Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir https://doi.org/10.22080/cjms.2025.29040.1753 Caspian J Math Sci. 14(1)(2025), 177-184 (RESEARCH ARTICLE)

Numerical range of a sum of weighted composition operators on the weighted Bergman spaces

Mahmood Haji Shaabani¹ Department of Mathematics, Shiraz University of Technology, Shiraz, Iran

ABSTRACT. Suppose that φ is an analytic self-map of the open unit disk \mathbb{D} and ψ is a bounded analytic function on \mathbb{D} . The weighted composition operator $C_{\psi,\varphi}$ is the operator on the weighted Bergman spaces A_{α}^2 given by $C_{\psi,\varphi}f = \psi f \circ \varphi$ for any $f \in A_{\alpha}^2$. If $\varphi_1, \varphi_2, ..., \varphi_n$ are linear fractional non-automorphisms and functions $\psi_1, \psi_2, ..., \psi_n$ are bounded analytic functions, under some conditions, we obtain a subset of the numerical range of $C_{\psi_1,\varphi_1} + C_{\psi_2,\varphi_2} + ... + C_{\psi_n,\varphi_n}$ on A_{α}^2 and determine when zero lies in the interior of its numerical range.

Keywords: Weighted Bergman spaces, weighted composition operator, numerical range.

2000 Mathematics subject classification: 47B38; Secondary 47B33.

1. INTRODUCTION

The boundary of the open unit disk \mathbb{D} is denoted by $\partial \mathbb{D}$. For $\alpha > -1$, the weighted Bergman spaces A_{α}^2 are the Hilbert space consisting of all

Received: 18 April 2025 Revised: 23 May 2025

 $^{^{1}}$ Corresponding author: shaabani@sutech.ac.ir

Accepted: 05 June 2025

How to Cite: Haji Shaabani, Mahmood. Numerical range of a sum of weighted composition operators, Casp.J. Math. Sci., 14(1)(2025), 177-184.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2025 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

¹⁷⁷

analytic functions f on \mathbb{D} with

$$||f||^2 = \int_{\mathbb{D}} |f|^2 dA_\alpha < \infty,$$

where $dA_{\alpha} = (\alpha+1)(1-|z|^2)^{\alpha} dA$ with dA is the normalized area measure in \mathbb{D} . It is well known that this space is a reproducing kernel Hilbert space, so for any w in \mathbb{D} , there is a *reproducing kernel function* K_w such that $\langle f, K_w \rangle = f(w)$ for each f in A_{α}^2 (see [4, p. 27]). For any w in \mathbb{D} , the reproducing kernel function is defined by

$$K_w(z) = \frac{1}{(1 - \overline{w}z)^{\alpha + 2}}.$$

Moreover,

$$||K_w||^2 = \frac{1}{(1-|w|^2)^{\alpha+2}}$$

The space H^{∞} consists of all bounded analytic functions on the unit disk with supremum norm $\|f\|_{\infty} = \sup_{|z|<1} |f(z)|$ for any $f \in H^{\infty}$.

A linear fractional self-map of \mathbb{D} is a map of the form $\varphi(z) = \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$. We know that the form of automorphisms of the unit disk is given by $\varphi(z) = \frac{\lambda(a-z)}{1-\bar{a}z}$, where $|\lambda| = 1$ and |a| < 1.

For an analytic self-map φ , we say φ has a *finite angular derivative* at ζ on the unit circle if there is an η on the unit circle so that $(\varphi(z) - \eta)/(z-\zeta)$ has a finite nontangential limit as $z \to \zeta$. This limit is denoted by $\varphi'(\zeta)$ if it exists as a finite complex number. For $\zeta \in \partial \mathbb{D}$, we denote $\varphi(\zeta) := \lim_{r \to 1} \varphi(r\zeta)$. For an analytic self-map φ of \mathbb{D} , we say that φ does not make contact with $\partial \mathbb{D}$ if $\{\zeta \in \partial \mathbb{D} : \varphi(\zeta) \in \partial \mathbb{D}\}$ is empty.

A map $\varphi \in \text{LFT}(\mathbb{D})$ with a unique fixed point $\zeta \in \partial \mathbb{D}$ is called *parabolic*. For $T(z) = \frac{\zeta + z}{\zeta - z}$, the map $\phi = T \circ \varphi \circ T^{-1}$ is a linear fractional transformation, which takes the right half plane onto itself with the only fixed point ∞ . Thus, there exists a complex number t with $\text{Re } t \geq 0$ such that $\phi(z) = z + t$. It is not hard to see that

$$\varphi(z) = \frac{(2-t)z + t\zeta}{2+t - t\bar{\zeta}z},$$

The constant number t is called the translation number of φ . Note that if Re t = 0, then φ is an automorphism. When Ret is strictly positive, we call φ positive parabolic non-automorphism. Among linear fractional transformations with a fixed point $\zeta \in \partial \mathbb{D}$, just the parabolic ones are characterized by $\varphi'(\zeta) = 1$ (see [8]).

For an analytic self-map φ of \mathbb{D} and positive integer n, we write $\varphi_1 := \varphi$ and $\varphi_{n+1} := \varphi \circ \varphi_n$. If φ is neither an elliptic automorphism nor the identity map, then there is a unique point w in the closed unit disk so

178

that for all $z \in \mathbb{D}$, $\varphi_n(z) \to w$ as $n \to \infty$. This limit point is called the *Denjoy–Wolff point* of φ (see [4, Theorem 2.51]). We have

- 1) $\varphi(w) = w$ and $|\varphi'(w)| < 1$ when |w| < 1.
- 2) $\varphi(w) = w$ and $0 < \varphi'(w) \le 1$ when |w| = 1.

In this paper, we use co(A) for the convex hull of a set A, which is the intersection of all convex sets containing A.

Let T be a bounded linear operator on Hilbert space H. The numerical range of T is denoted by W(T) and is defined as

$$W(T) = \{ \langle Tf, f \rangle : f \in H, ||f|| = 1 \}.$$

The numerical ranges of C_{φ} on the Hardy space induced by holomorphic self-maps φ were investigated by Bourdon and Shapiro in [2] and [3]. Moreover, the shape of the numerical range for composition operators C_{φ} when φ is an automorphism was discussed in [3]. In [6], the numerical range of $C_{\psi,rz}$ with |r| < 1 and hermitian weighted composition operator on the Hardy space were found. The spectrum and the essential spectrum of the weighted composition operators on A_{α}^2 have been recently studied (see [5]). In this paper, for a bounded operator Ton the weighted Bergman spaces, the spectrum of T and the essential spectrum of T are denoted by $\sigma(T)$ and $\sigma_e(T)$.

2. Numerical range

Through this paper, we assume that $\psi, \psi_1, ..., \psi_n$ belong to H^{∞} . First, we state the following well-known lemma which will be used in the sequel.

Lemma 2.1. Let $w \in \mathbb{D}$. Suppose that $C_{\psi,\varphi}$ is a bounded operator on A^2_{α} . Then

$$C^*_{\psi,\varphi}(K_w) = \overline{\psi(w)} K_{\varphi(w)}.$$

Proof. One can see that

$$\langle f, C_{\psi,\varphi}^* K_w \rangle = \langle C_{\psi,\varphi} f, K_w \rangle = \psi(w) f(\varphi(w)) = \langle f, \overline{\psi(w)} K_{\varphi(w)} \rangle$$

for each arbitrary function $f \in A^2_{\alpha}$. Then the result follows.

In the case that φ is an analytic self-map of \mathbb{D} which is not identity map, the closure of $W(C_{\varphi})$ contains 0 on the Hardy space (see [2, Theorem 3.1]). In the proof of the following proposition, the out line of the proof of [2, Theorem 3.1] is followed to show that 0 belongs to the closure of numerical range of the sum of finite number of weighted composition operators on A_{α}^2 .

Proposition 2.2. Assume that $\varphi_1, ..., \varphi_n$ are not identity maps. Suppose that $\psi_1, ..., \psi_n \in H^{\infty}$. Then 0 is an element of the closure of $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$.

Proof. For $w \in \mathbb{D}$,

$$\left\langle (C_{\psi_1,\varphi_1} + \ldots + C_{\psi_n,\varphi_n})^* \frac{K_w}{\|K_w\|}, \frac{K_w}{\|K_w\|} \right\rangle \in W\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right).$$

. .

We infer from Lemma 2.1 that

$$\left\langle (C_{\psi_1,\varphi_1} + \dots + C_{\psi_n,\varphi_n})^* \frac{K_w}{\|K_w\|}, \frac{K_w}{\|K_w\|} \right\rangle = \overline{\psi_1(w)} \left(\frac{1 - |w|^2}{1 - \overline{\varphi_1(w)}w} \right)^{\alpha+2} + \dots + \overline{\psi_n(w)} \left(\frac{1 - |w|^2}{1 - \overline{\varphi_n(w)}w} \right)^{\alpha+2}$$

Since $\varphi_1, ..., \varphi_n$ are not the identity maps, there is $\zeta \in \partial \mathbb{D}$ such that $\varphi_i(\zeta) \neq \zeta$ for each i = 1, ..., n. The previous equation implies that

$$\lim_{w \to \zeta} \left\langle \left(\sum_{i=1}^{n} C_{\psi_i, \varphi_i} \right)^* \frac{K_w}{\|K_w\|}, \frac{K_w}{\|K_w\|} \right\rangle = 0.$$

Therefore, the closure of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$ contains 0. Thus the conclusion follows.

In the following theorem, we assume that for each i, the function φ_i is a non-automorphism linear fractional self-map of \mathbb{D} . Thus for each i, the set $\{\zeta : \varphi_i(\zeta) \in \partial \mathbb{D}\}$ has at most on element in $\partial \mathbb{D}$.

Theorem 2.3. Assume that $\varphi_1, ..., \varphi_n$ are linear fractional self-map of \mathbb{D} which are not automorphisms. Let m be an integer such that m < n. Suppose that $\eta_i, \zeta_i \in \partial \mathbb{D}$ and $\varphi_i(\zeta_i) = \eta_i$ when $1 \le i \le m$. Moreover, for $m < i \le n, \varphi_i$ is not parabolic and $\varphi_i(\zeta_i) = \zeta_i$ for $\zeta_i \in \partial \mathbb{D}$. Assume that for each i, ψ_i is continuous at ζ_i . Suppose that $\zeta_i \neq \zeta_j, \zeta_i \neq \eta_j$ when $i \ne j$. Then for each $m < i \le n$,

$$\left\{z: |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}}\right\} \subseteq W\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right).$$

In particular, if $\psi_i(\zeta_i) \neq 0$ for some $m < i \leq n$. Then zero is an interior point of $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$.

Proof. For each $i \neq j$, the closure of $\varphi_i(\varphi_j(\mathbb{D}))$ is a subset of \mathbb{D} , so by [4, page 129], the operator $C_{\varphi_i \circ \varphi_j}$ is compact. Therefore, for $i \neq j$, $C_{\psi_j,\varphi_j}C_{\psi_i,\varphi_i}$ is compact. We infer from [1, Proposition 3.3] that

$$\sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right)\setminus\{0\}=\bigcup_{i=1}^n \sigma_e(C_{\psi_i,\varphi_i})\setminus\{0\}.$$

Since for $m < i \le n$, $\varphi_i(\zeta_i) = \zeta_i$ and φ_i is not parabolic, we break the solution in two cases.

a) Suppose that the Denjoy–Wolff point of φ_i belongs to \mathbb{D} for some $i, m < i \leq n$. By [5, Theorem 2.11],

$$\sigma_e(C_{\psi_i,\varphi_i}) = \left\{ z : |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}} \right\}$$

Thus for $m < i \le n$

$$\left\{z: |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}}\right\} \setminus \{0\} \subseteq \sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right) \setminus \{0\}.$$

We get from [7, Theorem 1.2-1] that for $m < i \leq n$,

$$\left\{z: |z| \le \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}}\right\} \setminus \{0\}$$

is the subset of the closure of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$. Since $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$ is convex, we conclude that

$$\left\{z: |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}}\right\} \subseteq W\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right).$$

b) Assume that ζ_i is the Denjoy–Wolff point of φ_i for some i, m < i < n. Since φ_i is not parabolic, by [5, Theorem 2.9],

$$\sigma_e(C_{\psi_i,\varphi_i}) = \left\{ z : |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}} \right\}.$$

We conclude that

$$\left\{z: |z| < \frac{|\psi_i(\zeta_i)|}{|\varphi_i'(\zeta_i)|^{1+\frac{\alpha}{2}}}\right\} \subseteq \sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right) \setminus \{0\}.$$

By the similar idea used in Part (a), the result follows.

In the previous theorem, we assumed that for each $m < i \leq n$, the function φ_i is not parabolic. In the next theorem, we suppose that for some *i*, the linear fractional self-maps φ_i are parabolic, but not positive parabolic.

Theorem 2.4. Assume that $\varphi_1, ..., \varphi_n$ are linear fractional self-map of \mathbb{D} that are not automorphisms. Let m be an integer such that m < n. Suppose that $\eta_i, \zeta_i \in \partial \mathbb{D}$ such that $\varphi_i(\zeta_i) = \eta_i$ for $1 \le i \le m$. Moreover, for $m < i \le n$, $\zeta_i \in \partial \mathbb{D}$ and $\varphi(\zeta_i) = \zeta_i$. Let for each $i \ne j$, $\zeta_i \ne \zeta_j$ and $\zeta_i \ne \eta_j$. Suppose that there exists i_0 with $m < i_0 \le n$ such that φ_{i_0} is parabolic but not positive parabolic and the translation number of φ_{i_0} is t_{i_0} . If ψ_{i_0} is continuous at ζ_{i_0} and $\psi_{i_0}(\zeta_{i_0}) \neq 0$, then

$$co\left(\left\{\psi_{i_0}(\zeta_{i_0})e^{-\beta t_{i_0}}: \ 0 \le \beta < \infty\right\}\right)$$

is the subset of the closure of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$ and 0 belongs to the interior of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$.

Proof. We infer from [5, Theorem 2.8] that for i_0

$$\sigma_e(C_{\psi_{i_0},\varphi_{i_0}}) = \left(\{ \psi_{i_0}(\zeta_{i_0})e^{-\beta t_{i_0}} : 0 \le \beta < \infty \} \right) \bigcup \{ 0 \},$$

which is a logarithmic spiral (see [4, p. 303]). Since for each $i \neq j$, $C_{\psi_i,\varphi_i}C_{\psi_i,\varphi_i}$ is compact, by [1, Proposition 3.3], we obtain

$$\sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right) \setminus \{0\} = \bigcup_{i=1}^n \sigma_e(C_{\psi_i,\varphi_i}) \setminus \{0\}.$$

Therefore,

$$\left(\{\psi_{i_0}(\zeta_{i_0})e^{-\beta t_{i_0}}: \ 0 \le \beta < \infty\}\right) \setminus \{0\} \subseteq \sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right) \setminus \{0\}.$$

By the similar method used in the proof of Theorem 2.3, we conclude that

$$\operatorname{co}\left(\{\psi_{i_0}(\zeta_{i_0})e^{-\beta t_{i_0}}: \ 0 \le \beta < \infty\}\right)$$

is the subset of the closure of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$. Since

$$\{\psi_{i_0}(\zeta_{i_0})e^{-\beta t_{i_0}}: \ 0 \le \beta < \infty\}$$

is a logarithmic spiral (see [4, p. 303]), then 0 is an interior point of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$.

In the following theorem, we assume that for some i, the function φ_i does not make contact with $\partial \mathbb{D}$ and we prove that zero is an interior point of $W(\sum_{i=1}^{n} C_{\psi_i,\varphi_i})$.

Theorem 2.5. Let $\varphi_1, ..., \varphi_n$ be linear fractional non-automorphisms. Let m be an integer with m < n. Suppose that for $1 \le i \le m$, the function φ_i does not make contact with $\partial \mathbb{D}$ and for $m < i \le n$, φ_i has a fixed point at $\zeta_i \in \partial \mathbb{D}$. Assume that for $i \ne j$ that $m < i, j \le n$, $\zeta_i \ne \zeta_j$. If there exists i_0 with $m < i_0 \le n$, such that ψ_{i_0} is continuous at ζ_{i_0} , $\psi_{i_0}(\zeta_{i_0}) \ne 0$ and φ_{i_0} is not positive parabolic, then 0 is in the interior of $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$. *Proof.* We obtain from [4, p. 129] that for each $1 \le i \le m$, the operator C_{ψ_i,φ_i} is compact. Therefore,

$$\sigma_e\left(\sum_{i=1}^n C_{\psi_i,\varphi_i}\right) = \sigma_e\left(\sum_{i=m+1}^n C_{\psi_i,\varphi_i}\right).$$

Again we can easily see that for $i \neq j$ that $m < i, j \leq n$, the operator $C_{\psi_i,\varphi_i}C_{\psi_j,\varphi_i}$ is compact. Then by the similar argument stated in the proof of the previous two theorems, we have $\operatorname{co}(\sigma_e(C_{\psi_{i_0},\varphi_{i_0}}))$ is the closure of $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$. From [5, Theorem 2.8, Theorem 2.9 and Theorem 2.11] and the fact that $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$ is convex, we easily conclude that zero is an interior point of $W(\sum_{i=1}^n C_{\psi_i,\varphi_i})$. \Box

In the following, some examples for the previous theorems are provided.

Example 2.6. (a) Let $\varphi_1(z) = \frac{-iz}{2+z}$, $\varphi_2(z) = \frac{z}{2+z}$ and $\varphi_3(z) = \frac{z}{2-z}$. We can see that $\varphi_1(-1) = i$, $\varphi_2(-1) = -1$ and $\varphi_3(1) = 1$. Note that φ_2 and φ_3 are not parabolic. Suppose that $\psi_1(z) = \frac{1}{3+z}$, $\psi_2(z) = \frac{z}{2z+1}$ and $\psi_3(z) = \frac{1}{2}z$. Theorem 2.3 implies that $\{z : |z| < 1\}$ is contained in $W(C_{\psi_1,\varphi_1} + C_{\psi_2,\varphi_2} + C_{\psi_3,\varphi_3})$.

(b) Let $\varphi_1(z) = \frac{i-z}{2i}$, $\varphi_2(z) = \frac{-z}{2+z}$ and $\varphi_3(z) = \frac{(1-i)z+(i-1)}{3+i-(i-1)z}$. We can easily see that $\varphi_1(-i) = 1$, $\varphi_2(-1) = 1$ and $\varphi_3(i) = i$. Put $\psi_1(z) = \frac{z^3}{2z+i}$, $\psi_2(z) = (2z^2+1)e^z$ and $\psi_3(z) = (z^4+1)e^{-z}$. We infer from Theorem 2.4 that co $(\{2e^{-i}e^{-\beta(1+i)}:\beta\geq 0\})$ is the subset of the closure of $W(C_{\psi_1,\varphi_1} + C_{\psi_2,\varphi_2} + C_{\psi_3,\varphi_3})$ and zero is the interior point of this numerical range.

(c) Assume that $\varphi_1(z) = \frac{z+i}{5}$, $\varphi_2(z) = \frac{(1-i)z+(i-1)}{3+i-(i-1)z}$ and $\varphi_3(z) = \frac{i+z}{2}$. It is obvious that φ_2 and φ_3 are not positive parabolic and $\varphi_2(1) = 1$ and $\varphi_3(i) = i$. Define $\psi_1(z) = z^3$, $\psi_2(z) = 2e^{-iz}$ and $\psi_3(z) = \frac{1}{2z+i}$. We obtain from Theorem 2.5, that zero lies in the interior of $W(C_{\psi_1,\varphi_1} + C_{\psi_2,\varphi_2} + C_{\psi_3,\varphi_3})$.

References

- P. S. Bourdon, Spectra of composition operators with symbols in S(2), J. Operator Theory 75 (2016), 21-48.
- [2] P. S. Bourdon and J. H. Shapiro, When is zero in the numerical range of a composition operator?, *Integral Equations Operator Theory* 44 (2002), 410-441.
- [3] P. S. Bourdon and J. H. Shapiro, The numerical ranges of automorphic composition operators, J. Math. Anal. Appl. 251 (2000), 839-854.

M. Haji Shaabani

- [4] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- [5] M. Farzi Haromi and M. Haji Shaabani, Spectrum of some weighted composition operators, Proc. Indian Acad. Sci. 129 (2019), 1-11.
- [6] M. Fatehi, Numerical ranges of weighted composition operators, *Journal* of Mathematical Analysis and Applications **477** (2019), 875-884.
- [7] K. E. Gustafson, and K. M. Rao, The Numerical Range, The field of Values of Linear Operators and Matrices, Springer, New York, 1997.
- [8] J. H. Shapiro, Composition Operators and Classical Function Theory, New York, Springer-Verlag, 1993.