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 Abstract: 

Mobile Edge Computing reduces latency and response time by bringing computational resources 

closer to end-user. However, user mobility poses a significant challenge, as users continuously 

move between coverage areas of different edge nodes with limited range. This dynamic 

environment demands efficient scheduling mechanisms that can adapt to user movement while 

meeting application deadlines and optimizing edge resource utilization. This paper proposes an 

approach for scheduling based on Deep Reinforcement Learning, specifically using an Advantage 

Actor-Critic architecture within a Fog and Edge computing framework for IoT applications. The 

method enables distributed decision-making by deploying actor agents at edge nodes and a 

centralized critic at the fog node, facilitating continuous adaptation through system-wide 

feedback. User mobility is addressed using location prediction via RNN models embedded at 

each edge node, allowing proactive and informed offloading decisions. Experimental results 

demonstrate the proposed approach significantly improves task completion rate by 50%, failure 

rate by 26%, and response latency by 60%, while also adapting well to dynamic environments, 

outperforming state-of-the-art methods in real-world-inspired scenarios. 
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1. Introduction 

The rise of data-intensive applications in areas such as 

autonomous driving, augmented reality, and mobile health 

has led to the development of Mobile Edge Computing 

(MEC), which brings data processing and services closer to 

end-users and IoT devices [1]. By shifting computation 

from centralized cloud data centers to distributed edge 

nodes, MEC can significantly reduce latency, improve real-

time responsiveness, and decrease network load [2]. 

However, MEC systems face considerable challenges due to 

the limited computational resources of edge nodes, which 

calls for efficient, adaptive scheduling to manage workloads 

in real-time. 

To address these challenges, Fog and Edge Computing 

(FEC), a layered model linking resource-limited edge 

devices with more powerful intermediate fog nodes, has 

emerged as a promising framework [3]. This architecture 

enables dynamic task offloading and resource sharing 

between edge and fog, effectively extending the system’s 

capabilities [4]. Yet, scheduling in MEC remains complex, 

as it must account for device heterogeneity, limited 

resources, and client mobility, which may require frequent 

task migrations to keep up with moving clients [5]. 

Conventional scheduling methods, often based on heuristics 

or rules, struggle to adapt to these dynamic and diverse 

environments [6]. 

Deep Reinforcement Learning (DRL) offers a flexible 

solution, with its ability to adapt continuously to changing 

system states and autonomously develop optimized 

scheduling strategies [7]. DRL-based scheduling has proven 

effective in MEC, supporting goals like reduced latency, 

energy efficiency, and intelligent task offloading [8]. 

However, existing DRL approaches frequently assume 

static conditions or overlook complexities such as mobile 

clients and edge node diversity, which limits their 

applicability in real-world scenarios [9]. 

To fill this gap, we propose a distributed Advantage Actor-

Critic (A2C) scheduling approach designed to handle 

MEC’s resource constraints, client mobility, and 

heterogeneous environment. By dynamically distributing 

tasks based on real-time system states, our approach 

optimizes task placement according to each node's 

capabilities, current load, and mobility patterns, thereby 

https://creativecommons.org/licenses/by/4.0/deed.en
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achieving efficient task management across the MEC 

landscape. 

Our main contributions are as follows: 

1. Decentralized Decision-Making: Each edge node 

operates independently with an actor module, 

deciding whether to process tasks locally or offload 

them to other nodes, minimizing communication 

delays and improving scalability. 

2. Centralized Feedback from Fog Node: Acting as a 

central critic, the fog node gathers system-wide 

information and provides feedback to edge nodes, 

enhancing task scheduling coherence. 

3. Mobility Prediction: Using an RNN model to 

predict the future location of client devices to make 

task scheduling more efficient. 

4. Offload/Migration Destination: Find the best edge 

by creating a 3-dimensial Pareto Set and offloading 

or migrating a task to it. 

5. Real-Time Simulation Testing: We validate our 

approach with real-time simulations, using Docker 

containers to emulate a realistic FEC environment 

and assess performance. 

The rest of the paper is organized as follows: Section II 

reviews related works; Section III presents the system 

model; Section IV details the proposed scheduling 

approach; Section V evaluates our approach; and Section VI 

concludes the paper. 

2. Related Work 

Mobile and Vehicular Edge Computing (MEC and VEC) 

have gained significant traction as frameworks to enable 

real-time data processing closer to end-users, addressing the 

latency and resource constraints of traditional cloud 

computing. Given the dynamic and resource-limited nature 

of edge environments, task scheduling and resource 

allocation have been extensively studied, with recent 

approaches focusing on leveraging Deep Reinforcement 

Learning (DRL) for intelligent, adaptive scheduling. Each 

of the reviewed methods below addresses specific gaps in 

MEC and VEC task scheduling but falls short of providing 

a comprehensive solution that addresses all the complexities 

of highly dynamic, multi-user edge environments. 

The [10] scheduling model adopts a Multi-action 

Environment-adaptive Proximal Policy Optimization 

(MEPPO) algorithm to tackle energy efficiency and priority 

awareness in VEC, especially under fluctuating vehicular 

traffic and variable resource availability. MEPPO addresses 

these gaps by jointly scheduling tasks and optimizing 

resource allocation, focusing on dynamic priority 

assignment and power control for efficient energy 

consumption. Although it effectively manages time-

sensitive tasks in mobile environments, it does not explicitly 

address the complexities introduced by task dependencies 

or large-scale, multi-user systems. 

In parallel, MARINA [11], a mobility and deadline-aware 

scheduling mechanism, focuses on real-time task 

scheduling in VEC environments with high vehicular 

mobility. MARINA utilizes LSTM-based mobility 

prediction and Pareto optimization to prioritize tasks by 

deadline while leveraging a Bin Covering Problem (BCP)-

based heuristic for efficient task distribution across edge 

resources. While it improves deadline adherence and 

resource utilization, its heuristic-based design may struggle 

to adapt rapidly in highly dynamic and heterogeneous 

environments, particularly as the number of users and tasks 

grows. 

Addressing decentralized decision-making, DOSA [12] 

employs a Double Deep Q-Network (Double-DQN) 

combined with Dueling DQN and Prioritized Experience 

Replay, allowing each edge device to make independent 

task scheduling decisions without centralized control. This 

decentralized model reduces communication overhead and 

enables concurrency by processing multiple tasks 

simultaneously across edge nodes. However, DOSA’s focus 

on concurrency does not account for task dependencies, 

which are critical in applications requiring sequential task 

execution and optimal resource sharing. 

In scenarios requiring freshness of information, an Age-

Based DRL approach [13] incorporates Post-Decision 

States (PDS) with Deep Deterministic Policy Gradient 

(DDPG) to directly optimize the Age of Information (AoI). 

This method redefines AoI for event-driven data updates, 

making it suitable for applications with strict real-time data 

requirements. However, its focus on AoI does not translate 

well to multi-task, multi-user MEC environments where 

task interdependencies and varying user demands 

complicate scheduling dynamically. 

For edge-cloud systems with significant variability, the 

A2C-DRL [8] framework utilizes Advantage Actor-Critic 

(A2C) DRL to balance task loads across edge resources 

dynamically. Its decentralized scheduling allows for 

distributed load balancing and rapid task assignment, 

leveraging prioritized experience replay to enhance learning 

speed. While effective in improving resource utilization in 

edge-cloud systems, it does not sufficiently address task 

dependencies or the rapid changes in resource demand 

common in dense, multi-user edge environments. 

A distinct solution for nonstationary environments is Meta-

PPO [14], a multiagent meta-reinforcement learning 

approach designed for noncooperative, multi-user MEC 

systems. By integrating Model-Agnostic Meta-Learning 

(MAML) within a Proximal Policy Optimization (PPO) 

framework, Meta-PPO enables each agent (user) to learn 

adaptive scheduling policies based on prior knowledge, 

allowing rapid adjustment in nonstationary edge 

environments. Though powerful in handling competitive 

environments, Meta-PPO’s multiagent design assumes 

static task requirements, lacking explicit mechanisms to 

handle interdependent tasks or dynamic priority shifts. 

For collaborative VEC applications, an asynchronous 

A3C-based DRL approach combines V2V and V2I 

offloading for cross-layer resource orchestration [15]. By 

integrating hybrid offloading strategies, the model enables 

multi-resource orchestration across vehicle, edge, and cloud 
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layers. However, its design does not fully capture the 

requirements of non-cooperative, large-scale edge networks 

where independent scheduling agents must balance 

dependencies and dynamically adapt to varying task 

priorities. 

In addressing task dependencies, a Graph Attention 

Network (GAT) integrated with Proximal Policy 

Optimization (PPO) models dependent task offloading in 

edge environments by encoding tasks as Directed Acyclic 

Graphs (DAGs) [16]. This approach uses the GAT to capture 

task dependencies, allowing the DRL scheduler to manage 

complex offloading in multi-user settings. Despite 

effectively handling task dependencies, this GNN-based 

approach is limited in addressing resource variability and 

user mobility common in real-time MEC environments. 

The reviewed methods address various critical aspects of 

MEC and VEC scheduling, including mobility prediction, 

deadline sensitivity, dependency management, and resource 

adaptability. However, a gap remains in efficiently 

integrating decentralized decision-making, adaptability to 

dynamic multi-user environments, and dependency-aware 

scheduling in highly heterogeneous edge systems. Many 

current approaches focus on specific elements, such as 

mobility or energy efficiency, without fully addressing the 

combined complexities of heterogeneous environments, 

task dependencies, and real-time client mobility. This gap 

highlights the need for a more comprehensive framework 

that can dynamically adapt to the unique demands of MEC 

environments while ensuring efficient resource usage across 

diverse edge devices. Table 1 summarizes the reviewed 

research. 

Table 1. Summary of Related Works 

Work Method Offload Migration Energy Bandwidth Computation Resource Mobility 

[1] PPO x  x x x x 

[2] Pareto Set, BCP x x   x x 

[3] 
Double-DQN, 

Dueling DQN 
x    x  

[4] DDPG   x   x 

[5] A2C x  x  x x 

[6] Meta-RL     x x 

[7] A3C x  x x x x 

[8] PPO x    x  

Proposed A2C x x x x x x 

3. System Model and Problem Definition 

This section presents the system model, including the edge 

device and task representations, network and 

communication models, and computation models. We also 

define the optimization objective to minimize task 

execution time, energy consumption, and resource 

utilization across the network. 

3.1. Edge Device Model 

Let 𝐸𝑛 = {𝑒1, 𝑒2, … , 𝑒𝑛} denote the set of edge devices in 

the system, where 𝑛 represents the total number of edge 

devices. Each edge device 𝑒𝑖 is defined as: 

𝑒𝑖 =< 𝐼𝐷𝑒𝑖
, 𝐶𝑒𝑖

, 𝑃𝑒𝑖
, 𝐵𝑒𝑖

, 𝐸𝑒𝑖
> 1 

where: 

• 𝐼𝐷𝑒𝑖
: Unique identifier of the edge device 𝑒𝑖. 

• 𝐶𝑒𝑖
: Available CPU resources of 𝑒𝑖 , represented as 

the number of CPU cycles per second. 

• 𝑃𝑒𝑖
: RAM resources of 𝑒𝑖, representing the memory 

capacity in GB. 

• 𝐵𝑒𝑖
: Bandwidth resources available to 𝑒𝑖, 

representing the maximum data transmission 

capacity in Mbps. 

• 𝐸𝑒𝑖
: Current energy level in watt, relevant for 

battery-powered edge devices 

3.2. Task Model 

Let 𝑅𝑘 = {𝑟1, 𝑟2, … , 𝑟𝑘} represent the set of tasks, where 𝑘 

is the total number of tasks in the system. Each task 𝑟𝑖  is 

defined as: 

𝑟𝑖 =< 𝐼𝐷𝑟𝑖
, 𝐼𝑟𝑖

, 𝐷𝑟𝑖
, 𝑌𝑟𝑖

> 2 

where: 

• 𝐼𝐷𝑟𝑖
: Unique identifier of the task 𝑟𝑖. 

• 𝐼𝑟𝑖
: Data size of 𝑟𝑖, representing the input data size 

required for processing in bytes. 

• 𝐷𝑟𝑖
: Deadline by which the task (𝑟𝑖) must be 

completed. 

• 𝑌𝑟𝑖
: CPU cycles required for 𝑟𝑖, representing the 

total computation demand. 

3.3. Decision Model 

The action 𝐴 taken for a task 𝑟𝑖  can be represented as: 

𝐴 = {0,1} 3 

where: 

• 𝐴 = 0: The task continues running on the local 

edge device without migration. 

• 𝐴 = 1: Task is either offloaded to another edge or 

migrated, depending on whether it is actively 

executing. 
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3.4. Network Model 

The network model includes edge-to-edge (E2E) and edge-

to-fog (E2F) communication links, with different data 

transmission rates calculated based on the specific channel 

characteristics. This work, does not consider 

communication links between client and edge devices 

(C2E) and keeps track of everything from the moment a task 

arrives at an edge device until it finishes its execution, as 

illustrated in Figure 1. We use and modify the network 

model of [1].  

 

Figure 1. Network Model 

3.4.1.Edge-to-Edge (E2E) 

Data transmission rate 𝑅 between two edge devices 𝑖 and 𝑗 

is given by: 

𝑅𝑖,𝑗 = 𝜂𝑗 . 𝐵𝑖 . 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖,𝑗)  4 

where: 

• 𝜂: Proportion of bandwidth allocated to this 

transmission, with ∑ 𝜂𝑗  ≤ 1. By utilizing the full 

available bandwidth, more data can be transmitted 

simultaneously, resulting in higher data 

transmission rates. 

• 𝐵: Total bandwidth resource. 

• SNR (Signal-to-Noise Ratio) for E2E is defined as: 

𝑆𝑁𝑅𝑖,𝑗 =  
𝑃𝑖,𝑗 . 𝐺𝑖,𝑗

𝜀𝑖,𝑗 . 𝑑𝑖,𝑗 + 𝜎𝑖,𝑗
2

 5 

where 𝑃𝑖,𝑗 is the transmit power, 𝐺𝑖,𝑗 is the channel gain, 

𝜀𝑖,𝑗 represents path loss, 𝑑𝑖,𝑗 is the transmission distance, 

and 𝜎𝑖,𝑗
2 is the Gaussian noise. 

3.4.2.Edge-to-Fog (E2F) 

Data transmission rate 𝑅 from an edge device 𝑖 to the fog 

node 𝑔 is given by: 

𝑅𝑖,𝑔 = 𝜂𝑖. 𝐵𝑔. 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖,𝑔)  6 

where the SNR for E2F communication is defined as: 

𝑆𝑁𝑅𝑖,𝑔 =  
𝑃𝑖,𝑔. 𝐺𝑖

𝐼𝑖,𝑔 + 𝜎2
𝑖,𝑔

 7 

where 𝐼 = ∑ 𝑃𝑖,𝑔. 𝐺𝑔 represents the interference noise from 

other transmissions, with other parameters as defined 

above.  

3.5. Computation Model 

The task execution time 𝑇 and energy consumption 𝐸 are 

calculated based on the selected action 𝐴: 

3.5.1.Local Execution (𝑨 = 𝟎) 

Execution time 𝑇 includes only the local computation time 

𝑇𝑒𝑥𝑒  and queuing time 𝑇𝑞𝑢𝑒𝑢𝑒, given by: 

𝑇 = 𝑇𝑒𝑥𝑒 + 𝑇𝑞𝑢𝑒𝑢𝑒  8 

where 𝑇𝑒𝑥𝑒 =
𝑌

𝐶
 with 𝑌 as the CPU cycles required and 𝐶 

as the CPU resource of the edge device. 

Energy consumption 𝐸 for local execution is: 

𝐸 = 𝜀. (𝑓)𝛾 . 𝑌 9 

where 𝑓 is the CPU frequency and 𝛾 is a constant reflecting 

the energy coefficient of the edge device. 

3.5.2.Migration/Offload (𝑨 = 𝟏) 

Execution time 𝑇 includes memory dump of executing task 

𝑇𝑑𝑢𝑚𝑝, transmission time 𝑇𝑡𝑟𝑎𝑛𝑠, execution time at 

destination edge device 𝑇𝑒𝑥𝑒 , and any potential registry and 

queue delays: 

𝑇 = 𝑇𝑑𝑢𝑚𝑝 + 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑒𝑥𝑒 + 𝛿. 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 + 𝑇𝑞𝑢𝑒𝑢𝑒  10 

where 𝛿 is a binary indicator for whether registry time 

applies. If source code for executing the task cannot be 

provided by edge device, fog should provide it and send the 

source code to the edge node, hence 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦  defined as 

follows: 

𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 = 2 ∗ 𝑇𝑓𝑜𝑔−𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑓𝑜𝑔−𝑒𝑥𝑒𝑐   11 

where 𝑇𝑓𝑜𝑔−𝑡𝑟𝑎𝑛𝑠 is transmission time to fog and 

𝑇𝑓𝑜𝑔−𝑒𝑥𝑒𝑐 is source code packaging time. 

The 𝑇𝑑𝑢𝑚𝑝 is pre-migration process’s time, this procedure 

includes stop task’s process (SIGSTOP), dump any 

information exists in edge’s memory and package all files, 

including any intermediate files that task may create. 

Energy consumption 𝐸 for migration is calculated as: 

𝐸 = 𝜀. (𝑓)𝛾. 𝑌𝑙𝑒𝑓𝑡 + 𝑝.
𝑑𝑢𝑚𝑝

𝑅
 12 

For simple offloading, 𝑇 and 𝐸 are modified as: 

𝑇 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑒𝑥𝑒 + 𝛿. 𝑇𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦  + 𝑇𝑞𝑢𝑒𝑢𝑒 13 

𝐸 = 𝜀. (𝑓)𝛾. 𝑌 + 𝑝.
𝐼

𝑅
 14 

3.6. Resource Utilization Model 

The resource utilization 𝑈 is calculated as a weighted sum 

of CPU (𝐶), RAM (𝑃), and bandwidth (𝐵) usage: 

𝑈 = 𝛼1. 𝐶𝑈𝑠𝑎𝑔𝑒 + 𝛼2. 𝑃𝑈𝑠𝑎𝑔𝑒 + 𝛼3. 𝐵𝑈𝑠𝑎𝑔𝑒  15 

where 𝛼1 + 𝛼2 + 𝛼3 = 1 are the weighting factors and 𝐶 

is usage as a percentage of available cycles, 𝑃 is usage as a 
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percentage of used GB capacity, and 𝐵 as a percentage of 

Mbps capacity. 

3.7. Problem Formulation 

The objective function for the system model is to minimize 

a weighted combination of task execution time 𝑇, energy 

consumption 𝐸, and resource utilization 𝑈: 

𝑜𝑏𝑗 → 𝑚𝑖𝑛{𝜔1. 𝑇 + 𝜔2. 𝐸 + 𝜔3. 𝑈}  16 

with 𝜔1, 𝜔2, and 𝜔3 reflecting their relative importance. 

4. MDEU-A2C  

The A2C algorithm is a powerful DRL approach that 

combines two primary components: an actor, which selects 

actions based on a policy, and a critic, which evaluates these 

actions by estimating the value of each state-action pair. 

A2C works synchronously, where multiple agents interact 

with the environment and update the network 

synchronously, stabilizing the training process. 

The actor learns a policy 𝜋𝜃(𝑎|𝑠), which maps the current 

state 𝑠 to an action 𝑎 based on parameters 𝜃. 

The critic learns a value function 𝑉(𝑠; 𝜔), which estimates 

the expected reward of state 𝑠 under the current policy, with 

parameters 𝜔. 

The key feature in A2C is the use of an advantage function, 

which quantifies how much better an action 𝑎 is compared 

to the average action taken in state 𝑠. The advantage 

function 𝐴(𝑠, 𝑎) is defined as: 

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) 17 

where 𝑄(𝑠, 𝑎) is the action-value function. In A2C, we 

approximate the advantage function using the temporal 

difference (TD) error: 

𝐴(𝑠, 𝑎) ≈ 𝑟 +  𝛾𝑉(𝑠′) − 𝑉(𝑠) 18 

where 𝑟 is the reward, 𝛾 is the discount factor, and 𝑠′ is the 

next state. 

The total loss ℒ in A2C combines both policy loss (actor) 

and value loss (critic) as well as an entropy term to 

encourage exploration: 

ℒ =  ℒ𝑝𝑜𝑙𝑖𝑐𝑦 + 𝛼ℒ𝑣𝑎𝑙𝑢𝑒 + 𝛽ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦 19 

  The policy loss ℒ𝑝𝑜𝑙𝑖𝑐𝑦  is computed by maximizing the 

expected advantage: 

 ℒ𝑝𝑜𝑙𝑖𝑐𝑦 =  −𝔼𝜋𝜃
[𝐴(𝑠, 𝑎) 𝑙𝑜𝑔 𝜋𝜃(𝑎|𝑠)] 20 

The value loss ℒ𝑣𝑎𝑙𝑢𝑒  minimizes the error between the 

estimated value 𝑉(𝑠) and the expected return 𝑟 +  𝛾𝑉(𝑠′): 

ℒ𝑣𝑎𝑙𝑢𝑒 =
1

2
(𝑟 +  𝛾𝑉(𝑠′) − 𝑉(𝑠))

2
21 

The entropy loss ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝜋(𝑎|𝑠) log 𝜋(𝑎|𝑠)𝛼  

encourages exploration by penalizing highly confident 

action probabilities. 

Our proposed scheduling method in an MEC environment 

utilizes a multi-agent A2C framework with distinct actor 

and critic roles distributed across edge devices and a central 

fog node. Actors reside on each edge device and make real-

time, local decisions regarding task scheduling and 

offloading based on a limited set of observed states. Each 

actor is trained to optimize task execution locally while 

balancing network and resource constraints. A centralized 

critic is located at the fog node, where it has a global view 

of the system, seeing the combined state across all edges. 

The critic evaluates actions taken by each actor, providing 

feedback to improve decision-making across the system. 

This structure enables each actor to focus on optimizing its 

own resource allocation based on its immediate 

environment, while the critic guides these decisions toward 

an overall system optimization. 

The actor’s state 𝑆𝑎𝑐𝑡𝑜𝑟  represents the local observations 

at each edge device: 

𝑆𝑒𝑗
𝑎𝑐𝑡𝑜𝑟 = {𝐼𝑟𝑖

, 𝐷𝑟𝑖
, 𝑇𝑟𝑖,𝑒𝑗

𝑒𝑥𝑒𝑐 , 𝑑𝑟𝑖,𝑒𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
, 𝑈𝑒𝑗

, 𝐸𝑒𝑗
, 𝑘𝑒𝑗

} 22 

where 𝑇𝑟𝑖,𝑒𝑗
𝑒𝑥𝑒𝑐 =  

𝑌𝑟𝑖

𝐶𝑒𝑖

 is execution time of task 𝑟𝑖  in edge 𝑒𝑗 , 

𝑑𝑟𝑖,𝑒𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡  is predicted distance between the edge device and 

the client device, based on mobility forecasts and 𝑘𝑒𝑗
 is 

count of tasks currently being processed on the edge device. 

This information allows each actor to make real-time 

decisions based on immediate, local conditions, optimizing 

for both task completion and resource utilization. 

The critic’s state 𝑆𝑐𝑟𝑖𝑡𝑖𝑐 provides a global view of the 

system, encompassing aggregated data across all edges: 

𝑆𝑐𝑟𝑖𝑡𝑖𝑐 = {𝐼,̅ �̅�, �̅�, 𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑈, �̅�, 𝐶̅} 23 

where �̅� is the average deadline across all tasks in the 

system, 𝐼 ̅is the average size of tasks, �̅� represents the 

average CPU cycle requirement for tasks execution, 

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average predicted distance from edge devices 

to clients and lastly, 𝑈, �̅� and 𝐶̅ represents the average 

resource information of all edges. By using the global state 

𝑆𝑐𝑟𝑖𝑡𝑖𝑐, the critic can calculate a more holistic advantage 

value that considers the system-wide impact of each 

decision, helping to guide actors toward actions that benefit 

the entire network. 

The reward function is carefully designed to encourage 

optimal scheduling by balancing time efficiency, resource 

utilization, energy efficiency, and task migration costs. The 

reward function 𝑅 is defined as: 

𝑅 =  𝛼0. 𝑇𝑖𝑚𝑒 + 𝛼1. 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝛼2. 𝐸𝑛𝑒𝑟𝑔𝑦
−𝛼3. 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 24

 

where 𝑇𝑖𝑚𝑒 = |𝐷𝑟𝑖
− 𝑇𝑟𝑖,𝑒𝑗

𝑒𝑥𝑒𝑐|, 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = |𝑈𝑛𝑒𝑥𝑡 − 𝑈|,  
𝐸𝑛𝑒𝑟𝑔𝑦 = |�̅�𝑛𝑒𝑥𝑡 − �̅�|, 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 is number of 

migrations until task finish execution, 𝛼0, 𝛼1, 𝛼2 and 𝛼3 are 

weight coefficients representing the importance of each 

term in the reward. These components help balance the 

competing objectives of latency, efficiency, energy 

conservation, and stability (reduced migrations).  

There are two possible actions (𝐴) available for task 

execution: 

{
𝐴 = 0        𝐿𝑜𝑐𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝐴 = 1 𝑂𝑓𝑓𝑙𝑜𝑎𝑑/𝑀𝑖𝑔𝑎𝑟𝑡𝑖𝑜𝑛  25 
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Figure 2 shows the architecture consists of separate 

networks for the actor (policy network) and the critic (value 

network). In the actor network, the Input Layer takes the 

actor's local state 𝑆𝑎𝑐𝑡𝑜𝑟, Hidden Layers are three dense 

layers with 256 neurons each, using the mish activation 

function [9], which promotes gradient flow and learning 

efficiency, and the Output Layer is a softmax layer that 

outputs a probability distribution over possible actions. In 

the critic network, the Input Layer receives the global state 

𝑆𝑐𝑟𝑖𝑡𝑖𝑐, Hidden Layers are dense layers with 256, 128, and 

64 neurons sequentially, using the mish activation, and the 

Output Layer is a single linear output providing the state-

value 𝑉(𝑠), which estimates the expected return from the 

global state. 

 

Figure 2. Policy and Value Network Architecture 

Neural networks have gained increasing attention from 

academia and industrial groups for the accurate predictions 

offered by their various models. In this scenario, a Recurrent 

Neural Network (RNN) is a deep learning approach that 

extends the traditional feed-forward networks with internal 

cycles [10]. To handle client mobility in our environment, 

we employ an RNN-based model to predict the future 

location of a device. Specifically, we aim to forecast the 

device’s location at the exact time when the task’s deadline 

will be reached, simplifying the scheduling process and 

reducing resource overhead at the edge nodes. Instead of 

using a detailed time-series of predicted locations over the 

entire task duration, we focus only on the estimated final 

location at the deadline, minimizing computational 

demands.  The RNN model, shown in Figure 3, is structured 

as follows: 

• Input Sequence: This includes previous 

coordinates (𝑋, 𝑌) of a device, combined with the 

task's deadline. These inputs enable the model to 

account for both spatial position and temporal 

constraints. 

• Recurrent Layers: The model consists of two 

RNN layers, each with 50 units, to learn temporal 

dependencies in the movement pattern of the 

device. These recurrent layers enable the RNN to 

capture patterns in the device’s movement over 

time, making it well-suited for location prediction. 

• Dense Layers: Following the RNN layers, we 

incorporate fully connected (dense) layers with 

ReLU activation. These layers refine the high-level 

features extracted by the RNN layers, ensuring a 

smooth transition from sequence information to 

coordinate prediction. 

• Output Layer: The final output is a linear layer 

that provides the predicted future coordinates 

(𝑋′, 𝑌′), which represent the device’s expected 

location when the task reaches its deadline. This 

prediction allows the scheduling mechanism to 

consider where the client device will likely be 

when deciding where to execute the task, thus 

improving scheduling accuracy in a dynamic 

environment. 

In a standard RNN layer, each unit maintains a hidden state 

that is updated at each time step based on the input sequence 

and the previous hidden state. Let’s denote the input 

sequence at time 𝑡 as 𝑥𝑡 = [𝑋, 𝑌, 𝐷], where 𝐷 represents the 

task deadline. The hidden state ℎ𝑡  is computed as: 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏ℎ) 26 

where 𝑊ℎ and 𝑊𝑥 are the weight matrices for the hidden 

state and the input, respectively, 𝑏ℎ is the bias term and 𝜎 is 

an activation function, typically tanh or ReLU. 

The RNN then produces an output at each step, and the 

final output is passed through dense layers to compute the 

predicted location (𝑋′, 𝑌′). The dense layers refine the 

representation and ultimately generate the coordinates by: 

(𝑋′, 𝑌′) = 𝑊𝑜𝑢𝑡ℎ𝑇 + 𝑏𝑜𝑢𝑡 27 

where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the weights and biases for the 

output layer. 

By using RNNs in this way, we leverage their strengths in 

capturing temporal dependencies, making them a powerful 

choice for predicting future positions in dynamic, mobile 

environments. This allows the scheduling system to 

anticipate each device's location, providing more accurate 

and efficient task scheduling across edge and fog nodes. 

 

Figure 3. RNN Network Architecture 
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This comprehensive approach integrates multi-agent 

reinforcement learning, system-wide critic guidance, 

mobility prediction, and resource-aware reward design to 

enable efficient task scheduling in a dynamic, resource-

constrained MEC environment. Each component works 

synergistically to achieve a balance between real-time task 

execution, resource utilization, energy efficiency, and 

reduced migration costs. 

As it has been said, two possible actions are available for 

task execution: local execution on the current edge device 

or offload/migration to another edge device. If the decision 

is made to offload or migrate a task, the fog node selects the 

optimal destination edge for task processing. This decision 

is made by evaluating multiple factors within a 3D Pareto 

Set, consisting of the following dimensions: 

• Edge-to-Client distance: The physical distance 

between the edge node and the client device (since 

fog knows the whole system state, it knows where 

the client is). Minimizing this distance can reduce 

communication latency, which is crucial for real-

time applications. 

• Edge-to-PredictedLocation distance: As client 

mobility is anticipated, the RNN-based prediction 

model forecasts the client’s future location. The 

fog node considers the distance from the edge to 

this predicted location to ensure that the offloaded 

task remains within a reasonable range of the 

client’s future position, thereby minimizing 

latency even as the client moves. 

• Estimated processing time: The computation 

time estimated for the task at each potential 

destination edge device. This estimate considers 

the current load and computational capacity of 

each edge, aiming to choose a destination that can 

meet the task’s deadline requirements. 

The Pareto Set approach is widely respected in decision-

making frameworks for its ability to handle conflicting 

criteria and allow for trade-offs. Instead of a single optimal 

solution, the Pareto front provides a set of "efficient" 

solutions, each representing a different balance between 

criteria. For example, a task scheduling decision could 

balance proximity to the client, energy consumption, and 

expected processing delay, depending on real-time system 

priorities. This technique is particularly beneficial in 

environments with heterogeneous and dynamic resource 

availability [11] [12].  

The metrics chosen for the Pareto Set are critical because 

they collectively balance communication latency, 

adaptability to client mobility, and computational efficiency. 

By considering these metrics, the system optimizes task 

scheduling decisions that accommodate both current 

resource constraints and anticipated changes in client 

location, ensuring low-latency, energy-efficient task 

processing in dynamic edge environments. The fog node 

evaluates each candidate edge in terms of these three criteria 

and identifies the optimal offload destination using Pareto 

optimization. A Pareto set identifies the set of edge nodes 

that are not outperformed across all three criteria, ensuring 

a balanced compromise between latency, mobility support, 

and processing efficiency. This approach aligns with the 

methodologies highlighted in the paper [2], which discusses 

the use of Pareto optimization for scheduling in mobile and 

deadline-sensitive edge environments, ensuring that the 

offloaded tasks are processed at the most suitable edge 

device, enhancing both performance and adaptability to 

client mobility. By leveraging Pareto-based selection, the 

fog node can effectively balance the trade-offs between 

proximity to clients, latency, and processing time, thereby 

supporting high-quality service in vehicular edge 

computing applications. Figure 4 shows the workflow of the 

proposed method and, Figure 5 shows the workflow of the 

offloading process. 

 

Figure 4. MDEU-A2C Workflow 

 

Figure 5. Offload Workflow of MDEU-A2C 

Algorithm 1 demonstrates the main process inside an edge 

node and Algorithm 2 shows the main process of the fog 

node. 

5. Results & Discussion 

In this section, we first describe implementation details and 

experimental setups, then present evaluation results and 

discussion. 

5.1. Implementation and Experimental Setting 
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In the evaluation environment, a Docker [13] container is 

created for each server (Edge, Fog, or Cloud), with all 

designated modules inside. Since Docker allows resource 

limitations, these containers can operate with resources 

similar to real-world devices. As a result, all components 

mimic real-world conditions, except for task execution. In 

real scenarios, tasks run inside a Docker container on an 

edge node. Here, tasks are executed as separate processes, 

and edge containers manage these processes just as real 

edge devices manage containers. 

Algorithm1: Scheduling process in Edge 

Initialize paramters and policies 

While true:  

requests=Collect tasks from clients;  

requests=requests+(Running Tasks);  

locations=RNN(requests)   

edge_info=Collect Edge nodes information  

decisions=Actor(requests,locations,edge_info)  

for d in decisions  

if d==local    

Execute(d.task) / Continue(d.task)    

else    

destination=Get_destination(d.task)    

Offload(d, destination) / 

Migration(d,destination) 
  

 

Send(decisions,logs)  

optimize_info=Receive optimization data 

from fog 

 

Actor_Optimize(optimize_info.a2c)  

RNN_Optimize(optimize_info.rnn)  

 

Algorithm2: Main process in Fog 

Initialize paramters and policies 

for timestep t = 1,2,...  

logs=Collect decisions and logs  

requests=Collect requests for 

offload/migration  

 

for r in requests  

P=ParetoSet(r)   

Send(requests.edge,P[0])   

for l in logs  

if task in l is done    

optimize_info=Optimize(l,all_edges)    

Send(task.edge,optimize_info)    

For evaluation, one container is designated as the client, 

and a separate process is created for each considered client. 

These processes are responsible for task generation, sending 

requests, and executing tasks. Parameters such as 

geographical location, transmission power, speed, and client 

movement direction are set as fixed and simulated. 

This environment enables more realistic and accurate 

evaluations of scheduling methods and provides a 

foundation for future research in this area. For evaluation 

purposes, each container must include a module for 

collecting logs and data to analyze and compare different 

approaches. 

Comparative methods were evaluated in different 

environments; implementing them in this environment may 

lead to slight changes in the proposed algorithms (but no 

major changes are expected). 

All communication between fog and edge is conducted 

using the MQTT protocol, one of the most commonly used 

protocols in such scenarios. The Mosquitto [14] broker an 

open-source and high-performance tool placed in the Fog 

node, is used for implementation. Each edge has a dedicated 

channel that both the fog and the respective edge subscribe 

to and publish relevant messages. The sequence diagram of 

communication is shown in Figure 6. 
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Figure 6. Communication's Sequence Diagram 

All services are implemented using Python 3.11 [15]. As 

mentioned, Docker containers are used to run FEC services. 

For simulation, edges are randomly positioned in a 2D space 

with maximum coordinates of (-200, -200) to (200, 200). 

Each edge also receives a random coverage radius. A client 

must connect to an edge if it falls within its coverage (i.e., a 

ground station). To simulate client movement, 50 random 

paths are generated, each assigned to a different client. 

Clients move along these paths at random speeds and 

connect to edges when within their coverage. Clients are 

aware of the edge positions and their coverage radii, and use 

this information to determine the appropriate edge to 

connect to. 

Client-Edge communication takes place via TCP/IP 

sockets. As soon as a client enters an edge's coverage area, 

it sends a keep-alive message containing its location and ID. 

This message is periodically sent to maintain the 

connection. On the edge side, a separate thread is allocated 

for each connected client to handle communication and 

messages. Clients periodically select a task randomly from 

a list of predefined tasks and send it to the edge. Upon 

receiving a task message, the edge moves the request 

information to a PENDING_TASKS list. The Scheduler 

service, implemented as a separate thread on the edge, 

periodically checks this list. After predicting the client’s 

future location using an RNN model, the Actor module in 

the service makes the final decision. 

If the decision is to execute locally, the task is moved to the 

EXECUTION_TASK list. If offloading or migration is 

chosen, the edge requests the target destination from the 

Fog, and once it responds, the task is processed accordingly. 

A separate thread is responsible for managing the execution 

of tasks, checking periodically and executing them as 

needed. If the client is still connected to the edge, the 

response is sent back upon completion. When the Fog 

receives a TASK_DONE message indicating task 

completion, it runs the optimization process. It uses the 

device’s initial and final locations during the task to 

optimize the RNN model and sends updated data to all 

edges for further optimization. Additionally, the Critic 

model in the Fog performs optimization and sends updated 

information to the corresponding edge for updating its local 

Actor model. The architecture of the Actor, Critic, and RNN 

networks is provided in the Table 2. During offloading, the 

source edge sends the task to the target edge over a TCP/IP 

socket. The target edge receives and adds it to its 

EXECUTION_TASK list. For migration, CRIU is used. The 

currently running process is paused (using SIGSTOP), and 

a memory dump of the process is created using CRIU. This 

dump, along with task metadata, is transferred via a TCP/IP 

socket to the destination edge, which restores the task and 

resumes execution. Tasks can be moved between multiple 

edges based on scheduler decisions until execution is 

complete. 

Table 2. Model's Parameters 

Parameters Layers Model 

Learning-Rate= 

0.000001 

Gamma=0.9 

Epsilon=0.0001 

Dense(64,ReLU)-

Dense(64,ReLU)-

Dense(2,Softmax) 
Actor 

Dense(64,ReLU)-

Dense(64,ReLU)-

Dense(1,Softmax) 
Critic 

Learning-

Rate=0.001 

RNN(50)-Dropout(0.3)-

RNN(50)-Dense(8,ReLU)-

Dropout(0.3)-Dense(2,Linear) 
RNN 

As stated, Docker enables resource limitations for 

containers. Hence, the defined edge nodes have constrained 

resources to better reflect real-world conditions. Resource 

specifications for edge nodes are provided in Table 3. Each 

edge is assigned a random combination of these resources. 

Table 3. Edge's Resources 

Container Resources 

CPU RAM Bandwidth 

Edge 1 Core 1 Gb 4 Mbps 

2 Core 2 Gb 6 Mbps 

3 Core 3 Gb 8 Mbps 

Fog 3 Core 8 Gb 16 Mbps 

 Table 4 provides the list of processing services; we have 

implemented eleven functions, as detailed in the reference 

[16]. Their source codes reside in the Fog. If an edge 

receives a task without the necessary service code, it 

requests it from the Fog. 

Table 4. Execution Services 
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Function 

Name 
CPU RAM Disk Network Definition 

Cipher high high - - 

Creates 

random 

numbers of 

cipher 

messages 

with random 

input settings 

Sin high high - - 

Calculate 

sine of 

random 

number 

Cos high high - - 

Calculate 

cosine of 

random 

number 

JSON low low - high 

JSON dumps 

a large JSON 

file from the 

network 

LINPACK high high - - 
LINPACK 

benchmarks 

Matrix high high - - 

Multiply 2 

matrixes 

with random 

dimensions 

DD low low high - 
Convert and 

copy a file 

Feature 

Extraction 
high high - - 

Extracting 

features from 

a dataset 

Image high high high - 

Apply 

multiple 

change to an 

image like 

rotation 

ML 

Prediction 
high low - - 

Prediction 

using a pre-

trained ML 

model 

ML 

Training 
high high - - 

Training a 

ML model 

 

Edge states and conditions are periodically saved in the 

Fog. These logs can be used to analyze resource usage, 

energy consumption, network traffic, and load balancing. 

Additionally, task logs can be analyzed to evaluate response 

delay, error rates, and success rates. All this data is stored in 

an SQLite database in the Fog for further analysis. These 

metrics are among the most important and widely used for 

evaluating such methods. 

This study uses Node-Red [17] as the cloud simulation 

platform. It connects to the Fog via MQTT, receiving all 

data for real-time display and later analysis. The received 

data is visualized in three sections: resources, tasks, and 

maps. Once the simulation ends and MQTT is disconnected 

from the Fog, final evaluations are performed using the 

collected data. Figure 7 shows the simulation’s environment 

architecture. 

 

Figure 7. Simulation's Environment Architecture 

5.2. Evaluation and Discussion 

In the evaluation section, the methods were examined 

using a variable number of edges and clients. Specifically, 

the number of edges ranged from 2 to 10, and the number of 

clients ranged from 5 to 20. Details of the scenarios are 

presented in Table 5. All tests were conducted for a duration 

of 10 minutes. The positions of the edges and their coverage 

areas were determined randomly. Since the focus of this 

study is not on maximizing edge coverage, we set the 

overlap ratio of servers to 0.8 in order to minimize the 

overlap of edge coverage and achieve maximum effective 

coverage. The movement paths of clients were also selected 

randomly from a set of 100 predefined paths. This 

randomness brings the evaluation closer to real-world 

conditions, as in practice, client behavior and edge coverage 

can vary due to various factors. Therefore, introducing 

randomness to these variables lends more credibility to the 

evaluation. To enhance analysis, each test was repeated 

twice, and the data used in the analysis is the average of 

these two runs.  

One advantage of this evaluation over prior work is the 

variation in the number of edges. Previous studies used a 

fixed number of edges, whereas this variation provides a 

more accurate evaluation and considers the scalability 

factor. 

Table 5. Evaluation's Details 

Parameter Value 

Edge 2-10 

Client 5-10-15-20 

SeV (MEPPO) 0.2*Number of Clients 

VEC (MARINA) 0.2*Number of Edges 

Figure 8 shows the distance between the predicted 

positions of clients using the proposed RNN model and their 

actual positions at the end of a task or its deadline. 
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Figure 8. Difference Between Predicted and Actual Location 

of Clients 

Most of the predicted positions fall within a distance of less 

than 20 units. Our goal is not to predict the exact position of 

the client but rather to correctly predict which edge will 

cover the client at the deadline. Based on the RNN's 

performance and the prediction results, this objective has 

been largely met. Although some predictions are off by 

more than 40 units, which may lead to selecting the wrong 

edge, the model achieves around 82% reasonably accurate 

predictions. This accuracy justifies the computational 

overhead introduced by the RNN, especially since its output 

can guide decision-making in the proposed method. 

One key reason for the RNN’s strong performance is 

continuous improvement: over time, the fog node, which 

communicates with all edges and is aware of both client 

locations and RNN decisions, continuously optimizes the 

model and sends updates to the edges. This gradual 

improvement allows the model to make better decisions as 

time progresses. If the simulation ran for more than 10 

minutes, the RNN's performance would likely improve 

further. As shown in Table 2, the RNN model includes two 

dropout layers that help prevent overfitting and dependence 

on training-time data. These layers, combined with 

continuous optimization, make the model adaptive to 

different environments and help improve predictions over 

time. 

Figures 9–15 present the evaluation results for various 

methods as the number of clients increases.  

One of the most important parameters in scheduling 

algorithm evaluation is delay (latency), which reflects how 

well the algorithm enhances user experience. As the number 

of clients increases, the number of tasks and arrival rates 

also increase, leading to higher computational loads and 

longer waiting times, which increase total delay. Despite 

this, as can be seen in Figure 9, the proposed method 

outperformed the others. MARINA showed the highest 

delay, likely due to ignoring mobility. In MARINA, mobile 

nodes are servers and clients are stationary, making it 

unsuitable for environments with mobile clients. MEPPO, 

although mobility-aware, did not perform well—possibly 

because it does not consider the randomness of many 

parameters in the simulated environment, reducing its 

effectiveness. 

 

Figure 9. Average Latency as Number of Clients Increases 

Figure 10 shows the average reward received by agents in 

the proposed method and MEPPO (MARINA does not use 

reinforcement learning). Both used the same reward 

function, but the proposed method performed better, 

indicating superior decision-making without disrupting 

service or overloading the system. 

 

Figure 10. Average Reward as Number of Clients Increases 

As client numbers increase, more tasks enter the system. 

Processed tasks include those handled by the system (even 

if dropped later due to deadline misses), but not those 

dropped due to full queues. A higher number of processed 

tasks indicates better scheduling decisions and the system's 

ability to handle load. The proposed method had the highest 

number of processed tasks as presented in Figure 11. 

Figure 12 shows the total number of tasks sent into the 

system. All methods processed nearly all incoming tasks. 

However, the number of successful versus dropped tasks is 

more important. 

Figure 13 indicates the percentage of failed tasks. Tasks 

can fail for two reasons: 1) missed deadlines, and 2) client 

not being within the edge coverage at completion. Both 

reasons depend on the scheduling algorithm. The failure rate 

increases with more clients due to increased load and 

reduced processing speed. The proposed method had the 

lowest failure rate, averaging below 10%. MARINA had the 

highest failure rate, and MEPPO also performed poorly—

partly due to its Edge-Cloud architecture, which incurs long 

delays when offloading to the cloud. 
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Figure 11. Average Executed Tasks as Number of Clients 

Increases 

 

Figure 12. Total Number of Tasks as Number of Clients 

Increases 

 

Figure 13. Average Failure Rate as Number of Clients 

Increases 

Figure 14 shows the network traffic generated. MEPPO 

generated the highest traffic, due to offloading to the cloud. 

The proposed method, using FEC architecture and 

supporting migration, also produced significant traffic. 

MARINA, which limits communication between edges, had 

the lowest traffic. 

Only the proposed method supports both migration and 

offloading, contributing to its better performance. Including 

migration allows the correction of initial poor scheduling 

decisions by moving tasks to better-suited edges, the results 

can be seen in Figure 15. However, this also adds 

computational and network overhead, so it may not be ideal 

in latency- or bandwidth-sensitive environments. 

 

Figure 14. Average Sent Bytes as Number of Clients Increases 

 

Figure 15. Average Migration Rate as Number of Clients 

Increases 

Figure 16 illustrates the average task delay as the number 

of edge nodes increases. The proposed method 

demonstrates the best performance, while MARINA shows 

the worst in this metric. A noteworthy observation is the 

increase in delay with more edges, which contradicts the 

expectation of reduced delay due to higher computational 

resources. Interestingly, only MEPPO avoids this increasing 

trend, maintaining relatively stable results. However, both 

the proposed method and MARINA show noticeable 

increases in delay. This behavior stems from two key 

reasons: (1) randomness in the simulation parameters and 

(2) the design and functioning of the algorithm. 

Although increasing the number of edges boosts both 

available resources and coverage, it also increases the 

number of environmental parameters the algorithm must 

handle. For the proposed method, which relies on DRL, this 

results in a longer adaptation period to the new environment 

and a higher probability of suboptimal decisions, as well as 

an increase in the scheduling algorithm's execution time. 

While the delay increase is modest in the proposed method, 

it is quite pronounced in MARINA. 
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Figure 16. Average Latency as Number of Edges Increases 

Figure 17 presents the average reward received by the 

Agents using the proposed method and MEPPO. The results 

show that the proposed method consistently makes better 

decisions that neither disrupt client service nor cause 

excessive system overhead. Even though the delay 

increased with more edges in the proposed method, the 

number of correct decisions remained higher than those in 

MEPPO. 

 

Figure 17. Average Reward as Number of Edges Increases 

Figures 18 and 19 show the average number of executed 

and total generated tasks, respectively. As expected, 

increasing the number of edge nodes leads to wider 

coverage and more task processing opportunities. The 

proposed method outperforms all others by executing the 

highest number of tasks. Additionally, as mentioned earlier, 

all methods successfully process nearly all tasks generated 

by clients. 

 

Figure 18. Average Executed Tasks as Number of Edges 

Increases 

Figure 20 shows the average percentage of failed tasks. As 

previously explained, more edges lead to more generated 

tasks, which in turn increases computational overhead and 

the likelihood of failure. The proposed method performs 

best in this metric, while MARINA performs the worst. A 

significant insight from this figure (and others) is that 

adding edges has the most negative impact on MARINA. 

Increased resources lead to higher failure rates and delays, 

highlighting its unsuitability for large-scale or resource-rich 

environments. 

 

Figure 19. Total Number of Tasks as Number of Edges 

Increases 

 

Figure 20. Average Failure as Number of Edges Increases 

Figure 21 shows the average number of bytes received and 

sent across the network. The results align with Figure 14. 

MARINA generates the lowest network traffic, while both 

the proposed method and MEPPO generate significantly 

higher traffic. 

 

Figure 21. Average Sent Bytes as Number of Edges Increases 
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Figure 22 displays the average number of task migrations 

for the proposed method. Among the evaluated methods, 

only the proposed method supports migration in addition to 

offloading. This capability contributes directly to its 

superior performance. 

 

Figure 22. Average Migration Rate as Number of Edges 

Increases 

Overall, the proposed method demonstrates superior 

performance compared to MEPPO and MARINA, followed 

by MEPPO and MARINA. One key insight from this 

evaluation is the role of the environment in algorithm 

performance. MEPPO and MARINA were originally 

developed for environments that differ greatly from the 

environment considered in this research. Although both 

methods performed well in their original settings, they 

showed suboptimal results in our more realistic and 

dynamic environment. 

This work aims to simulate a highly randomized and real-

world-like scenario, enhancing the credibility of the 

findings. 

MARINA, by neglecting client mobility and location 

changes, shows weak results in dynamic environments, 

making it unsuitable for such scenarios. Moreover, as 

resource availability increases (i.e., more edges), MARINA 

experiences significant performance degradation, making it 

ineffective for large-scale deployments. 

Although MEPPO is mobility-aware, it relies on an Edge-

Cloud architecture. This leads to high delays and failure 

rates due to the inherent latency of offloading to the Cloud. 

Additionally, MEPPO includes SeVs (Service Vehicles) that 

act as mobile processors, which adds another layer of 

complexity and overhead. Managing both mobile clients 

and SeVs introduces a significant burden, making the 

approach less practical in densely populated environments. 

In contrast, the proposed method benefits from its 

simplicity and continuous optimization. Edge-based 

Agents, in conjunction with RNN-based location prediction 

models, are consistently optimized by the Fog node, 

enabling adaptive decision-making and improved 

performance over time. 

However, a noteworthy trade-off is the higher network 

traffic. Due to its FEC architecture and continuous 

interactions between edge nodes and the Fog, the proposed 

method results in substantial data transmission. This limits 

its applicability in environments with strict bandwidth or 

network resource constraints.  

Table 6 summarizes the proposed method's overall 

performance improvements over MARINA and MEPPO in 

each evaluation metric. 

Table 6. Evaluation's Summary 

Parameter Compare to 

MEPPO 

Compare to 

MARINA 

Failure Rate 20.27% 33.94% 

Total Tasks 25.98% 110.79% 

Executed Tasks 30.84% 86.84% 

Sent Bytes 6.46% -90.10% 

Latency 60.11% 60.11% 

Reward 128.13% - 

While the proposed method is designed to support large-

scale deployments, our experimental evaluation was 

conducted using a local PC environment, which imposed 

practical constraints on resource availability. As a result, the 

simulations were limited to a maximum of 10 edge nodes 

and 20 clients. This setup, however, aligns with the 

evaluation scope adopted in previous works such as 

MEPPO and MARINA, which were also tested in similarly 

constrained environments. Despite the limited scale, our 

results clearly demonstrate the effectiveness and 

adaptability of the proposed method in dynamic, 

heterogeneous edge environments. In future work, we aim 

to validate the system's performance in larger-scale 

deployments using high-performance computing 

infrastructure or cloud-based simulation platforms. 

6. Conclusion 

Mobile Edge Computing has emerged to meet the demands 

of modern data-driven applications. By bringing data 

processing and computation closer to end-users, MEC 

reduces latency, improves real-time responsiveness, and 

alleviates network congestion—making it essential for 

delay-sensitive applications. Unlike centralized cloud 

architectures, MEC relies on distributed edge nodes, each 

with limited computational resources. While this 

decentralized approach enables faster data processing, it 

also introduces challenges in workload management, 

particularly under conditions of resource heterogeneity, 

limited capacity, and user mobility. 

This research proposes a scheduling solution that considers 

user mobility, resource heterogeneity, energy consumption, 

and resource utilization. The proposed approach is based on 

the Advantage Actor-Critic (A2C) method, a deep 

reinforcement learning technique, and is used for decision-

making and task scheduling. In this distributed method, 

actors deployed on each edge node decide whether to 

execute a user request locally or offload it to another edge. 

If offloading is chosen, the fog node, having a global view 

of the system, selects the optimal destination. Additionally, 

each edge node is equipped with an RNN model alongside 

its actor to predict user location, which is factored into the 

scheduling decisions. 
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One of the strengths of the proposed method is the 

placement of the critic in the fog node, which enables 

continuous optimization of both the edge actors and their 

RNN models, enhancing the system’s adaptability. 

Evaluations comparing the proposed method with baseline 

approaches show that it achieves excellent performance in 

terms of response delay, failure rate, user location prediction 

accuracy, and the number of successfully served requests. 

However, due to the FEC architecture, the method results in 

higher network traffic compared to others, which may make 

it less suitable for bandwidth-constrained environments. 

For future work, we suggest continuing to useother DRL 

method in MECs and using the whole system’s state for 

optimization (something like shared experienced 

approaches), as we presented in this research, combined 

methods (like ours) have shown promising results, 

combining RL and DRL methods together or with other 

heuristic methods could lead to better results. Despite 

scheduling methods, importing more and more real-world 

parameters in these types of fields makes future research 

more applicable, parameters like network details, 

communication noises, and client anomaly behaviors are 

good choices to start.    
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