

RESEARCH PAPER Homepage: https://frai.journals.umz.ac.ir/

Future Research in AI & IoT, 2025, 1(1) DOI:

© 2024 by the authors. Licensee FRAI, Babolsar, Mazandaran. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/deed.en)

ISSN

 MDEU-A2C: A Mobility, Deadline, Energy and Utilization-Aware

Multi-Agent A2C Scheduling Approach to Support Fog and Edge

Computing in IoT Applications

Armin Mohammadi Ghaleh1, Sayed Gholam Hassan Tabatabaei2*

1 K. N. Toosi University of Technology, Tehran, Iran, armin.m.ghaleh@gmail.com

2 Department of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran, tabatabaei@mut.ac.ir

Article Info

Received -----

Accepted -----

Available online -----

 Abstract:

Mobile Edge Computing reduces latency and response time by bringing computational resources

closer to end-user. However, user mobility poses a significant challenge, as users continuously

move between coverage areas of different edge nodes with limited range. This dynamic

environment demands efficient scheduling mechanisms that can adapt to user movement while

meeting application deadlines and optimizing edge resource utilization. This paper proposes an

approach for scheduling based on Deep Reinforcement Learning, specifically using an Advantage

Actor-Critic architecture within a Fog and Edge computing framework for IoT applications. The

method enables distributed decision-making by deploying actor agents at edge nodes and a

centralized critic at the fog node, facilitating continuous adaptation through system-wide

feedback. User mobility is addressed using location prediction via RNN models embedded at

each edge node, allowing proactive and informed offloading decisions. Experimental results

demonstrate the proposed approach significantly improves task completion rate by 50%, failure

rate by 26%, and response latency by 60%, while also adapting well to dynamic environments,

outperforming state-of-the-art methods in real-world-inspired scenarios.

© 2025 University of Mazandaran

Keywords:

Mobile Edge Computing (MEC);

Fog and Edge Computing (FEC);

Multi-Agent Reinforcement

Learning;

Advantage Actor-Critic (A2C)

Decentralized Scheduling.

*Corresponding Author: tabatabaei@mut.ac.ir

Supplementary information: Supplementary information for this article is available at https://frai.journals.umz.ac.ir/

Please cite this paper as:

1. Introduction

The rise of data-intensive applications in areas such as

autonomous driving, augmented reality, and mobile health

has led to the development of Mobile Edge Computing

(MEC), which brings data processing and services closer to

end-users and IoT devices [1]. By shifting computation

from centralized cloud data centers to distributed edge

nodes, MEC can significantly reduce latency, improve real-

time responsiveness, and decrease network load [2].

However, MEC systems face considerable challenges due to

the limited computational resources of edge nodes, which

calls for efficient, adaptive scheduling to manage workloads

in real-time.

To address these challenges, Fog and Edge Computing

(FEC), a layered model linking resource-limited edge

devices with more powerful intermediate fog nodes, has

emerged as a promising framework [3]. This architecture

enables dynamic task offloading and resource sharing

between edge and fog, effectively extending the system’s

capabilities [4]. Yet, scheduling in MEC remains complex,

as it must account for device heterogeneity, limited

resources, and client mobility, which may require frequent

task migrations to keep up with moving clients [5].

Conventional scheduling methods, often based on heuristics

or rules, struggle to adapt to these dynamic and diverse

environments [6].

Deep Reinforcement Learning (DRL) offers a flexible

solution, with its ability to adapt continuously to changing

system states and autonomously develop optimized

scheduling strategies [7]. DRL-based scheduling has proven

effective in MEC, supporting goals like reduced latency,

energy efficiency, and intelligent task offloading [8].

However, existing DRL approaches frequently assume

static conditions or overlook complexities such as mobile

clients and edge node diversity, which limits their

applicability in real-world scenarios [9].

To fill this gap, we propose a distributed Advantage Actor-

Critic (A2C) scheduling approach designed to handle

MEC’s resource constraints, client mobility, and

heterogeneous environment. By dynamically distributing

tasks based on real-time system states, our approach

optimizes task placement according to each node's

capabilities, current load, and mobility patterns, thereby

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

2

achieving efficient task management across the MEC

landscape.

Our main contributions are as follows:

1. Decentralized Decision-Making: Each edge node

operates independently with an actor module,

deciding whether to process tasks locally or offload

them to other nodes, minimizing communication

delays and improving scalability.

2. Centralized Feedback from Fog Node: Acting as a

central critic, the fog node gathers system-wide

information and provides feedback to edge nodes,

enhancing task scheduling coherence.

3. Mobility Prediction: Using an RNN model to

predict the future location of client devices to make

task scheduling more efficient.

4. Offload/Migration Destination: Find the best edge

by creating a 3-dimensial Pareto Set and offloading

or migrating a task to it.

5. Real-Time Simulation Testing: We validate our

approach with real-time simulations, using Docker

containers to emulate a realistic FEC environment

and assess performance.

The rest of the paper is organized as follows: Section II

reviews related works; Section III presents the system

model; Section IV details the proposed scheduling

approach; Section V evaluates our approach; and Section VI

concludes the paper.

2. Related Work

Mobile and Vehicular Edge Computing (MEC and VEC)

have gained significant traction as frameworks to enable

real-time data processing closer to end-users, addressing the

latency and resource constraints of traditional cloud

computing. Given the dynamic and resource-limited nature

of edge environments, task scheduling and resource

allocation have been extensively studied, with recent

approaches focusing on leveraging Deep Reinforcement

Learning (DRL) for intelligent, adaptive scheduling. Each

of the reviewed methods below addresses specific gaps in

MEC and VEC task scheduling but falls short of providing

a comprehensive solution that addresses all the complexities

of highly dynamic, multi-user edge environments.

The [10] scheduling model adopts a Multi-action

Environment-adaptive Proximal Policy Optimization

(MEPPO) algorithm to tackle energy efficiency and priority

awareness in VEC, especially under fluctuating vehicular

traffic and variable resource availability. MEPPO addresses

these gaps by jointly scheduling tasks and optimizing

resource allocation, focusing on dynamic priority

assignment and power control for efficient energy

consumption. Although it effectively manages time-

sensitive tasks in mobile environments, it does not explicitly

address the complexities introduced by task dependencies

or large-scale, multi-user systems.

In parallel, MARINA [11], a mobility and deadline-aware

scheduling mechanism, focuses on real-time task

scheduling in VEC environments with high vehicular

mobility. MARINA utilizes LSTM-based mobility

prediction and Pareto optimization to prioritize tasks by

deadline while leveraging a Bin Covering Problem (BCP)-

based heuristic for efficient task distribution across edge

resources. While it improves deadline adherence and

resource utilization, its heuristic-based design may struggle

to adapt rapidly in highly dynamic and heterogeneous

environments, particularly as the number of users and tasks

grows.

Addressing decentralized decision-making, DOSA [12]

employs a Double Deep Q-Network (Double-DQN)

combined with Dueling DQN and Prioritized Experience

Replay, allowing each edge device to make independent

task scheduling decisions without centralized control. This

decentralized model reduces communication overhead and

enables concurrency by processing multiple tasks

simultaneously across edge nodes. However, DOSA’s focus

on concurrency does not account for task dependencies,

which are critical in applications requiring sequential task

execution and optimal resource sharing.

In scenarios requiring freshness of information, an Age-

Based DRL approach [13] incorporates Post-Decision

States (PDS) with Deep Deterministic Policy Gradient

(DDPG) to directly optimize the Age of Information (AoI).

This method redefines AoI for event-driven data updates,

making it suitable for applications with strict real-time data

requirements. However, its focus on AoI does not translate

well to multi-task, multi-user MEC environments where

task interdependencies and varying user demands

complicate scheduling dynamically.

For edge-cloud systems with significant variability, the

A2C-DRL [8] framework utilizes Advantage Actor-Critic

(A2C) DRL to balance task loads across edge resources

dynamically. Its decentralized scheduling allows for

distributed load balancing and rapid task assignment,

leveraging prioritized experience replay to enhance learning

speed. While effective in improving resource utilization in

edge-cloud systems, it does not sufficiently address task

dependencies or the rapid changes in resource demand

common in dense, multi-user edge environments.

A distinct solution for nonstationary environments is Meta-

PPO [14], a multiagent meta-reinforcement learning

approach designed for noncooperative, multi-user MEC

systems. By integrating Model-Agnostic Meta-Learning

(MAML) within a Proximal Policy Optimization (PPO)

framework, Meta-PPO enables each agent (user) to learn

adaptive scheduling policies based on prior knowledge,

allowing rapid adjustment in nonstationary edge

environments. Though powerful in handling competitive

environments, Meta-PPO’s multiagent design assumes

static task requirements, lacking explicit mechanisms to

handle interdependent tasks or dynamic priority shifts.

For collaborative VEC applications, an asynchronous

A3C-based DRL approach combines V2V and V2I

offloading for cross-layer resource orchestration [15]. By

integrating hybrid offloading strategies, the model enables

multi-resource orchestration across vehicle, edge, and cloud

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

3

layers. However, its design does not fully capture the

requirements of non-cooperative, large-scale edge networks

where independent scheduling agents must balance

dependencies and dynamically adapt to varying task

priorities.

In addressing task dependencies, a Graph Attention

Network (GAT) integrated with Proximal Policy

Optimization (PPO) models dependent task offloading in

edge environments by encoding tasks as Directed Acyclic

Graphs (DAGs) [16]. This approach uses the GAT to capture

task dependencies, allowing the DRL scheduler to manage

complex offloading in multi-user settings. Despite

effectively handling task dependencies, this GNN-based

approach is limited in addressing resource variability and

user mobility common in real-time MEC environments.

The reviewed methods address various critical aspects of

MEC and VEC scheduling, including mobility prediction,

deadline sensitivity, dependency management, and resource

adaptability. However, a gap remains in efficiently

integrating decentralized decision-making, adaptability to

dynamic multi-user environments, and dependency-aware

scheduling in highly heterogeneous edge systems. Many

current approaches focus on specific elements, such as

mobility or energy efficiency, without fully addressing the

combined complexities of heterogeneous environments,

task dependencies, and real-time client mobility. This gap

highlights the need for a more comprehensive framework

that can dynamically adapt to the unique demands of MEC

environments while ensuring efficient resource usage across

diverse edge devices. Table 1 summarizes the reviewed

research.

Table 1. Summary of Related Works

Work Method Offload Migration Energy Bandwidth Computation Resource Mobility

[1] PPO x x x x x

[2] Pareto Set, BCP x x x x

[3]
Double-DQN,

Dueling DQN
x x

[4] DDPG x x

[5] A2C x x x x

[6] Meta-RL x x

[7] A3C x x x x x

[8] PPO x x

Proposed A2C x x x x x x

3. System Model and Problem Definition

This section presents the system model, including the edge

device and task representations, network and

communication models, and computation models. We also

define the optimization objective to minimize task

execution time, energy consumption, and resource

utilization across the network.

3.1. Edge Device Model

Let 𝐸𝑛 = {𝑒1, 𝑒2, … , 𝑒𝑛} denote the set of edge devices in

the system, where 𝑛 represents the total number of edge

devices. Each edge device 𝑒𝑖 is defined as:

𝑒𝑖 =< 𝐼𝐷𝑒𝑖
, 𝐶𝑒𝑖

, 𝑃𝑒𝑖
, 𝐵𝑒𝑖

, 𝐸𝑒𝑖
> 1

where:

• 𝐼𝐷𝑒𝑖
: Unique identifier of the edge device 𝑒𝑖.

• 𝐶𝑒𝑖
: Available CPU resources of 𝑒𝑖 , represented as

the number of CPU cycles per second.

• 𝑃𝑒𝑖
: RAM resources of 𝑒𝑖, representing the memory

capacity in GB.

• 𝐵𝑒𝑖
: Bandwidth resources available to 𝑒𝑖,

representing the maximum data transmission

capacity in Mbps.

• 𝐸𝑒𝑖
: Current energy level in watt, relevant for

battery-powered edge devices

3.2. Task Model

Let 𝑅𝑘 = {𝑟1, 𝑟2, … , 𝑟𝑘} represent the set of tasks, where 𝑘

is the total number of tasks in the system. Each task 𝑟𝑖 is

defined as:

𝑟𝑖 =< 𝐼𝐷𝑟𝑖
, 𝐼𝑟𝑖

, 𝐷𝑟𝑖
, 𝑌𝑟𝑖

> 2

where:

• 𝐼𝐷𝑟𝑖
: Unique identifier of the task 𝑟𝑖.

• 𝐼𝑟𝑖
: Data size of 𝑟𝑖, representing the input data size

required for processing in bytes.

• 𝐷𝑟𝑖
: Deadline by which the task (𝑟𝑖) must be

completed.

• 𝑌𝑟𝑖
: CPU cycles required for 𝑟𝑖, representing the

total computation demand.

3.3. Decision Model

The action 𝐴 taken for a task 𝑟𝑖 can be represented as:

𝐴 = {0,1} 3

where:

• 𝐴 = 0: The task continues running on the local

edge device without migration.

• 𝐴 = 1: Task is either offloaded to another edge or

migrated, depending on whether it is actively

executing.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

4

3.4. Network Model

The network model includes edge-to-edge (E2E) and edge-

to-fog (E2F) communication links, with different data

transmission rates calculated based on the specific channel

characteristics. This work, does not consider

communication links between client and edge devices

(C2E) and keeps track of everything from the moment a task

arrives at an edge device until it finishes its execution, as

illustrated in Figure 1. We use and modify the network

model of [1].

Figure 1. Network Model

3.4.1.Edge-to-Edge (E2E)

Data transmission rate 𝑅 between two edge devices 𝑖 and 𝑗

is given by:

𝑅𝑖,𝑗 = 𝜂𝑗 . 𝐵𝑖 . 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖,𝑗) 4

where:

• 𝜂: Proportion of bandwidth allocated to this

transmission, with ∑ 𝜂𝑗 ≤ 1. By utilizing the full

available bandwidth, more data can be transmitted

simultaneously, resulting in higher data

transmission rates.

• 𝐵: Total bandwidth resource.

• SNR (Signal-to-Noise Ratio) for E2E is defined as:

𝑆𝑁𝑅𝑖,𝑗 =
𝑃𝑖,𝑗 . 𝐺𝑖,𝑗

𝜀𝑖,𝑗 . 𝑑𝑖,𝑗 + 𝜎𝑖,𝑗
2

 5

where 𝑃𝑖,𝑗 is the transmit power, 𝐺𝑖,𝑗 is the channel gain,

𝜀𝑖,𝑗 represents path loss, 𝑑𝑖,𝑗 is the transmission distance,

and 𝜎𝑖,𝑗
2 is the Gaussian noise.

3.4.2.Edge-to-Fog (E2F)

Data transmission rate 𝑅 from an edge device 𝑖 to the fog

node 𝑔 is given by:

𝑅𝑖,𝑔 = 𝜂𝑖. 𝐵𝑔. 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖,𝑔) 6

where the SNR for E2F communication is defined as:

𝑆𝑁𝑅𝑖,𝑔 =
𝑃𝑖,𝑔. 𝐺𝑖

𝐼𝑖,𝑔 + 𝜎2
𝑖,𝑔

 7

where 𝐼 = ∑ 𝑃𝑖,𝑔. 𝐺𝑔 represents the interference noise from

other transmissions, with other parameters as defined

above.

3.5. Computation Model

The task execution time 𝑇 and energy consumption 𝐸 are

calculated based on the selected action 𝐴:

3.5.1.Local Execution (𝑨 = 𝟎)

Execution time 𝑇 includes only the local computation time

𝑇𝑒𝑥𝑒 and queuing time 𝑇𝑞𝑢𝑒𝑢𝑒, given by:

𝑇 = 𝑇𝑒𝑥𝑒 + 𝑇𝑞𝑢𝑒𝑢𝑒 8

where 𝑇𝑒𝑥𝑒 =
𝑌

𝐶
 with 𝑌 as the CPU cycles required and 𝐶

as the CPU resource of the edge device.

Energy consumption 𝐸 for local execution is:

𝐸 = 𝜀. (𝑓)𝛾 . 𝑌 9

where 𝑓 is the CPU frequency and 𝛾 is a constant reflecting

the energy coefficient of the edge device.

3.5.2.Migration/Offload (𝑨 = 𝟏)

Execution time 𝑇 includes memory dump of executing task

𝑇𝑑𝑢𝑚𝑝, transmission time 𝑇𝑡𝑟𝑎𝑛𝑠, execution time at

destination edge device 𝑇𝑒𝑥𝑒 , and any potential registry and

queue delays:

𝑇 = 𝑇𝑑𝑢𝑚𝑝 + 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑒𝑥𝑒 + 𝛿. 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 + 𝑇𝑞𝑢𝑒𝑢𝑒 10

where 𝛿 is a binary indicator for whether registry time

applies. If source code for executing the task cannot be

provided by edge device, fog should provide it and send the

source code to the edge node, hence 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 defined as

follows:

𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 = 2 ∗ 𝑇𝑓𝑜𝑔−𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑓𝑜𝑔−𝑒𝑥𝑒𝑐 11

where 𝑇𝑓𝑜𝑔−𝑡𝑟𝑎𝑛𝑠 is transmission time to fog and

𝑇𝑓𝑜𝑔−𝑒𝑥𝑒𝑐 is source code packaging time.

The 𝑇𝑑𝑢𝑚𝑝 is pre-migration process’s time, this procedure

includes stop task’s process (SIGSTOP), dump any

information exists in edge’s memory and package all files,

including any intermediate files that task may create.

Energy consumption 𝐸 for migration is calculated as:

𝐸 = 𝜀. (𝑓)𝛾. 𝑌𝑙𝑒𝑓𝑡 + 𝑝.
𝑑𝑢𝑚𝑝

𝑅
 12

For simple offloading, 𝑇 and 𝐸 are modified as:

𝑇 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑒𝑥𝑒 + 𝛿. 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 + 𝑇𝑞𝑢𝑒𝑢𝑒 13

𝐸 = 𝜀. (𝑓)𝛾. 𝑌 + 𝑝.
𝐼

𝑅
 14

3.6. Resource Utilization Model

The resource utilization 𝑈 is calculated as a weighted sum

of CPU (𝐶), RAM (𝑃), and bandwidth (𝐵) usage:

𝑈 = 𝛼1. 𝐶𝑈𝑠𝑎𝑔𝑒 + 𝛼2. 𝑃𝑈𝑠𝑎𝑔𝑒 + 𝛼3. 𝐵𝑈𝑠𝑎𝑔𝑒 15

where 𝛼1 + 𝛼2 + 𝛼3 = 1 are the weighting factors and 𝐶

is usage as a percentage of available cycles, 𝑃 is usage as a

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

5

percentage of used GB capacity, and 𝐵 as a percentage of

Mbps capacity.

3.7. Problem Formulation

The objective function for the system model is to minimize

a weighted combination of task execution time 𝑇, energy

consumption 𝐸, and resource utilization 𝑈:

𝑜𝑏𝑗 → 𝑚𝑖𝑛{𝜔1. 𝑇 + 𝜔2. 𝐸 + 𝜔3. 𝑈} 16

with 𝜔1, 𝜔2, and 𝜔3 reflecting their relative importance.

4. MDEU-A2C

The A2C algorithm is a powerful DRL approach that

combines two primary components: an actor, which selects

actions based on a policy, and a critic, which evaluates these

actions by estimating the value of each state-action pair.

A2C works synchronously, where multiple agents interact

with the environment and update the network

synchronously, stabilizing the training process.

The actor learns a policy 𝜋𝜃(𝑎|𝑠), which maps the current

state 𝑠 to an action 𝑎 based on parameters 𝜃.

The critic learns a value function 𝑉(𝑠; 𝜔), which estimates

the expected reward of state 𝑠 under the current policy, with

parameters 𝜔.

The key feature in A2C is the use of an advantage function,

which quantifies how much better an action 𝑎 is compared

to the average action taken in state 𝑠. The advantage

function 𝐴(𝑠, 𝑎) is defined as:

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) 17

where 𝑄(𝑠, 𝑎) is the action-value function. In A2C, we

approximate the advantage function using the temporal

difference (TD) error:

𝐴(𝑠, 𝑎) ≈ 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠) 18

where 𝑟 is the reward, 𝛾 is the discount factor, and 𝑠′ is the

next state.

The total loss ℒ in A2C combines both policy loss (actor)

and value loss (critic) as well as an entropy term to

encourage exploration:

ℒ = ℒ𝑝𝑜𝑙𝑖𝑐𝑦 + 𝛼ℒ𝑣𝑎𝑙𝑢𝑒 + 𝛽ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦 19

 The policy loss ℒ𝑝𝑜𝑙𝑖𝑐𝑦 is computed by maximizing the

expected advantage:

 ℒ𝑝𝑜𝑙𝑖𝑐𝑦 = −𝔼𝜋𝜃
[𝐴(𝑠, 𝑎) 𝑙𝑜𝑔 𝜋𝜃(𝑎|𝑠)] 20

The value loss ℒ𝑣𝑎𝑙𝑢𝑒 minimizes the error between the

estimated value 𝑉(𝑠) and the expected return 𝑟 + 𝛾𝑉(𝑠′):

ℒ𝑣𝑎𝑙𝑢𝑒 =
1

2
(𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠))

2
21

The entropy loss ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝜋(𝑎|𝑠) log 𝜋(𝑎|𝑠)𝛼

encourages exploration by penalizing highly confident

action probabilities.

Our proposed scheduling method in an MEC environment

utilizes a multi-agent A2C framework with distinct actor

and critic roles distributed across edge devices and a central

fog node. Actors reside on each edge device and make real-

time, local decisions regarding task scheduling and

offloading based on a limited set of observed states. Each

actor is trained to optimize task execution locally while

balancing network and resource constraints. A centralized

critic is located at the fog node, where it has a global view

of the system, seeing the combined state across all edges.

The critic evaluates actions taken by each actor, providing

feedback to improve decision-making across the system.

This structure enables each actor to focus on optimizing its

own resource allocation based on its immediate

environment, while the critic guides these decisions toward

an overall system optimization.

The actor’s state 𝑆𝑎𝑐𝑡𝑜𝑟 represents the local observations

at each edge device:

𝑆𝑒𝑗
𝑎𝑐𝑡𝑜𝑟 = {𝐼𝑟𝑖

, 𝐷𝑟𝑖
, 𝑇𝑟𝑖,𝑒𝑗

𝑒𝑥𝑒𝑐 , 𝑑𝑟𝑖,𝑒𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
, 𝑈𝑒𝑗

, 𝐸𝑒𝑗
, 𝑘𝑒𝑗

} 22

where 𝑇𝑟𝑖,𝑒𝑗
𝑒𝑥𝑒𝑐 =

𝑌𝑟𝑖

𝐶𝑒𝑖

 is execution time of task 𝑟𝑖 in edge 𝑒𝑗 ,

𝑑𝑟𝑖,𝑒𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is predicted distance between the edge device and

the client device, based on mobility forecasts and 𝑘𝑒𝑗
 is

count of tasks currently being processed on the edge device.

This information allows each actor to make real-time

decisions based on immediate, local conditions, optimizing

for both task completion and resource utilization.

The critic’s state 𝑆𝑐𝑟𝑖𝑡𝑖𝑐 provides a global view of the

system, encompassing aggregated data across all edges:

𝑆𝑐𝑟𝑖𝑡𝑖𝑐 = {𝐼,̅ �̅�, �̅�, 𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑈, �̅�, 𝐶̅} 23

where �̅� is the average deadline across all tasks in the

system, 𝐼 ̅is the average size of tasks, �̅� represents the

average CPU cycle requirement for tasks execution,

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the average predicted distance from edge devices

to clients and lastly, 𝑈, �̅� and 𝐶̅ represents the average

resource information of all edges. By using the global state

𝑆𝑐𝑟𝑖𝑡𝑖𝑐, the critic can calculate a more holistic advantage

value that considers the system-wide impact of each

decision, helping to guide actors toward actions that benefit

the entire network.

The reward function is carefully designed to encourage

optimal scheduling by balancing time efficiency, resource

utilization, energy efficiency, and task migration costs. The

reward function 𝑅 is defined as:

𝑅 = 𝛼0. 𝑇𝑖𝑚𝑒 + 𝛼1. 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝛼2. 𝐸𝑛𝑒𝑟𝑔𝑦
−𝛼3. 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 24

where 𝑇𝑖𝑚𝑒 = |𝐷𝑟𝑖
− 𝑇𝑟𝑖,𝑒𝑗

𝑒𝑥𝑒𝑐|, 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = |𝑈𝑛𝑒𝑥𝑡 − 𝑈|,
𝐸𝑛𝑒𝑟𝑔𝑦 = |�̅�𝑛𝑒𝑥𝑡 − �̅�|, 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 is number of

migrations until task finish execution, 𝛼0, 𝛼1, 𝛼2 and 𝛼3 are

weight coefficients representing the importance of each

term in the reward. These components help balance the

competing objectives of latency, efficiency, energy

conservation, and stability (reduced migrations).

There are two possible actions (𝐴) available for task

execution:

{
𝐴 = 0 𝐿𝑜𝑐𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝐴 = 1 𝑂𝑓𝑓𝑙𝑜𝑎𝑑/𝑀𝑖𝑔𝑎𝑟𝑡𝑖𝑜𝑛 25

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

6

Figure 2 shows the architecture consists of separate

networks for the actor (policy network) and the critic (value

network). In the actor network, the Input Layer takes the

actor's local state 𝑆𝑎𝑐𝑡𝑜𝑟, Hidden Layers are three dense

layers with 256 neurons each, using the mish activation

function [9], which promotes gradient flow and learning

efficiency, and the Output Layer is a softmax layer that

outputs a probability distribution over possible actions. In

the critic network, the Input Layer receives the global state

𝑆𝑐𝑟𝑖𝑡𝑖𝑐, Hidden Layers are dense layers with 256, 128, and

64 neurons sequentially, using the mish activation, and the

Output Layer is a single linear output providing the state-

value 𝑉(𝑠), which estimates the expected return from the

global state.

Figure 2. Policy and Value Network Architecture

Neural networks have gained increasing attention from

academia and industrial groups for the accurate predictions

offered by their various models. In this scenario, a Recurrent

Neural Network (RNN) is a deep learning approach that

extends the traditional feed-forward networks with internal

cycles [10]. To handle client mobility in our environment,

we employ an RNN-based model to predict the future

location of a device. Specifically, we aim to forecast the

device’s location at the exact time when the task’s deadline

will be reached, simplifying the scheduling process and

reducing resource overhead at the edge nodes. Instead of

using a detailed time-series of predicted locations over the

entire task duration, we focus only on the estimated final

location at the deadline, minimizing computational

demands. The RNN model, shown in Figure 3, is structured

as follows:

• Input Sequence: This includes previous

coordinates (𝑋, 𝑌) of a device, combined with the

task's deadline. These inputs enable the model to

account for both spatial position and temporal

constraints.

• Recurrent Layers: The model consists of two

RNN layers, each with 50 units, to learn temporal

dependencies in the movement pattern of the

device. These recurrent layers enable the RNN to

capture patterns in the device’s movement over

time, making it well-suited for location prediction.

• Dense Layers: Following the RNN layers, we

incorporate fully connected (dense) layers with

ReLU activation. These layers refine the high-level

features extracted by the RNN layers, ensuring a

smooth transition from sequence information to

coordinate prediction.

• Output Layer: The final output is a linear layer

that provides the predicted future coordinates

(𝑋′, 𝑌′), which represent the device’s expected

location when the task reaches its deadline. This

prediction allows the scheduling mechanism to

consider where the client device will likely be

when deciding where to execute the task, thus

improving scheduling accuracy in a dynamic

environment.

In a standard RNN layer, each unit maintains a hidden state

that is updated at each time step based on the input sequence

and the previous hidden state. Let’s denote the input

sequence at time 𝑡 as 𝑥𝑡 = [𝑋, 𝑌, 𝐷], where 𝐷 represents the

task deadline. The hidden state ℎ𝑡 is computed as:

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏ℎ) 26

where 𝑊ℎ and 𝑊𝑥 are the weight matrices for the hidden

state and the input, respectively, 𝑏ℎ is the bias term and 𝜎 is

an activation function, typically tanh or ReLU.

The RNN then produces an output at each step, and the

final output is passed through dense layers to compute the

predicted location (𝑋′, 𝑌′). The dense layers refine the

representation and ultimately generate the coordinates by:

(𝑋′, 𝑌′) = 𝑊𝑜𝑢𝑡ℎ𝑇 + 𝑏𝑜𝑢𝑡 27

where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the weights and biases for the

output layer.

By using RNNs in this way, we leverage their strengths in

capturing temporal dependencies, making them a powerful

choice for predicting future positions in dynamic, mobile

environments. This allows the scheduling system to

anticipate each device's location, providing more accurate

and efficient task scheduling across edge and fog nodes.

Figure 3. RNN Network Architecture

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

7

This comprehensive approach integrates multi-agent

reinforcement learning, system-wide critic guidance,

mobility prediction, and resource-aware reward design to

enable efficient task scheduling in a dynamic, resource-

constrained MEC environment. Each component works

synergistically to achieve a balance between real-time task

execution, resource utilization, energy efficiency, and

reduced migration costs.

As it has been said, two possible actions are available for

task execution: local execution on the current edge device

or offload/migration to another edge device. If the decision

is made to offload or migrate a task, the fog node selects the

optimal destination edge for task processing. This decision

is made by evaluating multiple factors within a 3D Pareto

Set, consisting of the following dimensions:

• Edge-to-Client distance: The physical distance

between the edge node and the client device (since

fog knows the whole system state, it knows where

the client is). Minimizing this distance can reduce

communication latency, which is crucial for real-

time applications.

• Edge-to-PredictedLocation distance: As client

mobility is anticipated, the RNN-based prediction

model forecasts the client’s future location. The

fog node considers the distance from the edge to

this predicted location to ensure that the offloaded

task remains within a reasonable range of the

client’s future position, thereby minimizing

latency even as the client moves.

• Estimated processing time: The computation

time estimated for the task at each potential

destination edge device. This estimate considers

the current load and computational capacity of

each edge, aiming to choose a destination that can

meet the task’s deadline requirements.

The Pareto Set approach is widely respected in decision-

making frameworks for its ability to handle conflicting

criteria and allow for trade-offs. Instead of a single optimal

solution, the Pareto front provides a set of "efficient"

solutions, each representing a different balance between

criteria. For example, a task scheduling decision could

balance proximity to the client, energy consumption, and

expected processing delay, depending on real-time system

priorities. This technique is particularly beneficial in

environments with heterogeneous and dynamic resource

availability [11] [12].

The metrics chosen for the Pareto Set are critical because

they collectively balance communication latency,

adaptability to client mobility, and computational efficiency.

By considering these metrics, the system optimizes task

scheduling decisions that accommodate both current

resource constraints and anticipated changes in client

location, ensuring low-latency, energy-efficient task

processing in dynamic edge environments. The fog node

evaluates each candidate edge in terms of these three criteria

and identifies the optimal offload destination using Pareto

optimization. A Pareto set identifies the set of edge nodes

that are not outperformed across all three criteria, ensuring

a balanced compromise between latency, mobility support,

and processing efficiency. This approach aligns with the

methodologies highlighted in the paper [2], which discusses

the use of Pareto optimization for scheduling in mobile and

deadline-sensitive edge environments, ensuring that the

offloaded tasks are processed at the most suitable edge

device, enhancing both performance and adaptability to

client mobility. By leveraging Pareto-based selection, the

fog node can effectively balance the trade-offs between

proximity to clients, latency, and processing time, thereby

supporting high-quality service in vehicular edge

computing applications. Figure 4 shows the workflow of the

proposed method and, Figure 5 shows the workflow of the

offloading process.

Figure 4. MDEU-A2C Workflow

Figure 5. Offload Workflow of MDEU-A2C

Algorithm 1 demonstrates the main process inside an edge

node and Algorithm 2 shows the main process of the fog

node.

5. Results & Discussion

In this section, we first describe implementation details and

experimental setups, then present evaluation results and

discussion.

5.1. Implementation and Experimental Setting

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

8

In the evaluation environment, a Docker [13] container is

created for each server (Edge, Fog, or Cloud), with all

designated modules inside. Since Docker allows resource

limitations, these containers can operate with resources

similar to real-world devices. As a result, all components

mimic real-world conditions, except for task execution. In

real scenarios, tasks run inside a Docker container on an

edge node. Here, tasks are executed as separate processes,

and edge containers manage these processes just as real

edge devices manage containers.

Algorithm1: Scheduling process in Edge

Initialize paramters and policies

While true:

requests=Collect tasks from clients;

requests=requests+(Running Tasks);

locations=RNN(requests)

edge_info=Collect Edge nodes information

decisions=Actor(requests,locations,edge_info)

for d in decisions

if d==local

Execute(d.task) / Continue(d.task)

else

destination=Get_destination(d.task)

Offload(d, destination) /

Migration(d,destination)

Send(decisions,logs)

optimize_info=Receive optimization data

from fog

Actor_Optimize(optimize_info.a2c)

RNN_Optimize(optimize_info.rnn)

Algorithm2: Main process in Fog

Initialize paramters and policies

for timestep t = 1,2,...

logs=Collect decisions and logs

requests=Collect requests for

offload/migration

for r in requests

P=ParetoSet(r)

Send(requests.edge,P[0])

for l in logs

if task in l is done

optimize_info=Optimize(l,all_edges)

Send(task.edge,optimize_info)

For evaluation, one container is designated as the client,

and a separate process is created for each considered client.

These processes are responsible for task generation, sending

requests, and executing tasks. Parameters such as

geographical location, transmission power, speed, and client

movement direction are set as fixed and simulated.

This environment enables more realistic and accurate

evaluations of scheduling methods and provides a

foundation for future research in this area. For evaluation

purposes, each container must include a module for

collecting logs and data to analyze and compare different

approaches.

Comparative methods were evaluated in different

environments; implementing them in this environment may

lead to slight changes in the proposed algorithms (but no

major changes are expected).

All communication between fog and edge is conducted

using the MQTT protocol, one of the most commonly used

protocols in such scenarios. The Mosquitto [14] broker an

open-source and high-performance tool placed in the Fog

node, is used for implementation. Each edge has a dedicated

channel that both the fog and the respective edge subscribe

to and publish relevant messages. The sequence diagram of

communication is shown in Figure 6.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

9

Figure 6. Communication's Sequence Diagram

All services are implemented using Python 3.11 [15]. As

mentioned, Docker containers are used to run FEC services.

For simulation, edges are randomly positioned in a 2D space

with maximum coordinates of (-200, -200) to (200, 200).

Each edge also receives a random coverage radius. A client

must connect to an edge if it falls within its coverage (i.e., a

ground station). To simulate client movement, 50 random

paths are generated, each assigned to a different client.

Clients move along these paths at random speeds and

connect to edges when within their coverage. Clients are

aware of the edge positions and their coverage radii, and use

this information to determine the appropriate edge to

connect to.

Client-Edge communication takes place via TCP/IP

sockets. As soon as a client enters an edge's coverage area,

it sends a keep-alive message containing its location and ID.

This message is periodically sent to maintain the

connection. On the edge side, a separate thread is allocated

for each connected client to handle communication and

messages. Clients periodically select a task randomly from

a list of predefined tasks and send it to the edge. Upon

receiving a task message, the edge moves the request

information to a PENDING_TASKS list. The Scheduler

service, implemented as a separate thread on the edge,

periodically checks this list. After predicting the client’s

future location using an RNN model, the Actor module in

the service makes the final decision.

If the decision is to execute locally, the task is moved to the

EXECUTION_TASK list. If offloading or migration is

chosen, the edge requests the target destination from the

Fog, and once it responds, the task is processed accordingly.

A separate thread is responsible for managing the execution

of tasks, checking periodically and executing them as

needed. If the client is still connected to the edge, the

response is sent back upon completion. When the Fog

receives a TASK_DONE message indicating task

completion, it runs the optimization process. It uses the

device’s initial and final locations during the task to

optimize the RNN model and sends updated data to all

edges for further optimization. Additionally, the Critic

model in the Fog performs optimization and sends updated

information to the corresponding edge for updating its local

Actor model. The architecture of the Actor, Critic, and RNN

networks is provided in the Table 2. During offloading, the

source edge sends the task to the target edge over a TCP/IP

socket. The target edge receives and adds it to its

EXECUTION_TASK list. For migration, CRIU is used. The

currently running process is paused (using SIGSTOP), and

a memory dump of the process is created using CRIU. This

dump, along with task metadata, is transferred via a TCP/IP

socket to the destination edge, which restores the task and

resumes execution. Tasks can be moved between multiple

edges based on scheduler decisions until execution is

complete.

Table 2. Model's Parameters

Parameters Layers Model

Learning-Rate=

0.000001

Gamma=0.9

Epsilon=0.0001

Dense(64,ReLU)-

Dense(64,ReLU)-

Dense(2,Softmax)
Actor

Dense(64,ReLU)-

Dense(64,ReLU)-

Dense(1,Softmax)
Critic

Learning-

Rate=0.001

RNN(50)-Dropout(0.3)-

RNN(50)-Dense(8,ReLU)-

Dropout(0.3)-Dense(2,Linear)
RNN

As stated, Docker enables resource limitations for

containers. Hence, the defined edge nodes have constrained

resources to better reflect real-world conditions. Resource

specifications for edge nodes are provided in Table 3. Each

edge is assigned a random combination of these resources.

Table 3. Edge's Resources

Container Resources

CPU RAM Bandwidth

Edge 1 Core 1 Gb 4 Mbps

2 Core 2 Gb 6 Mbps

3 Core 3 Gb 8 Mbps

Fog 3 Core 8 Gb 16 Mbps

 Table 4 provides the list of processing services; we have

implemented eleven functions, as detailed in the reference

[16]. Their source codes reside in the Fog. If an edge

receives a task without the necessary service code, it

requests it from the Fog.

Table 4. Execution Services

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

10

Function

Name
CPU RAM Disk Network Definition

Cipher high high - -

Creates

random

numbers of

cipher

messages

with random

input settings

Sin high high - -

Calculate

sine of

random

number

Cos high high - -

Calculate

cosine of

random

number

JSON low low - high

JSON dumps

a large JSON

file from the

network

LINPACK high high - -
LINPACK

benchmarks

Matrix high high - -

Multiply 2

matrixes

with random

dimensions

DD low low high -
Convert and

copy a file

Feature

Extraction
high high - -

Extracting

features from

a dataset

Image high high high -

Apply

multiple

change to an

image like

rotation

ML

Prediction
high low - -

Prediction

using a pre-

trained ML

model

ML

Training
high high - -

Training a

ML model

Edge states and conditions are periodically saved in the

Fog. These logs can be used to analyze resource usage,

energy consumption, network traffic, and load balancing.

Additionally, task logs can be analyzed to evaluate response

delay, error rates, and success rates. All this data is stored in

an SQLite database in the Fog for further analysis. These

metrics are among the most important and widely used for

evaluating such methods.

This study uses Node-Red [17] as the cloud simulation

platform. It connects to the Fog via MQTT, receiving all

data for real-time display and later analysis. The received

data is visualized in three sections: resources, tasks, and

maps. Once the simulation ends and MQTT is disconnected

from the Fog, final evaluations are performed using the

collected data. Figure 7 shows the simulation’s environment

architecture.

Figure 7. Simulation's Environment Architecture

5.2. Evaluation and Discussion

In the evaluation section, the methods were examined

using a variable number of edges and clients. Specifically,

the number of edges ranged from 2 to 10, and the number of

clients ranged from 5 to 20. Details of the scenarios are

presented in Table 5. All tests were conducted for a duration

of 10 minutes. The positions of the edges and their coverage

areas were determined randomly. Since the focus of this

study is not on maximizing edge coverage, we set the

overlap ratio of servers to 0.8 in order to minimize the

overlap of edge coverage and achieve maximum effective

coverage. The movement paths of clients were also selected

randomly from a set of 100 predefined paths. This

randomness brings the evaluation closer to real-world

conditions, as in practice, client behavior and edge coverage

can vary due to various factors. Therefore, introducing

randomness to these variables lends more credibility to the

evaluation. To enhance analysis, each test was repeated

twice, and the data used in the analysis is the average of

these two runs.

One advantage of this evaluation over prior work is the

variation in the number of edges. Previous studies used a

fixed number of edges, whereas this variation provides a

more accurate evaluation and considers the scalability

factor.

Table 5. Evaluation's Details

Parameter Value

Edge 2-10

Client 5-10-15-20

SeV (MEPPO) 0.2*Number of Clients

VEC (MARINA) 0.2*Number of Edges

Figure 8 shows the distance between the predicted

positions of clients using the proposed RNN model and their

actual positions at the end of a task or its deadline.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

11

Figure 8. Difference Between Predicted and Actual Location

of Clients

Most of the predicted positions fall within a distance of less

than 20 units. Our goal is not to predict the exact position of

the client but rather to correctly predict which edge will

cover the client at the deadline. Based on the RNN's

performance and the prediction results, this objective has

been largely met. Although some predictions are off by

more than 40 units, which may lead to selecting the wrong

edge, the model achieves around 82% reasonably accurate

predictions. This accuracy justifies the computational

overhead introduced by the RNN, especially since its output

can guide decision-making in the proposed method.

One key reason for the RNN’s strong performance is

continuous improvement: over time, the fog node, which

communicates with all edges and is aware of both client

locations and RNN decisions, continuously optimizes the

model and sends updates to the edges. This gradual

improvement allows the model to make better decisions as

time progresses. If the simulation ran for more than 10

minutes, the RNN's performance would likely improve

further. As shown in Table 2, the RNN model includes two

dropout layers that help prevent overfitting and dependence

on training-time data. These layers, combined with

continuous optimization, make the model adaptive to

different environments and help improve predictions over

time.

Figures 9–15 present the evaluation results for various

methods as the number of clients increases.

One of the most important parameters in scheduling

algorithm evaluation is delay (latency), which reflects how

well the algorithm enhances user experience. As the number

of clients increases, the number of tasks and arrival rates

also increase, leading to higher computational loads and

longer waiting times, which increase total delay. Despite

this, as can be seen in Figure 9, the proposed method

outperformed the others. MARINA showed the highest

delay, likely due to ignoring mobility. In MARINA, mobile

nodes are servers and clients are stationary, making it

unsuitable for environments with mobile clients. MEPPO,

although mobility-aware, did not perform well—possibly

because it does not consider the randomness of many

parameters in the simulated environment, reducing its

effectiveness.

Figure 9. Average Latency as Number of Clients Increases

Figure 10 shows the average reward received by agents in

the proposed method and MEPPO (MARINA does not use

reinforcement learning). Both used the same reward

function, but the proposed method performed better,

indicating superior decision-making without disrupting

service or overloading the system.

Figure 10. Average Reward as Number of Clients Increases

As client numbers increase, more tasks enter the system.

Processed tasks include those handled by the system (even

if dropped later due to deadline misses), but not those

dropped due to full queues. A higher number of processed

tasks indicates better scheduling decisions and the system's

ability to handle load. The proposed method had the highest

number of processed tasks as presented in Figure 11.

Figure 12 shows the total number of tasks sent into the

system. All methods processed nearly all incoming tasks.

However, the number of successful versus dropped tasks is

more important.

Figure 13 indicates the percentage of failed tasks. Tasks

can fail for two reasons: 1) missed deadlines, and 2) client

not being within the edge coverage at completion. Both

reasons depend on the scheduling algorithm. The failure rate

increases with more clients due to increased load and

reduced processing speed. The proposed method had the

lowest failure rate, averaging below 10%. MARINA had the

highest failure rate, and MEPPO also performed poorly—

partly due to its Edge-Cloud architecture, which incurs long

delays when offloading to the cloud.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

12

Figure 11. Average Executed Tasks as Number of Clients

Increases

Figure 12. Total Number of Tasks as Number of Clients

Increases

Figure 13. Average Failure Rate as Number of Clients

Increases

Figure 14 shows the network traffic generated. MEPPO

generated the highest traffic, due to offloading to the cloud.

The proposed method, using FEC architecture and

supporting migration, also produced significant traffic.

MARINA, which limits communication between edges, had

the lowest traffic.

Only the proposed method supports both migration and

offloading, contributing to its better performance. Including

migration allows the correction of initial poor scheduling

decisions by moving tasks to better-suited edges, the results

can be seen in Figure 15. However, this also adds

computational and network overhead, so it may not be ideal

in latency- or bandwidth-sensitive environments.

Figure 14. Average Sent Bytes as Number of Clients Increases

Figure 15. Average Migration Rate as Number of Clients

Increases

Figure 16 illustrates the average task delay as the number

of edge nodes increases. The proposed method

demonstrates the best performance, while MARINA shows

the worst in this metric. A noteworthy observation is the

increase in delay with more edges, which contradicts the

expectation of reduced delay due to higher computational

resources. Interestingly, only MEPPO avoids this increasing

trend, maintaining relatively stable results. However, both

the proposed method and MARINA show noticeable

increases in delay. This behavior stems from two key

reasons: (1) randomness in the simulation parameters and

(2) the design and functioning of the algorithm.

Although increasing the number of edges boosts both

available resources and coverage, it also increases the

number of environmental parameters the algorithm must

handle. For the proposed method, which relies on DRL, this

results in a longer adaptation period to the new environment

and a higher probability of suboptimal decisions, as well as

an increase in the scheduling algorithm's execution time.

While the delay increase is modest in the proposed method,

it is quite pronounced in MARINA.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

13

Figure 16. Average Latency as Number of Edges Increases

Figure 17 presents the average reward received by the

Agents using the proposed method and MEPPO. The results

show that the proposed method consistently makes better

decisions that neither disrupt client service nor cause

excessive system overhead. Even though the delay

increased with more edges in the proposed method, the

number of correct decisions remained higher than those in

MEPPO.

Figure 17. Average Reward as Number of Edges Increases

Figures 18 and 19 show the average number of executed

and total generated tasks, respectively. As expected,

increasing the number of edge nodes leads to wider

coverage and more task processing opportunities. The

proposed method outperforms all others by executing the

highest number of tasks. Additionally, as mentioned earlier,

all methods successfully process nearly all tasks generated

by clients.

Figure 18. Average Executed Tasks as Number of Edges

Increases

Figure 20 shows the average percentage of failed tasks. As

previously explained, more edges lead to more generated

tasks, which in turn increases computational overhead and

the likelihood of failure. The proposed method performs

best in this metric, while MARINA performs the worst. A

significant insight from this figure (and others) is that

adding edges has the most negative impact on MARINA.

Increased resources lead to higher failure rates and delays,

highlighting its unsuitability for large-scale or resource-rich

environments.

Figure 19. Total Number of Tasks as Number of Edges

Increases

Figure 20. Average Failure as Number of Edges Increases

Figure 21 shows the average number of bytes received and

sent across the network. The results align with Figure 14.

MARINA generates the lowest network traffic, while both

the proposed method and MEPPO generate significantly

higher traffic.

Figure 21. Average Sent Bytes as Number of Edges Increases

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

14

Figure 22 displays the average number of task migrations

for the proposed method. Among the evaluated methods,

only the proposed method supports migration in addition to

offloading. This capability contributes directly to its

superior performance.

Figure 22. Average Migration Rate as Number of Edges

Increases

Overall, the proposed method demonstrates superior

performance compared to MEPPO and MARINA, followed

by MEPPO and MARINA. One key insight from this

evaluation is the role of the environment in algorithm

performance. MEPPO and MARINA were originally

developed for environments that differ greatly from the

environment considered in this research. Although both

methods performed well in their original settings, they

showed suboptimal results in our more realistic and

dynamic environment.

This work aims to simulate a highly randomized and real-

world-like scenario, enhancing the credibility of the

findings.

MARINA, by neglecting client mobility and location

changes, shows weak results in dynamic environments,

making it unsuitable for such scenarios. Moreover, as

resource availability increases (i.e., more edges), MARINA

experiences significant performance degradation, making it

ineffective for large-scale deployments.

Although MEPPO is mobility-aware, it relies on an Edge-

Cloud architecture. This leads to high delays and failure

rates due to the inherent latency of offloading to the Cloud.

Additionally, MEPPO includes SeVs (Service Vehicles) that

act as mobile processors, which adds another layer of

complexity and overhead. Managing both mobile clients

and SeVs introduces a significant burden, making the

approach less practical in densely populated environments.

In contrast, the proposed method benefits from its

simplicity and continuous optimization. Edge-based

Agents, in conjunction with RNN-based location prediction

models, are consistently optimized by the Fog node,

enabling adaptive decision-making and improved

performance over time.

However, a noteworthy trade-off is the higher network

traffic. Due to its FEC architecture and continuous

interactions between edge nodes and the Fog, the proposed

method results in substantial data transmission. This limits

its applicability in environments with strict bandwidth or

network resource constraints.

Table 6 summarizes the proposed method's overall

performance improvements over MARINA and MEPPO in

each evaluation metric.

Table 6. Evaluation's Summary

Parameter Compare to

MEPPO

Compare to

MARINA

Failure Rate 20.27% 33.94%

Total Tasks 25.98% 110.79%

Executed Tasks 30.84% 86.84%

Sent Bytes 6.46% -90.10%

Latency 60.11% 60.11%

Reward 128.13% -

While the proposed method is designed to support large-

scale deployments, our experimental evaluation was

conducted using a local PC environment, which imposed

practical constraints on resource availability. As a result, the

simulations were limited to a maximum of 10 edge nodes

and 20 clients. This setup, however, aligns with the

evaluation scope adopted in previous works such as

MEPPO and MARINA, which were also tested in similarly

constrained environments. Despite the limited scale, our

results clearly demonstrate the effectiveness and

adaptability of the proposed method in dynamic,

heterogeneous edge environments. In future work, we aim

to validate the system's performance in larger-scale

deployments using high-performance computing

infrastructure or cloud-based simulation platforms.

6. Conclusion

Mobile Edge Computing has emerged to meet the demands

of modern data-driven applications. By bringing data

processing and computation closer to end-users, MEC

reduces latency, improves real-time responsiveness, and

alleviates network congestion—making it essential for

delay-sensitive applications. Unlike centralized cloud

architectures, MEC relies on distributed edge nodes, each

with limited computational resources. While this

decentralized approach enables faster data processing, it

also introduces challenges in workload management,

particularly under conditions of resource heterogeneity,

limited capacity, and user mobility.

This research proposes a scheduling solution that considers

user mobility, resource heterogeneity, energy consumption,

and resource utilization. The proposed approach is based on

the Advantage Actor-Critic (A2C) method, a deep

reinforcement learning technique, and is used for decision-

making and task scheduling. In this distributed method,

actors deployed on each edge node decide whether to

execute a user request locally or offload it to another edge.

If offloading is chosen, the fog node, having a global view

of the system, selects the optimal destination. Additionally,

each edge node is equipped with an RNN model alongside

its actor to predict user location, which is factored into the

scheduling decisions.

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

15

One of the strengths of the proposed method is the

placement of the critic in the fog node, which enables

continuous optimization of both the edge actors and their

RNN models, enhancing the system’s adaptability.

Evaluations comparing the proposed method with baseline

approaches show that it achieves excellent performance in

terms of response delay, failure rate, user location prediction

accuracy, and the number of successfully served requests.

However, due to the FEC architecture, the method results in

higher network traffic compared to others, which may make

it less suitable for bandwidth-constrained environments.

For future work, we suggest continuing to useother DRL

method in MECs and using the whole system’s state for

optimization (something like shared experienced

approaches), as we presented in this research, combined

methods (like ours) have shown promising results,

combining RL and DRL methods together or with other

heuristic methods could lead to better results. Despite

scheduling methods, importing more and more real-world

parameters in these types of fields makes future research

more applicable, parameters like network details,

communication noises, and client anomaly behaviors are

good choices to start.

7. References

[1] P. Li, Z. Xiao, X. Wang, K. Huang, Y. Huang

and H. Gao, "EPtask: Deep Reinforcement

Learning Based Energy-Efficient and Priority-

Aware Task Scheduling for Dynamic Vehicular

Edge Computing," IEEE Transactions on

Intelligent Vehicles, vol. 9, no. 1, pp. 1830-1846,

2023.

[2] J. B. D. da Costa, A. M. de Souza, R. I.

Meneguette, E. Cerqueira, D. Rosário, C. Sommer

and L. Villas, "Mobility and Deadline-Aware Task

Scheduling Mechanism for Vehicular Edge

Computing," IEEE Transactions on Intelligent

Transportation Systems, vol. 24, no. 10, pp.

11345-11359, 2023.

[3] Y. Fan, J. Ge, S. Zhang, J. Wu and B. Luo,

"Decentralized Scheduling for Concurrent Tasks

in Mobile Edge Computing via Deep

Reinforcement Learning," IEEE Transactions on

Mobile Computing, pp. 1-15, 2023.

[4] X. He, C. You and T. Q. S. Quek, “Age-Based

Scheduling for Mobile Edge Computing: A Deep

Reinforcement Learning Approach,” IEEE

Transactions on Mobile Computing (Early

Access), pp. 1-16, 2024.

[5] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang and J. Dai,

“A2C-DRL: Dynamic Scheduling for Stochastic

Edge–Cloud Environments Using A2C and Deep

Reinforcement Learning,” IEEE Internet of

Things Journal, vol. 11, no. 9, pp. 16915-16927,

2024.

[6] L. Niu, X. Chen, N. Zhang, Y. Zhu, R. Yin and

C. Wu, “Multiagent Meta-Reinforcement

Learning for Optimized Task Scheduling in

Heterogeneous Edge Computing Systems,” IEEE

Internet of Things Journal, vol. 10, no. 12, pp.

10519-10531, 2023.

[7] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan and M.

Xiao, “Asynchronous Deep Reinforcement

Learning for Collaborative Task Computing and

On-Demand Resource Allocation in Vehicular

Edge Computing,” IEEE Transactions on

Intelligent Transportation Systems, vol. 24, no.

12, pp. 15513-15526, 2023.

[8] Z. Cao, X. Deng, S. Yue, P. Jiang, J. Ren and

J. Gui, "Dependent Task Offloading in Edge

Computing Using GNN and Deep Reinforcement

Learning," IEEE Internet of Things Journal (Early

Access), 2024.

[9] D. Misra, “Mish: A Self Regularized Non-

Monotonic Activation Function,” Arxiv, 2019.

[10] Y. LeCun, Y. Bengio and G. Hinton, “Deep

learning,” Nature, vol. 521, p. 436–444, 2015.

[11] N. A. Rashed, Y. H. Ali, T. A. Rashid and A.

Salih, “Unraveling the Versatility and Impact of

Multi-Objective Optimization: Algorithms,

Applications, and Trends for Solving Complex

Real-World Problems,” Arxiv, 2024.

[12] H. Anysz, A. Nicał, Ž. Stević, M.

Grzegorzewski and K. Sikora, “Pareto Optimal

Decisions in Multi-Criteria Decision Making

Explained with Construction Cost Cases,”

Symmetry , vol. 13, no. 1, 2021.

[13] "Docker," Docker, [Online]. Available:

https://www.docker.com/.

[14] “Mosquitto,” Eclipse, [Online]. Available:

https://mosquitto.org/.

[15] “Python,” Python, [Online]. Available:

https://www.python.org/.

[16] J. Kim and K. Lee, "Function Bench : A Suite

of Workloads for Serverless Cloud Function

Service," in IEEE International Conference on

Cloud Computing, Milan, Italy, 2019.

[17] “Node-Red,” IBM, [Online]. Available:

https://nodered.org/.

[18] A. Biswas and H.-C. Wang, “Autonomous

Vehicles Enabled by the Integration of IoT, Edge

Intelligence, 5G, and Blockchain,” Sensors, vol.

23, no. 4, 2023.

[19] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang and W.

Shi, “Edge Computing for Autonomous Driving:

Opportunities and Challenges,” Proceedings of

the IEEE, vol. 107, no. 8, pp. 1697-1716, 2019.

[20] A. Hazra , P. Rana , M. Adhikari and T.

Amgoth , “Fog computing for next-generation

Internet of Things: Fundamental, state-of-the-art

and research challenges,” Computer Science

Review, vol. 48, 2023.

[21] S. N. Srirama, “Distributed Edge Analytics in

Edge-Fog-Cloud Continuum,” Arxiv, 2023.

[22] W. Qin , H. Chen , L. Wang , Y. Xia , A.

Nascita and A. Pescapè , “MCOTM: Mobility-

aware computation offloading and task migration

Authors et al/ Future Research in AI & IoT, 2025, 1(1)

16

for edge computing in industrial IoT,” Future

Generation Computer Systems, vol. 151, 2024.

[23] M. Ferens, D. Hortelano, I. de Miguel, R. J.

Durán Barroso, J. C. Aguado and L. Ruiz, “Deep

Reinforcement Learning Applied to Computation

Offloading of Vehicular Applications: A

Comparison,” in International Balkan Conference

on Communications and Networking, Sarajevo,

Bosnia and Herzegovina, 2022.

[24] N. Yang, J. Wen, M. Zhang and M. Tang,

“Multi-objective Deep Reinforcement Learning

for Mobile Edge Computing,” in International

Symposium on Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks,

Singapore, Singapore, 2023.

[25] B. Xie and H. Cui, “Deep reinforcement

learning-based dynamical task offloading for

mobile edge computing,” The Journal of

Supercomputing, vol. 81, 2024.

