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 Abstract: 

Epilepsy is a neurological disorder characterized by recurrent seizures resulting from abnormal 

brain activity. To understand its underlying dynamics, this study applies nonlinear analysis to 

EEG data recorded during seizures in patients with temporal lobe epilepsy. Specifically, the study 

explores the evolution of nonlinear features, such as fractal dimension, correlation dimension, 

entropy, and Recurrence Quantification Analysis (RQA), to classify seizure patterns. EEG 

recordings from the Fz-Cz channel of 209 seizures across 24 patients were analyzed. These 

features were used to perform unsupervised clustering using k-means and hierarchical methods 

to identify recurring patterns and classify seizure quality. The fractal dimension, which captures 

signal complexity and self-similarity, proved especially informative by showing clear trends 

throughout seizure progression. The correlation dimension quantified the spatial structure of the 

signal’s reconstructed phase space, while entropy measured signal unpredictability typically 

decreasing during seizures, reflecting a transition from chaotic to more structured brain activity. 

The clustering analysis grouped seizures into 3 to 5 categories, with most seizures from each 

patient clustering together, suggesting consistent intra-patient seizure dynamics. Among the 

features, RQA-based measures were the most effective, clustering 87.7% of seizures into a single 

group, followed by phase space features (71.54%) and fractal dimension (56%). These findings 

suggest that seizure dynamics, while complex, exhibit repetitive and deterministic behavior 

across episodes for the same individual. The study supports the hypothesis that epileptic seizures 

reduce brain complexity, creating more structured and rhythmic patterns compared to normal 

function. In conclusion, nonlinear EEG analysis effectively characterizes and classifies seizure 

events, highlighting the deterministic nature of temporal lobe epilepsy. These insights could 

improve seizure prediction and aid in developing personalized treatment strategies. Future work 

should expand to other epilepsy types and explore advanced nonlinear methods to further improve 

classification and predictive accuracy. 
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1. Introduction  

Epilepsy is a neurological disorder with recurrent seizures 

due to abnormal brain activity, which remains a persistent 

risk for patients. Numerous studies have been conducted in 

this field, including  seizure prediction, onset detection, and 

diagnostic techniques [1–3]. Many of these studies have 

attempted to automate these processes using computer-

based systems to assist physicians in making accurate 

clinical decisions. Although difficulties primarily in signal 

processing methods restrict the clinical faith in these 

techniques, continued engineering improvements and the 

introduction of optimized methods are progressively 

strengthening their reliability. The lengthy nature of EEG 

monitoring in epilepsy, specifically in diagnostic clinics, 

highlights the growing need for automatic methods.  

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
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Epilepsy is a qualitative alteration of brain dynamics. This 

change can be detected from the neural activity patterns, 

where the dynamics of the normal brain are often marked 

by complexity and chaos, while epileptic brains show 

distinctive patterns that reflect reduced complexity. 

Especially in the time intervals around seizures, rhythmic 

and less complex activities are usually observed [4]. 

In this view, epilepsy is a dynamic disorder, one that 

emerges in an otherwise functional physiological regulatory 

system and is best characterized by dynamic rather than 

structural defects. In these systems, normal function exists 

over a range of internal parameters and inputs, and 

deviations from this range, occasionally due to unidentified 

causes, give rise to disease states. A number of studies 

confirm this shift from more complex, quasi-periodic pre-

seizure EEG to less complex, more periodic seizure activity 

[5]. Such transitions suggest a dynamic phase shift, and as 

such, features must be found that are capable of capturing 

these shifts. Nonlinear analysis methods have been 

successful in this endeavor [6–8]. Takens' theorem dictates 

that the system's dynamics can be reconstructed from any 

observable time series, e.g., an EEG channel. Time series 

analysis methods have been developed to allow the 

discovery of behavior patterns in complex systems [9]. 

Nonlinear properties, including correlation dimension [10], 

fractal dimension [11, 12], entropy [13, 14], and Lyapunov 

exponents [10], are commonly utilized for measuring chaos, 

complexity, and ordering of systems.  Other features have 

been developed to differentiate between stochastic and 

deterministic dynamics [6] and to test nonstationarity [15]. 

Another less explored area in epilepsy research is the 

analysis of EEG dynamics during seizures, such as the 

estimation of seizure focus, seizure spread, and changes in 

seizure intensity. In some studies, the nonstationarity of 

EEG signals during seizures has been explored [16–18], 

considering EEG as a traditional example of a nonstationary 

time series [15]. Continuous changes in EEG patterns occur 

across a range of mental states [19, 20], especially during 

seizures [21–22]. These changes have been examined using 

statistical methods (e.g., power spectrum, wavelet transform 

[23]) and dynamical methods like recurrence plots [24]. 

Taylor et al. demonstrated that seizure EEG features cannot 

be accounted for completely using the power spectrum 

alone [25]. The discovery of nonlinear dynamics and 

periodicity in seizures led to hypotheses suggesting 

deterministic chaos as a possible paradigm [26, 27]. 

Although these hypotheses were not supported empirically, 

they initiated significant research into seizure prediction [5, 

28, 29], localization [30], and brain network 

synchronization during seizures [23, 31]. However, studies 

based on EEG nonstationarity analysis using nonlinear 

approaches are still relatively uncommon[32, 33]. Research 

that has utilized recurrence plots has demonstrated that they 

can maintain the temporal nuances of seizure time series 

[34], unlike linear statistical analyses that presume linear 

relationships in data. In a comparison study by Dikanou et 

al. [34], recurrence analysis was found to reveal more subtle 

seizure states than wavelet or power spectrum methods, 

occasionally characterizing 3–4 distinct seizure phases. 

Many previous studies focus on the recognition of patterns 

via the utilization of discrete characteristics without 

examining the temporal evolution of nonlinear indices 

during seizure events. In addition, seizure quality and 

variability for seizures that happen in multiple events within 

the same patient have rarely been investigated. Therefore, 

this study aims to clarify temporal evolution patterns of 

nonlinear features while describing both general and 

patient-specific attributes for seizure quality. 

2. Materials and Methods  
In this study, long-term EEG monitoring data were used from 

patients diagnosed with temporal lobe epilepsy who were resistant 

to treatment. Nonlinear features were extracted and analyzed from 

the Fz-Cz channel of these EEG recordings. Specifically, 

correlation dimension, fractal dimension, and Kolmogorov 

entropy were computed to investigate the temporal changes of 

these nonlinear features. In addition to these analyses, phase space 

features and recurrence quantification measures were employed to 

assess the quality of the seizures. A total of 209 seizures from 24 

epileptic patients were processed and analyzed. 

2.1. Database  

EEG recordings utilized within this study are from the 

MIT-BIH database concerning patients diagnosed with 

drug-resistant temporal lobe epilepsy. The recordings 

correspond to a group of 23 patients consisting of 5 males 

aged between 3 and 23 years and 17 females aged between 

1.5 and 19 years.  

The recordings were obtained with a sampling frequency 

of 256 samples per second with a 16-bit resolution. 

The database includes recordings from 23 

channels based on the international 10-20 electrode 

placement system. Two hundred nine seizure recordings 

were captured. It should be noted that the dataset is in 

raw condition and has not been processed for noise 

reduction and artifact removal [35]. 

2.2. Phase Space  

One of the most fundamental tools in the study of time 

series dynamics, particularly those biological signals 

that are predominantly produced by nonlinear systems, is 

the phase space. Through the application of phase 

space, some of the behavioral properties like periodicity, 

aperiodicity, quasi-periodicity, and chaoticity of the data 

can be studied. In studies related to biological phenomena 

where the governing equations of the system are unknown 

and only a set of observations, such as EEG signal 

recordings, are available, the system is understood through 

these observations [9]. As stated by Takens' theorem, a 

time series belonging to an attractor 

with a dimensionality of d will have the same topological 

features as those of the reconstructed attractor in an m-

dimensional phase space formed by delay vectors, provided 

that the condition 𝑚 ≥ 2𝑑 + 1 holds. For a time series x(n) 

for n=1,2,…,N samples, the time-delay phase vectors are 

constructed according to equation (1). 

X(i) = [x(i). x(i + τ). x(i + 2τ). … … . x(i + (m −
1)τ)]  i = 1.2. … . . N − (m − 1)τ      (1) 

 

Where τ is the time delay and mmm is the embedding 

dimension. In the present work, the time 

delay τ has been calculated using the mutual information 

method, and the embedding dimension 

mmm has been determined using the false nearest neighbor 

method [10]. 
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Figure 1. Block diagram of the proposed method. 

 

Figure 2. Quantification changes in nonlinear features of epileptic seizures.

2.2.1. Correlation Dimension 

The correlation dimension can be computed with the 

correlation integral [10]: 

 (2)             C(ϵ) =
1

N2
∑ θ(ϵ − ‖x(i) − x(j)‖)N

i.j=1 

where x(i)∈R is the m-dimensional delay vector. 

2.2.2. Fractal Dimension 

The fractal dimension is a quantitative index of a signal's 

chaotic quality. In this investigation, the Katz method was 

used to compute the fractal dimension:  

                 𝐷 =
𝑙𝑜𝑔10(𝐿)

𝑙𝑜𝑔10(𝑑)
       (3) 

where L is the sum of the distances between consecutive 

points, and d is the distance between the first point in the 

process and the furthest point [11]. 

2.2.3. Entropy 

Entropy is defined as the symbolic measure of the rate of 

information production; generally, a higher entropy will be 

interpreted as a greater disorder in the signal. In this paper, 

entropy was computed from the following equation: 

(4)           ApEn = ln (
Cm(r)

Cm+1(r)
) 

where 𝐶𝑚(𝑟) is the mean of the pattern with length m and 

𝐶𝑚+1(𝑟) is the mean of the pattern with length m+1[13]. 

2.3. Recurrence Plot 

 A way of representing information in two dimensions, the 

premise is simply that in dynamical systems, the recurrence 

of a system's state to the same areas of the phase space--

areas passed over by the trajectory previously is a 

fundamental property of dynamical systems and can be used 

to describe system behavior in their phase space [36]. The 

recurrence of any state at the time i at different times j can 

be represented using a square matrix of zeros and ones, in 

which the direction of the axes is time for both axes. This 

plot can be produced by the following equation: 

(5)        R(i. j) = θ(ε(i) − ‖x(i) − x(j)‖). x ϵ Rm i. j =
1 … N 

where N is the length of the data segment, θ(x) is the step 

function, ∥⋅∥ is the norm, and ε(i) is the radius defining the 

neighborhood for each point 𝑥𝑖. The quantification of 

hidden patterns in the recurrence plot is called Recurrence 

Quantification Analysis (RQA) [2]. 

2.3.1. Recurrence Rate (RR) 

Indicates the percentage of recurrence points on the plot and 

is related to the correlation sum: 

RR =
1

N2
∑ Ri.j

N
i.j=1     (6 (  

2.2.4. Determinism (DET) 

The percentage of recurrence points forming diagonal lines 

relative to all recurrence points: 

DET =
∑ lP(l)N

l=lmin

∑ Ri.j
N
i.j=1

  (7)                                     

2.2.5. Longest Diagonal Line (L_max) 

Specifies the length of the longest diagonal line: 

   Lmax = max ({li; i = 1 … . . Nl})   (8)                          

2.2.6. Entropy (ENTR) 

The entropy of the diagonal line lengths: 
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ENTR = ∑ P(l)ln (P(l))N
l=lmin

                                 (9)        

2.2.7. LAM 

Determines the percentage of reversal points that form 

vertical lines.                  

(10)     LAM =
∑ vP(v)N

v=vmin

∑ vP(v)N
v=1

 

2.2.8. Trapping time 

Determines the average length of the vertical dots. 

(11)                TT =
∑ vP(v)N

v=vmin

∑ P(v)N
v=vmin

 

2.4. Clustering  

Clustering is arguably the most important problem in 

unsupervised learning. It entails finding structure within a 

set of unlabelled data. In clustering, the goal is to partition 

data into clusters, where similarity between data points 

within each cluster is maximized and between clusters is 

minimized. In this paper, K-Means and Hierarchical 

clustering were used to identify not only the overall quality 

of seizures but also the quality within seizures.  

 

2.4.1. K-Means Clustering  

In K-Means, we first randomly select a specified number of 

cluster centers. The data points are then assigned to clusters 

based on their proximity to these centers (i.e., similarity to 

these centers), establishing new clusters. New centers are 

computed during each iteration as the average of the data 

points in each cluster, and data points are re-assigned to 

clusters based on the new centers. This process is completed 

when cluster membership no longer changes. 

2.4.2. Hierarchical Clustering 

In some cases, data representations use clusters and sub-

clusters in a tree representation. There are two types of 

hierarchical clustering: agglomerative and divisive. The 

typical way an agglomerative clustering will work is to start 

with N single clusters and recursively merge clusters down 

to one cluster. The typical way to do divisive clustering is 

to start with one cluster, recursively split clusters, and work 

down to N single samples.  

Linkage Plots  

When dendrograms are plotted, the relative size of the 

similarity coefficients reiterates where the data points were 

combined. Larger distance coefficients and smaller 

similarities are data points that are not similar being merged, 

which is undesirable. Variables or data points near each 

other have smaller distances and higher similarities. The 

dendogram has a line on the left that connects those 

variables, which indicates that these variables combined and 

were similar. In contrast, if the line connecting data points 

is located on the right side of the dendrogram, those data 

points or clusters were merged at a larger distance 

coefficient, meaning those were likely not similar data 

points or clusters and became one cluster together. 

2.4.3. Cluster Validation 

The Davies-Bouldin index was used to evaluate the clusters. 

This metric uses the similarity between two clusters, 𝑅𝑖𝑗, 

and is defined as follows: 

DB =
1

nc
∑ Ri

nc
i=1        (12) 

where 𝑅𝑖 is defined as: 

                  𝑅𝑖 = (𝑅𝑖𝑗). 𝑖 = 1 … … 𝑛𝑐𝑗=1…..𝑛𝑐.  𝑖=𝑗

𝑚𝑎𝑥
    (13) 

Here, 𝑛𝑐 is the number of clusters. A lower value of this 

index indicates better clustering results. 

3. Results  
3.1. Temporal Changes of Indices During Seizures 

Initially, the temporal variations of three indices—

correlation dimension, fractal dimension, and Kolmogorov 

entropy—were examined on the Fz-Cz channel for 209 

seizures from 24 subjects. Figure 3 shows that the fractal 

dimension produced regular patterns during seizures, 

whereas this was not the case for entropy. Similar patterns 

to the fractal dimension were observed in the correlation 

dimension. 

One reason for this can be traced back to the nature of these 

two indices. Implicitly, the results suggest that indices like 

fractal dimension and correlation dimension, which are 

based on evolution and interaction, differentiate themselves 

from entropy, which lacks such characteristics, in their 

computations. 

 
 
Figure 3. Temporal changes of fractal dimension, correlation 

dimension, and Kolmogorov entropy during an epileptic 

seizure. 

3.2. Interpretation of Fractal Pattern During Seizures 

Although the brain system transitions to a known state, 

given its nonlinear character, dynamic interactions between 

brain components would be expected to exhibit different 

areas of chaotic behavior. Various properties of the 

interactions between brain components emerge during 

seizures, generating increasing and decreasing fractal 

dimension patterns and representing competing fractal 

dimension states during the seizure time period. Figure 4 

illustrates the captured pattern of fractal dimension during 

seizures in general.  

 
 

Figure 4. Identified fractal dimension pattern during 

epileptic seizures. 
To apprehend and better quantify the type of pattern 

outlined, various segments of the pattern, each representing 

a different quality stage of seizure, were named and 

calculated. In Figure 4, the points chosen for analysis are 

labeled, and the explanations are provided in Table 1. 

Values FL2 and FL4 indicate that similar interaction states 

exist at the beginning and end of epileptic seizures, as 

shown in Figure 5.

Table 1. Calculated parameters in two sections. 
Description Symbol 
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Fractal dimension before attack FL1 

Fractal dimension at the first bottom of the pattern during attack FL2 

Fractal dimension at the top of the pattern during attack FL3 

Fractal dimension at the second bottom of the pattern during attack FL4 

Fractal dimension after attack FL5 

Time of occurrence of the first bottom of the fractal pattern valley t1 

Time of occurrence of the top of the fractal pattern valley t2 

Time of occurrence of the second bottom of the fractal pattern valley t3 

 
Table 2. Evaluation of fractal dimension during seizures. 

Number of occurs Types of occurs 

209 FL2 < 1.2 

103 FL4 < 1.2 
96 FL3 > 1.8 

61 FL4 <1.2 and FL2 <1.2 

80 FL2 <1.2 and FL3 > 1.8 
13 FL4<1.2 and FL3 > 1.8 

4 FL4<1.2 and  FL2 <1.2 and FL3 >1.8 

1 FL2 < 1.2 

 
Figure 5. Boxplot of fractal dimension values associated with 

four different seizure states. 

In contradiction, statistics indicate that fractal dimension 

and correlation dimension indices decreased in the epilepsy 

state. It was observed that during some seizures, the values 

of the fractal dimension increased compared to the normal 

state (FL3 in Figure 5). Therefore, the fractal dimension 

range alone is insufficient for judgment and deserves 

consideration regarding which value the index is tending to. 

Table 2 summarizes the number of occurrences indicating 

synchronized states of the brain system. As the fractal 

dimension in the normal brain state was between 1.4 and 

1.6, two thresholds of 1.2 and 1.8 were selected to evaluate 

the synchronization during seizures. 

Reviewing the chart and figures, one can determine that the 

values of the peak and trough phases come reasonably close 

to integer values, not in every case, but in many. Thus, two 

forms of synchronization occur during seizures; the trough 

phases have a much greater contribution than the peak 

phases. 

3.3. Phase Space Analysis 

Figure 6 depicts the EEG signals' phase space in normal and 

epileptic seizure state. Since the brain system experiences a 

loss of chaoticity during epileptic seizures, the degrees of 

freedom of the system are also condensed. Thus, the phase 

space trajectories can only move along considerably limited 

paths, increasing the signal's contraction with respect to its 

expansion. 

 

 
Figure 6. Phase space of EEG signals in normal and epileptic 

seizure states. 

 

Since phase space angles characterize the changes in the 

spatial arrangement of points, they seem applicable in 

assessing seizure quality. Figure 7 depicts the frequency 

distribution of both seizure phase and phase space angles for 

a seizure event.

 

 

 

 

 
Table 3. Extracted features from the phase space angles of seizures. 

Symbols    Description 

PRPMean The angle around which the phase space angles of the attacks are grouped, or clustered 

PRPStd The dispersion of the phase space angles about the mean value 

PRPRange The variation range of phase space angles for each attack 

PRPIQR The range which includes 50% of the middle phase space angles 

PRPPrc25 The angle below which 25% or fewer of the phase space angles fall 
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PRPPrc50 The angle below which 50% or fewer of the phase space angles fall 

PRPPrc75 The angle below which 75% or fewer of the phase space angles fall 

PRPKurt The degree of elongation of the phase space angle histogram 

 

 
Figure 7. Histogram of phase space angles relative to a 

seizure in a Lag=4. 

The angle frequency histogram revealed that the phase 

space angles cluster around 45 degrees, and the average 

mean angle across all the seizures is 44.98 degrees. This is 

an indication of the assumptions made about epilepsy that 

the system will naturally move toward and exhibit 

synchrony. In the construct of the phase space, the point 

density that surrounds the bisector indicates that the system 

is moving toward quasi-periodicity, but the contraction of 

the brain system to move precisely away from expansion is 

much greater. Therefore, by defining features based on 

phase space angles, we can begin to show the similarities 

and differences between the seizures. A set of statistical 

features based on angle distributions, termed a PRP, was 

extracted and given in Table 3. 

3.4. Recurrence Plot Analysis  

As shown in Figure 8, there are deterministic and quasi-

periodic behaviors (illustrated by square shapes in the plot) 

in the dynamics of the EEG signal during epileptic seizures. 

In the normal state, the number of recurrence points is much 

lower, suggesting the least amount of signal determinism 

and possibly indicating chaotic behavior instead. It is 

abundantly clear that the different levels of EEG signal 

chaoticity and the presence of a quasi-periodic behavior can 

be present in different seizures. Hence, recurrence 

quantification measures can identify different types of 

similarities and differences among seizures. 

Figure 9 displays boxplots for the three features: DET, 

ENTR, and LAM. The results for the DET feature show that 

determinism increases during epileptic seizures over the 

normal state. 

 
         Figure 8. Recurrence plots in normal and epileptic 

seizure states. 

 
Figure 9. Boxplots of DET, ENTR, and LAM features during 

epileptic seizures. 

3.5. Identifying Seizure Quality  

In previous sections, we extracted and then qualitatively 

evaluated seizure quality based on features predominately 

from three different approaches (fractal pattern, phase 

space, and recurrence plot), calculated three sets of features 

based on our analyses, and applied the feature set to the 

recognition system and identify seizure quality. Seizure 

Quality by Individuals K-Means clustering was then done 

subsequently on 209 recorded seizures from 24 patients 

with temporal lobe epilepsy. The data is presented in Tables 

4-6, with variations in the number of clusters.  

3.6. Identifying the Best Clustering  

Since we made no prior assumption about how many 

clusters we would like to have to categorize the quality of 

seizures, we applied the Davies–Bouldin validation index to 

identify the best clusters. The Davies–Bouldin index was 

calculated for the three clustering results using k=2 to k=10. 

The Davies-Bouldin index curve versus a number of 

clusters is shown in Figure 10. The minimum location gives 

you the optimal number of clusters to implement.  

 

Figure 10. K-Means clustering validation using the Davies–

Bouldin index for the three feature sets. 

 

As evident, using three different approaches, the clustering 

with respect to seizure qualities produced a set of 3-5 quality 

levels for all 209 seizures. Based on the calculated values 

from the Davies-Bouldin index method, the best clustering 

results were conducted through the fractal pattern features, 
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followed by results from the phase space and results based 

on recurrence quantification features.  

3.7. Analysis of Subject-specific Seizure  

For quality or subject-specific analyses of variation in 

seizure quality, first, we examined the K-Means clustering 

results, and then provided the hierarchical clustering results 

for a subject with 40 seizures (Figure 11). Use the 

information with caution and limit the information from a 

subject to either K-Means or hierarchical clustering, as data 

from a subject with multiple seizures can double account for 

variations in quality. 

As observed, for the fractal dimension features, clustering 

points occurred at a higher distance coefficient, indicating 

that even though similarity was low and the clusters were 

eventually combined into a single cluster, this outcome 

indicates that features based on fractal pattern delineated 

greater differentiation of intra-individual seizure quality 

than the other two sets of features, which suggests that the 

individual experienced a larger range of seizure qualities 

over multiple episodes. In comparison, the dendrograms 

based on the other two approaches show more similar intra-

individual seizure qualities.

Table 4. K-Means clustering results based on fractal pattern features. 
Seizures in Cluster 

K=7 K=6 K=5 K=4 K=3 K=2 Clusters 

21 24 23 25 96 87 1 

20 22 74 69 63 122 2 

45 56 47 39 50 - 3 

16 32 38 76 - - 4 

5 64 27 - - - 5 

32 11 - - - - 6 

70 - - - - - 7 

Table 5. K-Means clustering results based on phase space features. 
Seizures in Cluster 

K=7 K=6 K=5 K=4 K=3 K=2 Clusters 

52 52 62 70 66 120 1 

33 1 41 64 74 89 2 

3 35 70 20 69 - 3 

17 17 1 55 - - 4 

42 42 35 - - - 5 

61 62 - - - - 6 

1 - - - - - 7 

Table 6. K-Means clustering results based on recurrence quantification measures. 

Seizures in Cluster 

K=7 K=6 K=5 K=4 K=3 K=2 Clusters 

23 143 20 12 32 173 1 

2 6 156 5 164 36 2 

6 22 18 29 13 - 3 

17 9 4 163 - - 4 

139 2 11 - - - 5 

9 27 - - - - 6 

13 - - - - - 7 

4. Discussion and Conclusion  
In this study, and considering the nature and dynamics of 

the EEG signal we were looking at, we tried to investigate 

domains relevant to this nature - for example, phase space - 

for signal processing. We then compared the results. The 

identification of changes in temporal patterns during 

seizures, the development of pattern-dependent features, 

features from phase space, and the method we used to 

identify seizure quality and variability across individual-

specific seizures have not been previously reported in the 

literature. 

Many different features were compared and distinguished 

from seizures based on particular context. In wearable 

health systems, such as seizure prediction or detection that 

should work without relying on individual differences, 

features could rely on quantifiers based on shared 

characteristics of seizures. Whereas, when trying to find 

characteristics of seizures that are individual-specific, the 

features used to extract these individual-specific 

characteristics have to be more discriminative. 

As shown in Figure 10, the most successful clustering 

created by features from the fractal pattern showed that 

features based on phase space and features based on 

recurrence quantification resulted in lesser performance. 

Furthermore, few seizure qualities were represented across 

multiple seizures for each subject, as shown in Figures 12 

and 13. On average, for optimal clusters, there was 56% 

agreement of seizures within the same cluster (quality) 

using fractal pattern features, 71.54% agreement using 

phase space features, and 87.7% agreement using 

recurrence quantifiers for each person. 

In addition, for the fractal feature group, 74.12% of the 

seizures from the 17 subjects who had more than two 

seizure qualities were represented by two clusters. 

Additionally, 78.38% of the seizures from five subjects who 

had more than three seizure qualities were represented by 

three clusters. Those 17 subjects with fractal feature data did 
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not record individual with five different seizure qualities. 

Similarly, for the phase space features, 77.7% of the 

seizures in four subjects who showed more than two seizure 

qualities were represented by two clusters, while 87.5% of 

the seizures in the subject who showed more than three 

seizure qualities were represented by three clusters. With 

respect to the recurrence quantifiers, 83.9% of the seizures 

in four subjects had more than three seizure qualities, and 

they were also represented by three clusters. 

These findings suggest, on the whole, that seizure quality 

does not significantly differ for each subject despite 

differences between subjects. In fact, it may be inferred that 

the changes in features in recurrent seizures occur in a 

continuous and structured manner. The one derived 

conclusion of the study is that generally, a limited and 

consistent set of qualities are experienced in an overall 

consistent way in multiple episodes by subjects with 

temporal lobe epilepsy. Also, as the study subjects were 

drug therapy-resistant patients, the presence of 

homogeneity across different seizure events was quite 

possible. Also, as each subject presented with a particular 

subset of qualities in their seizures, then the disorder meets 

the requirements for repetitive behavioral patterns in the 

condition, confirming the disturbing assumption that 

epilepsy has deterministic dynamics.  
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