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1. Introduction

In the literature review of mathematics, a large number of research
studies has been devoted entirely or partially to the study of the Sturm-
Liouville i.e.,

y′′(x) + (λφ2(x)− q(x))y = 0, (1.1)

where λ = ρ2 and the real valued functions φ2 and q are said to be
the coefficients of the problem, φ2 is the weight and q is the potential
function. The zeros of φ2 are called turning points of (1). Differential
equations with turning points play an important role in various areas
of mathematics and other branches of natural sciences. For example in
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elasticity, optics, geophysics(see [6,8,11] and the references therein).
Inverse spectral problems consist in recovering operators from their
spectral characteristics. The first spectral problem was given by Am-
barzumyan [3]. Since 1946, various forms of the inverse problem have
been considered by several authors [4,10]. In later years, these prob-
lems was studied for Sturm-Liouville operators with turning points (see
[7,13]).
Recently, some researchers have paid attention to a new class of inverse
problems. This is the so-called inverse nodal problem. Inverse nodal
problems consist in recovering operators from given nodes (zeros) of
their eigenfunctions.
In 1988, it seems that J.R. Mclaughlin [12] to be the first to consider this
sort of inverse problem. She showed that the nodal set of the Dirich-
let problem alone can determine the potential function of the Sturm-
Liouville problem up to a constant. Yang [15] showed that this unique-
ness result is valid for any q.
In resent years, some interesting results of inverse nodal problems of the
Sturm-Liouville operators were obtained(for example, refer to[5,9,14])
.In this work, we consider the following Sturm-Liouville equation

y′′(x) + (λx− q(x))y = 0, −1 ≤ x ≤ 1, (1.2)

where q ∈ L[−1, 1] and λ is a real parameter.
In this paper, we obtain the eigenvalues and eigenfunctions correspond-
ing to large modulus eigenvalues and we calculate an asymptotic of the
nodal points.

2. Main result

Let C(x, λ) is a solution for Eq.(2) with the initial conditions C(−1, λ) =
0, C ′(−1, λ) = 1.
In [2], it was shown that
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We have the integral equations
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where f(x) =
∫ x
0

√
νdν.

We consider Eq.(2) with boundary conditions

y(−1, λ) = 0, y′(−1, λ) = 1, y(b, λ) = 0.

The problem corresponding to Eq.(2) on [−1, b] where b < 0 is fixed, has

an infinite number of negative eigenvalues {λ(1)n (b)}. The asymptotic

distribution of each function λ
(1)
n (b) is of the form√

−λ(1)n (b) =
nπ∫ b

−1
√
−tdt

+O(
1

n
), b < 0. (2.2)

For more details see [1].
For b ∈ (0, 1], fixed, the problem for (2) on [−1, b] has an infinite num-

ber of positive and negative eigenvalues which we denote by {λ(2)n (b)},
{λ(3)n (b)}, respectively.

The positive eigenvalues λ
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n (b) admit the asymptotic representation√
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Similarly, the negative eigenvalues, λ
(3)
n (b), admit the asymptotic repre-

sentation of the form√
−λ(3)n (b) =

nπ − π
4∫ 0

−1
√
−tdt

+
1

2nπ
T2 +O(

1

n2
), . (2.4)

where

T2 =
5

72
∫ 0
−1
√
−tdt

+
1

2

∫ 0

−1

q(t)√
−t
dt.

We now state a theorem which gives asymptotic approximation for the
eigenfunctions of the Sturm-Liouville equation in one turning point case.

Let C(x, λ
(i)
n ) be the eigenfunction corresponding to the eigenvalue λ

(i)
n

where i ∈ {1, 2, 3}.

Theorem 2.1. a) For b ∈ [−1, 0) fixed, the corresponding eigenfunctions

of the negative eigenvalues λ
(1)
n (b), has asymptotic representation,

C(x, λ(1)n (b)) =
p(b)(−x)−

1
4
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sin
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− p2(b)(−x)−
1
4

n2π2
cos

nπp(x)

p(b)

∫ x

−1
(−t)−

1
2 q(t) sin2 nπp(t)

p(b)
dt+ o(

1

n2
). (2.5)
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c) For b ∈ (0, 1] fixed, the corresponding eigenfunctions of the negative
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Proof. a) In this case the eigenvalues are negative. Substituting the

asymptotic form (4) in (3) and noting that
√
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Using the following facts for large n:

cosO(
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n
) = 1 +O(
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), sinO(

1

n
) = O(
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)

we get the result.
By inserting the asymptotic formulae (5) and (6) into (3) we get the
results (b) and (c).�
Suppose {x(i)nj } is the jth nodal point of the eigenfunction C(x, λ

(i)
n ) in (-

1,1). In other words, C(x
(i)n
j , λ
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n ) = 0. Denote X(i) = {x(i)nj }n≥1,j=1,n.

X(i) is called the set of nodal points.

Theorem 2.2. We take x
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problem. Then∫ x
(1)n
j

−1

√
−νdν =

jp(b)

n
+
p2(b)

n2π2

∫ x
(1)n
j

−1

q(t)

(−t)
1
2

sin2(
p(t)nπ

p(b)
)dt+ o(

1

n2
), x < 0,(2.8)

∫ x
(2)n
j

0

√
νdν =

(j − 1
4)f(b)

n− 1
4

+
f2(b)

(nπ − π
4 )2

∫ x
(2)n
j

0

q(t)

t
1
2

cos2(f(t)(
nπ − π

4

f(b)
)− π

4
)dt+ o(

1

n2
), x > 0,(2.9)

as n→∞ uniformly in j.

Proof. Since {x(i)nj } are zeros of eigenfunctions, in the case x < 0,
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and hence formula (10) holds.
Using (8), by the same arguments as above, one can show that (11)
holds.�
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