.6% in testing. 

Additionally, the model's accuracy in identifying non-MS 

cases across the stages was 79.7%, 75.9%, and 76.9%, 

respectively. These results indicate the model's capability to 

learn and distinguish between MRI images of MS patients 

and healthy individuals. 

The proposed CNN model's success demonstrates its high 

potential as an accurate and efficient tool for detecting MS 

lesions in MRI scans. Utilizing such an automated approach 

can assist physicians in the early diagnosis of MS, 

significantly improving treatment outcomes and disease 

management. 

Despite the promising results, the study highlights several 

challenges, notably the visual similarity between MS 

lesions and some unrelated findings in MRI images, which 

may lead to misclassifications, particularly in identifying 

non-MS cases, necessitating future research to employ 

attention mechanisms to help the model focus on key image 

features and hybrid models to improve overall accuracy and 

stability. The development and refinement of such AI-based 

tools provide a promising outlook for supporting clinicians 

100% 

80% 

60% 

40% 
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0% 

CNN SVM DT 

sensivity specificity accuracy 

 

Figure 5. Confusion Matrix of the Validation Data 
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in the rapid and accurate diagnosis of MS, potentially 

leading to significant improvements in patient care and 

clinical processes, while future research should address 

current challenges and implement the suggested solutions to 

design more reliable and practical systems for clinical MS 

diagnosis. Although the dataset includes a diverse set of 

lesion types and patient profiles, future work could benefit 

from expanding the dataset size and incorporating 

longitudinal MRI data, which would allow for more 

comprehensive training and evaluation across different 

stages of MS and improve the model's applicability in 

clinical settings. 

6. Statements & Declarations 

6.1. Acknowledgments 

This research is part of a Master's thesis titled "Detection 

of Multiple Sclerosis Lesions in MRI Images Based on 

Convolutional Neural Networks", completed in the year 

1403 (2024–2025), and was carried out with the support of 

Shomal University, Amol, Iran. Additionally, to improve 

and enhance the coherence of the text structure, large 

language models such as ChatGPT (GPT-4o) and Grok 

(Grok 3) were used in the introduction and conclusion 

sections solely for literary editing and rewriting of certain 

sentences. 

7. References 

[1] S. Sedaghat, H. Jang, J. S. Athertya, M. Groezinger, J. 

Corey-Bloom, and J. Du, "The signal intensity variation 

of multiple sclerosis (MS) lesions on magnetic 

resonance imaging (MRI) as a potential biomarker for 

patients’ disability: A feasibility study," Frontiers in 

Neuroscience, vol. 17, p. 1145251, 2023. 

[2] R. Dobson and G. Giovannoni, "Multiple sclerosis–a 

review," European journal of neurology, vol. 26, no. 1, 
pp. 27-40, 2019. 

[3] S. Rodríguez Murúa, M. F. Farez, and F. J. Quintana, 

"The immune response in multiple sclerosis," Annual 

Review of Pathology: Mechanisms of Disease, vol. 17, 

no. 1, pp. 121-139, 2022. 

[4] A. Ochoa-Morales et al., "Quality of life in patients with 

multiple sclero6sis and its association with depressive 
symptoms and physical disability," Multiple sclerosis 
and related disorders, vol. 36, p. 101386, 2019. 

[5] C. C. Hemond and R. Bakshi, "Magnetic resonance 

imaging in multiple sclerosis," Cold Spring Harbor 

perspectives in medicine, vol. 8, no. 5, p. a028969, 2018. 

[6] A. H. Jalalzadeh, A. Shalbaf, and A. Maghsoudi, 

"Compensation of brain shift during surgery using non- 

rigid registration of MR and ultrasound images," (in 

eng), Tehran University Medical Journal, Original 

Article vol. 78, no. 10, pp. 658-667, 2021. [Online]. 

[7] M. Krichen, "Convolutional neural networks: A survey," 

Computers, vol. 12, no. 8, p. 151, 2023. 

[8] S. F. Ahmed et al., "Deep learning modelling 

techniques: current progress, applications, advantages, 

and challenges," Artificial Intelligence Review, vol. 56, 

no. 11, pp. 13521-13617, 2023. 

[9] A. H. Jalalzadeh, H. Ebrahimi, and M. Jahangiri 

Moghadam, "Classification of heart diseases using time- 

frequency representations of electrocardiogram signals 

by transfer learning networks," Majlesi Journal of 

Electrical Engineering, vol. 19, no. 1 (March 2025), pp. 

1-8, 03/01 2025, doi: 10.57647/j.mjee.2025.1901.11. 

[10] L. Coll et al., "Deciphering multiple sclerosis disability 

with deep learning attention maps on clinical MRI," 

NeuroImage: Clinical, vol. 38, p. 103376, 2023. 

[11] F. Cruciani et al., "Interpretable deep learning as a 

means for decrypting disease signature in multiple 

sclerosis," Journal of Neural Engineering, vol. 18, no. 4, 
p. 0460a6, 2021. 

[12] M. Filippi et al., "Present and future of the diagnostic 

work-up of multiple sclerosis: the imaging perspective," 

Journal of neurology, vol. 270, no. 3, pp. 1286-1299, 

2023. 

[13] F. Moazami, A. Lefevre-Utile, C. Papaloukas, and V. 

Soumelis, "Machine learning approaches in study of 

multiple sclerosis disease through magnetic resonance 

images," Frontiers in immunology, vol. 12, p. 700582, 

2021. 

[14] M. Iwamura et al., "Thin-slice two-dimensional T2- 

weighted imaging with deep learning-based 

reconstruction: Improved lesion detection in the brain of 

patients with multiple sclerosis," Magnetic Resonance in 

Medical Sciences, vol. 23, no. 2, pp. 184-192, 2024. 

[15] A. Mani et al., "Applying deep learning to accelerated 

clinical brain magnetic resonance imaging for multiple 

sclerosis," Frontiers in neurology, vol. 12, p. 685276, 

2021. 

[16] A. Fenneteau, P. Bourdon, D. Helbert, C. Fernandez- 

Maloigne, C. Habas, and R. Guillevin, "Investigating 

efficient CNN architecture for multiple sclerosis lesion 

segmentation," Journal of Medical Imaging, vol. 8, no. 

1, pp. 014504-014504, 2021. 

[17] M. Ortiz et al., "Diagnosis of multiple sclerosis using 

optical coherence tomography supported by artificial 

intelligence," Multiple Sclerosis and Related Disorders, 

vol. 74, p. 104725, 2023. 

[18] A. Dey, "Machine learning algorithms: a review," 

International Journal of Computer Science and 

Information Technologies, vol. 7, no. 3, pp. 1174-1179, 

2016. 

[19] G. Habib and S. Qureshi, "Optimization and 

acceleration of convolutional neural networks: A 

survey," Journal of King Saud University-Computer and 

Information Sciences, vol. 34, no. 7, pp. 4244-4268, 

2022. 

[20] A. H. Jalalzadeh, S. S. Talebi, and M. H. Kamangar, 

"Two-step registration of rigid and non-rigid MR-iUS 

for brain shift compensation using transfer learning," in 

2024 20th CSI International Symposium on Artificial 

Intelligence and Signal Processing (AISP), 21-22 Feb. 

2024 2024, pp. 1-5, doi: 
10.1109/AISP61396.2024.10475261. 

[21] P. Purwono, A. Ma'arif, W. Rahmaniar, H. I. K. 

Fathurrahman, A. Z. K. Frisky, and Q. M. ul Haq, 

"Understanding of convolutional neural network (cnn): 

A review," International Journal of Robotics and 

Control Systems, vol. 2, no. 4, pp. 739-748, 2022. 

 

8 


