تعداد نشریات | 31 |
تعداد شمارهها | 499 |
تعداد مقالات | 4,850 |
تعداد مشاهده مقاله | 7,491,460 |
تعداد دریافت فایل اصل مقاله | 5,593,195 |
Nonlinear Features-Based Evaluation of EEG Signal for Epileptic Seizures Detection in Human Temporal Lobe Epilepsy | ||
Future Research on AI and IoT | ||
مقاله 4، دوره 1، شماره 1، شهریور 2025، صفحه 28-36 اصل مقاله (927.19 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/frai.2025.29345.1019 | ||
نویسندگان | ||
Saleh Lashkari* 1؛ Mohammadali Khalilzadeh1؛ Ali Zendehbad2؛ Mohammad Reza Hashemi Gogpayegani3؛ Ali Gorji4 | ||
1Health Technology Research Center, Imam Reza International University, Mashhad, Iran | ||
2Department of Engineering and Technology, University of Mazandaran, Iran, | ||
3Complex Systems and Cybernetic Control Laboratory, Biomedical Engineering Faculty, AmirKabir University of Technology, Tehran, Iran | ||
45 Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Münster, Germany | ||
تاریخ دریافت: 05 خرداد 1404، تاریخ بازنگری: 18 خرداد 1404، تاریخ پذیرش: 18 خرداد 1404 | ||
چکیده | ||
Epilepsy is a neurological disorder characterized by recurrent seizures resulting from abnormal brain activity. To understand its underlying dynamics, this study applies nonlinear analysis to EEG data recorded during seizures in patients with temporal lobe epilepsy. Specifically, the study explores the evolution of nonlinear features, such as fractal dimension, correlation dimension, entropy, and Recurrence Quantification Analysis (RQA), to classify seizure patterns. EEG recordings from the Fz-Cz channel of 209 seizures across 24 patients were analyzed. These features were used to perform unsupervised clustering using k-means and hierarchical methods to identify recurring patterns and classify seizure quality. The fractal dimension, which captures signal complexity and self-similarity, proved especially informative by showing clear trends throughout seizure progression. The correlation dimension quantified the spatial structure of the signal’s reconstructed phase space, while entropy measured signal unpredictability typically decreasing during seizures, reflecting a transition from chaotic to more structured brain activity. The clustering analysis grouped seizures into 3 to 5 categories, with most seizures from each patient clustering together, suggesting consistent intra-patient seizure dynamics. Among the features, RQA-based measures were the most effective, clustering 87.7% of seizures into a single group, followed by phase space features (71.54%) and fractal dimension (56%). These findings suggest that seizure dynamics, while complex, exhibit repetitive and deterministic behavior across episodes for the same individual. The study supports the hypothesis that epileptic seizures reduce brain complexity, creating more structured and rhythmic patterns compared to normal function. In conclusion, nonlinear EEG analysis effectively characterizes and classifies seizure events, highlighting the deterministic nature of temporal lobe epilepsy. These insights could improve seizure prediction and aid in developing personalized treatment strategies. Future work should expand to other epilepsy types and | ||
کلیدواژهها | ||
Electroencephalogram؛ Epileptic Seizure؛ Nonlinear Signal Analysis؛ Fractal Dimension؛ Recurrence Plot | ||
مراجع | ||
Batista, J., Pinto, M. F., Tavares, M., Lopes, F., Oliveira, A., & Teixeira, C. (2024). EEG epilepsy seizure prediction: the post-processing stage as a chronology. Scientific Reports, 14(1), 407.doi.org/10.1038/s41598-023-50609-z
Prasanna, J., Subathra, M. S. P., Mohammed, M. A., Damaševičius, R., Sairamya, N. J., & George, S. T. (2021). Automated epileptic seizure detection in pediatric subjects of CHB-MIT EEG database—A survey. Journal of Personalized Medicine, 11(10), 1028.doi.org/10.3390/jpm11101028
Supriya, S., Siuly, S., Wang, H., & Zhang, Y. (2021). Epilepsy detection from EEG using complex network techniques: A review. IEEE Reviews in Biomedical Engineering, 16, 292-306. doi.org/10.1109/RBME.2021.3055956
Zhang, X., Liu, J., Liang, J., Wang, D., & Sun, Y. (2024). Chaos anti-control of coexisting infinite signals and pinning synchronization of a complex-valued laser chain network. The European Physical Journal Plus, 139(1), 65. doi.org/10.1140/epjp/s13360-023-04826-0
Lashkari, S., Sheikhani, A., GOLPAYEGANI, M. R. H., Moghimi, A., & Kobravi, H. R. (2018). Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals classification. Turkish Journal of Electrical Engineering and Computer Sciences, 26(3), 1329-1342. doi.org/10.3906/elk-1708-59
Dube, A. (2024). Neural dynamics in epilepsy: A paradigm shift. International Journal of Basic and Applied Physiology, 13(1), 1.Available on:www.ijbap.com
Araújo, N. S., Reyes-Garcia, S. Z., Brogin, J. A., Bueno, D. D., Cavalheiro, E. A., Scorza, C. A., & Faber, J. (2022). Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy. Plos Computational Biology,18(4),e1010027.doi.org/10.1371/journal.pcbi.1010027
Zhao, Y., Grayden, D. B., Boley, M., Liu, Y., Karoly, P. J., Cook, M. J., & Kuhlmann, L. (2024, July). Inference-based time-resolved chaos analysis of brain models: application to focal epilepsy. In 2024 27th International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE. doi.org/10.23919/FUSION59988.2024.10706355
Kaur, S., Singh, S., Arun, P., Kaur, D., & Bajaj, M. (2020). Phase space reconstruction of EEG signals for classification of ADHD and control adults. Clinical EEG and neuroscience, 51(2), 102-113.doi.org/10.1177/1550059419876525
Ahamed, S. I., Rabbani, M., & Povinelli, R. J. (2023, July). A Comprehensive Survey on Detection of Non-linear Analysis Techniques for EEG Signal. In 2023 IEEE International Conference on Digital Health (ICDH) (pp. 184-194). IEEE.doi.org/10.1109/ICDH60066.2023.00034
Lau, Z. J., Pham, T., Chen, S. A., & Makowski, D. (2022). Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. European Journal of Neuroscience,56(7),50475069.doi.org/doi.org/10.1111/ejn.15800
Díaz Beltrán, L., Madan, C. R., Finke, C., Krohn, S., Di Ieva, A., & Esteban, F. J. (2024). Fractal dimension analysis in neurological disorders: an overview. The Fractal Geometry of the Brain, 313-328. doi.org/10.1007/978-3-031-47606-8_16
Patel, P., & Annavarapu, R. N. (2021). EEG-based human emotion recognition using entropy as a feature extraction measure. Brain informatics, 8(1), 20.doi.org/10.1186/s40708-021-00141-5
Zúñiga, M. A., Acero-González, Á., Restrepo-Castro, J. C., Uribe-Laverde, M. Á., Botero-Rosas, D. A., Ferreras, B. I., ... & Villa-Reyes, M. P. (2024). Is EEG Entropy a Useful Measure for Alzheimer's Disease?. Actas Espanolas de Psiquiatria, 52(3), 347.doi.org/10.62641/aep.v52i3.1632
Rieke, C., Andrzejak, R. G., Mormann, F., & Lehnertz, K. (2004). Improved statistical test for nonstationarity using recurrence time statistics. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(4), 046111. doi.org/10.1103/PhysRevE.69.046111
Perreault, P., & Avoli, M. (1992). 4-aminopyridine-induced epileptiform activity and a GABA-mediated long-lasting depolarization in the rat hippocampus. Journal of Neuroscience, 12(1), 104-115.doi.org/10.1523/JNEUROSCI.12-01-00104.1992
Babloyantz, A., & Destexhe, A. (1986). Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences, 83(10), 3513-3517.doi.org/10.1073/pnas.83.10.3513
Röschke, J., Fell, J., & Beckmann, P. (1995). Nonlinear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent. Psychiatry research, 56(3), 257-269.doi.org/10.1016/0165-1781(95)02562-B
Dehnavi, M. S., Dehnavi, V. S., & Shafiee, M. (2021, December). Classification of mental states of human concentration based on EEG signal. In 2021 12th International Conference on Information and Knowledge Technology (IKT) (pp. 78-82). IEEE. doi.org/10.1109/IKT54664.2021.9685731
Perrottelli, A., Giordano, G. M., Brando, F., Giuliani, L., & Mucci, A. (2021). EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Frontiers in psychiatry, 12, 653642.doi.org/10.3389/fpsyt.2021.653642
Sunitha, R., & Sreedevi, A. (2022). Understanding the nonlinear dynamics of seizure and sleep EEG patterns generated using hierarchical chaotic neuronal network. International Journal of Computational Science and Engineering, 25(4), 399-409.doi.org/10.1504/IJCSE.2022.124563
Yakovleva, T. V., Kutepov, I. E., Karas, A. Y., Yakovlev, N. M., Dobriyan, V. V., Papkova, I. V., ... & Krysko, V. A. (2020). EEG analysis in structural focal epilepsy using the methods of nonlinear dynamics (Lyapunov exponents, Lempel–Ziv complexity, and multiscale entropy). The Scientific World Journal, 2020(1), 8407872.doi.org/10.1155/2020/8407872
Boonyakitanont, P., Lek-Uthai, A., Chomtho, K., & Songsiri, J. (2020). A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomedical Signal Processing and Control, 57, 101702.https://doi.org/10.1016/j.bspc.2019.101702
Ravi, S., S, S., Shahina, A., Ilakiyaselvan, N., & Khan, A. N. (2022). Epileptic seizure detection using convolutional neural networks and recurrence plots of EEG signals. Multimedia Tools and Applications, 81(5), 6585-6598. doi.org/10.1007/s11042-021-11608-2
Pegg, E. J., Taylor, J. R., Keller, S. S., & Mohanraj, R. (2020). Interictal structural and functional connectivity in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy & Behavior, 106, 107013.https://doi.org/10.1016/j.yebeh.2020.107013
Yang, C., Liu, Z., Wang, Q., Wang, Q., Liu, Z., & Luan, G. (2021). Epilepsy as a dynamical disorder orchestrated by epileptogenic zone: a review. Nonlinear Dynamics, 104, 1901-1916.doi.org/10.1007/s11071-021-06420-4
Moraes, M. F. D., de Castro Medeiros, D., Mourao, F. A. G., Cancado, S. A. V., & Cota, V. R. (2021). Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy & Behavior, 121, 106838.doi.org/10.1016/j.yebeh.2019.106838
Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kwan, P., Kuhlmann, L., ... & Razi, A. (2020). Machine learning for predicting epileptic seizures using EEG signals: A review. IEEE reviews in biomedical engineering, 14, 139-155.doi.org/10.1109/RBME.2020.3008792
Lashkari, S., Sheikhani, A., Golpayegani, M. R. H., Moghimi, A., & Kobravi, H. (2018). Detection and prediction of absence seizures based on nonlinear analysis of the EEG in Wag/Rij animal model. International Clinical Neuroscience Journal, 5(1), 21. doi.org/10.15171/icnj.2018.05
Lehnertz, K., Andrzejak, R. G., Arnhold, J., Kreuz, T., Mormann, F., Rieke, C., ... & Elger, C. E. (2001). Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and. Journal of Clinical Neurophysiology, 18(3), 209-222.doi.org/10.1097/00004691
Herzog, A., Kube, K., Michaelis, B., de Lima, A. D., Baltz, T., & Voigt, T. (2008). Contribution of the GABA shift to the transition from structural initialization to working stage in biologically realistic networks. Neurocomputing, 71(7-9), 1134-1142.doi.org/10.1016/j.neucom.2007.11.027
Bambal, G., Çakıl, D., & Ekici, F. (2011). Models of experimental epilepsy. Journal of Clinical and Experimental Investigations, 2(1), 118-123. doi.org/10.5799/ahinjs.01.2011.01.0224
Spitzer, N. C., Kingston, P. A., Manning Jr, T. J., & Conklin, M. W. (2002). Outside and in: development of neuronal excitability. Current opinion in neurobiology, 12(3), 315-323. doi.org/10.1016/S0959-4388(02)00330-6
Torse, D. A., Khanai, R., & Desai, V. V. (2019, April). Classification of epileptic seizures using recurrence plots and machine learning techniques. In 2019 International Conference on Communication and Signal Processing (ICCSP) (pp. 0611-0615). IEEE.doi.org/10.1109/ICCSP.2019.8697989
Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment (Doctoral dissertation, Massachusetts Institute of Technology). Available on: www.hdl.handle.net/1721.1/54669
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438(5-6), 237 329. doi.org/10.1016/j.physrep.2006.11.001 | ||
آمار تعداد مشاهده مقاله: 24 تعداد دریافت فایل اصل مقاله: 30 |