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1. Introduction

The aim of this article is to show the existence of three weak solutions for
the following problem −(|u′|p−2u′)′ = λFu(x, u, v) in (0, 1),

−(|v′|q−2v′)′ = λFv(x, u, v) in (0, 1),
u(0) = u′(1) = v(0) = v′(1) = 0.

(1.1)
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where q ≥ p > 1 and λ is a real positive parameter.
F : [0, 1]× R2 −→ R

is a function such that F (., s, t) is continuous on [0, 1] for all (s, t) ∈ R2

and F (x, ., .) is C1 in R2 for every x ∈ [0, 1], and Fu, Fv denote the partial
derivatives of F with respect to the second and third variable. Moreover,
F (., s, t) satisfies the condition

sup
|s|≤θ,|t|≤θ

(|Fu(., s, t)|+ |Fv(., s, t)|) ∈ L1([0, 1]), for all θ > 0. (1.2)

In recent years, the study of problems involving mixed boundary (p, q)−Laplacian
systems has been widely approached. For example, in [5] the authors es-
tablished the existence of a nontrivial solution for the system (1.1). In [4]
using variational methods and critical point theory, the existence of at least
one positive solution for the following problem was discussed −∆pu = λ[g(x)a(u) + f(v)] in Ω,

−∆qv = λ[g(x)b(v) + h(u)] in Ω,
u = v = 0 on ∂Ω.

Also, Shivaji and Son in [6] established the existence of three positive so-
lutions for the following problem

−∆pu = λ[up−1−α + f(v)] in Ω,
−∆qv = λ[vq−1−β + g(u)] in Ω,

u = 0 = v on ∂Ω.

In the last decade or so, many authors applied variational methods to study
the existence of three solutions for elliptic problem; see, for example, [1, 2]
and the references therein.
The aim of this article is using variational method to prove the existence of
three weak solutions for the problem (1.1). Our approach is the variational
method and main tool is Theorem 1.1 due to Bonanno that we recall here.

Theorem 1.1. ([3, Theorem 7.1]) Let X be a real Banach space and let
Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals which
Φ is bounded from below. Assume that there is r ∈]infXΦ, supXΨ[ such
that

ϕ(r) < ρ(r),

where

ϕ(r) := inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[)Ψ(u)−Ψ(v)

r − Φ(v)
, (1.3)

and

ρ(r) := sup
v∈Φ−1(]r,∞[)

Ψ(v)− supu∈Φ−1(]−∞,r[)Ψ(u)

Φ(v)− r
. (1.4)
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and for each λ ∈] 1

ρ(r)
,

1

ϕ(r)
[ the function Iλ = Φ − λΨ is bounded from

below and satisfies (PS)-condition.
Then, for each λ ∈] 1

ρ(r)
,

1

ϕ(r)
[ the function Iλ admits at least three critical

points.

Remark 1.2. ([3]) If we assume that Φ(0) = Ψ(0) = 0 and there are r > 0
and u ∈ X, with Φ(u) > r, such that

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(u)

Φ(u)
,

then one has ϕ(r) < ρ(r) and, in addition,

]
Φ(u)

Ψ(u)
,

r

supu∈Φ−1(]−∞,r[)Ψ(u)
[.

Proposition 1.3. ([3, Proposition 2.2]) Let X be a reflexive real Banach
space; Φ : X → R be a continuously Gâteaux differentiable function whose
Gâteaux derivative admits a continuous inverse on X∗, and Ψ : X → R be
a continuously Gâteaux differentiable function whose Gâteaux derivative is
compact. Assume that the function Φ−Ψ is coercive.
Then, for all r1, r2 ∈ [−∞,+∞], with r1 < r2, the function Φ−Ψ satisfies
the [r1](PS)[r2]-condition.

The plan of this article is as follows. In section 2 we recall some infor-
mation that we need. In section 3 we mention our main result.

2. preliminaries

Let X denote the Cartesian product of two Sobolev spaces
X1 = {u ∈W 1,p([0, 1]);u(0) = 0},

and
X2 = {v ∈W 1,q([0, 1]); v(0) = 0}.

The space X will be endowed with the norm
∥(u, v)∥ = ∥u∥p + ∥v∥q,

where

∥u∥p = (

∫ 1

0
|u′(x)|pdx)

1

p ,

and

∥v∥q = (

∫ 1

0
|v′(x)|qdx)

1

q .
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Since p > 1 and q > 1, the Rellich−Kondrachov theorem ensures that
(X1, ∥ . ∥p) ↪→ (C0([0, 1]), ∥ . ∥∞) and (X2, ∥ . ∥q) ↪→ (C0([0, 1]), ∥ . ∥∞) are
compact, therefore for all (u, v) ∈ X we have [7, 8]

∥u∥∞ < ∥u∥p, ∥v∥∞ < ∥v∥q. (2.1)

Definition 2.1. We say that (u, v) ∈ X is a weak solution of problem (1.1)
if∫ 1

0
|u′|p−2u′ϕ′dx+

∫ 1

0
|v′|q−2v′ψ′dx−λ

∫ 1

0
Fu(x, u, v)ϕdx−λ

∫ 1

0
Fv(x, u, v)ψdx = 0,

for all (ϕ,ψ) ∈ X.

We see that weak solutions of system (1.1) are critical points of the
functional Iλ : X −→ R, given by

Iλ(u, v) = Φ(u, v)− λΨ(u, v),

for all (u, v) ∈ X, where

Φ(u, v) =
1

p
∥u∥pp +

1

q
∥v∥qq (2.2)

and

Ψ(u, v) =

∫ 1

0
F (x, u, v)dx. (2.3)

Since X is compactly embedded in C0([0, 1]) × C0([0, 1]), it is well known
that Φ and Ψ are well defined and Gâteaux differentiable functionals whose
Gâteaux derivatives at (u, v) ∈ X are given by

< Φ′(u, v), (ϕ,ψ) >=

∫ 1

0
|u′|p−2u′ϕ′dx+

∫ 1

0
|v′|q−2v′ψ′dx,

< Ψ′(u, v), (ϕ,ψ) >=

∫ 1

0
Fu(x, u, v)ϕdx+

∫ 1

0
Fv(x, u, v)ψdx,

for all (ϕ,ψ) ∈ X. Moreover, by the weakly lower semicontinuity of norm,
we see that Φ is sequentially weak lower semicontinuous. Thanks to p, q >
1 and condition (1.2), Ψ has a compact derivative, it follows that Ψ is
sequentially weakly continuous.
Now, put

Q(r) = {θ = (θ1, θ2) ∈ R2 ;
|θ1|p

p
+

|θ2|q

q
≤ r},

and

β∗ = max{2
p−1

p
,
2q−1

q
}, β∗ = min{2

p−1

p
,
2q−1

q
}.
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3. Main results

Now, we state main result to find three weak solution for the problem
(1.1).

Theorem 3.1. Assume that there exist constants c, δ with c

β∗
< (δp + δq)

and a function η ∈ L1([0, 1]) such that

(a1)
∫ 1

2
0 F (x, s, t) ≥ 0 ∀ (x, s, t) ∈ [0, 1]× [0, δ]× [0, δ].

(a2) F (x, s, t) ≤ η(x)(1 + |s|m + |t|n),
where m < p, n < q for almost every x ∈ [0, 1] and for every
(s, t) ∈ R2 .

(a3) ∫ 1
0 max(s,t)∈Q(c) F (x, s, t)dx

c
<

∫ 1
1

2

F (x, δ, δ)dx

2p−1δp

p
+

2q−1δq

q

.

Then, for each parameter λ belonging to

]

2p−1δp

p
+

2q−1δq

q∫ 1
1

2

F (x, δ, δ)dx
,

c∫ 1
0 max(s,t)∈Q(c) F (x, s, t)dx

[, (3.1)

the problem (1.1) possesses at least three distinct weak solutions in X.
Proof. Our aim is to apply Theorem 1.1 to our problem. To this end, let Φ,
Ψ be the functionals defined by (2.2), (2.3) respectively. Then Ψ′ : X → X∗

is a compact operator. On the other hand the fact that X is compactly
embedded into C0([0, 1]) implies that the operator Ψ′ : X → X∗ is compact.
Furthermore, Φ is bounded from below.
Set r = c and define the function u ∈ X by putting

u(x) :=


2δx x ∈ [0,

1

2
[,

δ x ∈ [
1

2
, 1].

clearly (u, u) ∈ X.
From c

β∗
< (δp + δq), and

β∗(δ
p + δq) ≤ Φ(u, u) ≤ β∗(δp + δq), (3.2)

one has
Φ(u, u) > r > 0.
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From (a1), we have

Ψ(u, u) =

∫ 1

0
F (x, u, u)dx ≥

∫ 1

1

2

F (x, δ, δ)dx. (3.3)

Therefore, one has

Ψ(u, u)

Φ(u, u)
≥

∫ 1
1

2

F (x, δ, δ)dx

2p−1δp

p
+

2q−1δq

q

. (3.4)

Here and in the sequel we have Φ(0, 0) = Ψ(0, 0) = 0 and Φ(u, v) ⩾ 0 for
every (u, v) ∈ X. For all (u, v) ∈ X such that (u, v) ∈ Φ−1(]−∞, r[) from
(2.1) we have |u|p

p
+

|v|q

q
≤ c therefore

Ψ(u, v) =

∫ 1

0
F (x, u, v)dx ≤

∫ 1

0
max

(s,t)∈Q(c)
F (x, s, t)dx,

and
sup

(u,v)∈Φ−1(]−∞,r[)

Ψ(u, v) ≤
∫ 1

0
max

(s,t)∈Q(c)
F (x, s, t)dx. (3.5)

So, from (a3)
sup(u,v)∈Φ−1(]−∞,r[)Ψ(u, v)

c
≤ Ψ(u, u)

Φ(u, u)
.

Now, we prove that the functional Φ− λΨ is coercive, for each (u, v) ∈ X,
by using (a2) one has

Φ(u, v)− λΨ(u, v) =
1

p
∥u∥pp +

1

q
∥v∥qq − λ

∫ 1

0
F (x, u, v)dx ≥

1

p
∥u∥pp +

1

q
∥v∥qq − λ

∫ 1

0
η(x)(1 + |s|m + |t|n)dx,

we have∫ 1

0
η(x)(1 + |u|m + |v|n)dx ≤ (1 + ∥u∥m∞ + ∥v∥n∞)

∫ 1

0
|η(x)|dx ≤

(1 + ∥u∥mp + ∥v∥nq )∥η∥L1([0,1]),

so

Φ(u, v)− λΨ(u, v) ≥ 1

p
∥u∥pp +

1

q
∥v∥qq − λ(1 + ∥u∥mp + ∥v∥nq )∥η∥L1([0,1]),

hence
lim

∥(u,v)∥→+∞
Φ(u, v)− λΨ(u, v) = +∞.
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So the functional Iλ = Φ−λΨ is bounded from below because it is coercive
and weakly sequentially lower semicontinuous. Thus, the functionals Φ,Ψ
satisfy all regularity assumptions requested in Theorem 1.1, ( for (PS)-
condition we apply Proposition 1.3 ).
Thus, all necessary conditions are verified. Since all the assumptions of
Theorem 1.1 and Remark 1.2 are satisfied, then, for each

λ ∈]

2p−1δp

p
+

2q−1δq

q∫ 1
1

2

F (x, δ, δ)dx
,

c∫ 1
0 max(s,t)∈Q(c) F (x, s, t)dx

[,

the functional Iλ has at least three distinct critical points that are weak
solutions of the problem(1.1). The proof is complete. □

Corollary 3.2. Assume that in system (1.1) the function F does not depend
on x ∈ [0, 1]. Then, from the theorem 3.1, for each

λ ∈]

2pδp

p
+

2qδq

q

F (δ, δ)
,

c

F (c, c)
[,

the following system admits three weak solutions −(|u′|p−2u′)′ = λFu(u, v) in (0, 1),
−(|v′|q−2v′)′ = λFv(u, v) in (0, 1),

u(0) = u′(1) = v(0) = v′(1) = 0.

Example 3.3. Consider the following problem −(|u′|3u′)′ = λFu(u, v) in (0, 1),
−(|v′|4v′)′ = λFv(u, v) in (0, 1),

u(0) = u′(1) = v(0) = v′(1) = 0,
(3.6)

if we chosse p = 5, q = 6 and

F : R2 −→ R

F (u, v) =

{
u2v2(sin logu+ 2)(sin logv + 2) if u > 0, v > 0,

0 otherwise, (3.7)

we have

Fu(u, v) =

{
2uv2(2sin logu+ 4 + cos logu)(sin logv + 2) if u > 0, v > 0,

0 otherwise,
(3.8)

Fv(u, v) =

{
2u2v(sin logu+ 2)(cos logv + 2sin logu+ 4) if u > 0, v > 0,

0 otherwise.
(3.9)
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For example, if we chosse c = e
−
5

2
π

and δ = e
−
π

2 , then for each

λ ∈ (21.3e
−
π

2 , e7.5π) the system (3.6) admits at least three solutions.
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