- Das, S. (2011). Functional fractional calculus. Berlin: Springer. doi:10.1007/978-3-642-20545-3.
- Xue, D., & Bai, L. (2024). Fractional Calculus, High-Precision Algorithms and Numerical Implementations. Springer Singapore. doi:10.1007/978-981-99-2070-9.
- Zayed, A. I. (2024). Fractional integral transforms: Theory and applications. Chapman and Hall/CRC, Boca Raton, United States. doi:10.1201/9781003089353.
- Belhoste, B. (2012). Augustin-Louis Cauchy: A Biography. Springer, Cham, Switzerland.
- Al-Refai, M., & Luchko, Y. (2023). General Fractional Calculus Operators of Distributed Order. Axioms, 12(12), 1075. doi:10.3390/axioms12121075.
- Gorenflo, R., Kilbas, A. A., Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Berlin, Germany. doi:10.1007/978-3-662-61550-8.
- Singh, H., Srivastava, H. M., & Pandey, R. K. (2023). Special Functions in Fractional Calculus and Engineering. CRC Press, Boca Raton, United States. doi:10.1201/9781003368069.
- Yang, Y., & Zhang, H. H. (2019). Fractional calculus with its applications in engineering and technology. Synthesis Lectures on Mechanical Engineering, Springer, Cham, Switzerland, doi:10.1007/978-3-031-79625-8 .
- Ferreira, R. A. (2022). Discrete fractional calculus and fractional difference equations. SpringerBriefs in Mathematics, Springer, Cham, Switzerland. doi:10.1007/978-3-030-92724-0 .
- Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers and Mathematics with Applications, 62(3), 1602–1611. doi:10.1016/j.camwa.2011.03.036.
- Sebah, P., & Gourdon, X. (2002). Introduction to the gamma function. American Journal of Scientific Research, 2.
- Yuldashova, H., & Hasanov, A. (2024). Mittag-Leffler type functions of three variables. doi:22541/au.171604045.56900857/v1.
- Ostalczyk, P. (2015). Discrete Fractional Calculus: Applications in Control and Image Processing. World Scientific Publishing Company, Singapore. doi:10.1142/9833.
- Lubich, Ch. (1986). Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis, 17(3), 704–719. doi:10.1137/0517050.
- Bhangale, N., Kachhia, K. B., & Gómez-Aguilar, J. F. (2023). Fractional viscoelastic models with Caputo generalized fractional derivative. Mathematical Methods in the Applied Sciences, 46(7), 7835–7846. doi:10.1002/mma.7229.
- Haq, S. U., Khan, M. A., Khan, Z. A., & Ali, F. (2020). MHD effects on the channel flow of a fractional viscous fluid through a porous medium: An application of the Caputo-Fabrizio time-fractional derivative. Chinese Journal of Physics, 65, 14–23. doi:10.1016/j.cjph.2020.02.014.
- Abro, K. A., Memon, A. A., & Uqaili, M. A. (2018). A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. European Physical Journal Plus, 133(3), 1–9. doi:10.1140/epjp/i2018-11953-8.
- Veisi, A., & Delavari, H. (2022). Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak. Mathematical Methods in the Applied Sciences, 45(7), 3479–3496. doi:10.1002/mma.7994.
- Veisi, A., Maleki, H., & Delavari, H. (2023). Adaptive Fractional Sliding Mode Controller for Controlling Airway Pressure in an Artificial Ventilation System. 2023 9th International Conference on Control, Instrumentation and Automation, ICCIA 2023. doi:10.1109/ICCIA61416.2023.10506394.
- Delavari, H., & Veisi, A. (2023). Fuzzy fractional-order sliding mode control of COVID-19 virus variants. Computational Intelligence in Electrical Engineering, 14(1), 93-108.
- Ortigueira, M. D. (2024). Principles of fractional signal processing. Digital Signal Processing, 149, 104490. doi:10.1016/j.dsp.2024.104490.
- Cattani, C., Srivastava, H. M., & Yang, X.-J. (Eds.). (2015). Fractional Dynamics. Walter de Gruyter, Berlin, Germany. doi:10.1515/9783110472097.
- Imran, M. A., Khan, I., Ahmad, M., Shah, N. A., & Nazar, M. (2017). Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives. Journal of Molecular Liquids, 229, 67–75. doi:10.1016/j.molliq.2016.11.095.
- Delavari, H., & Veisi, A. (2021). Robust Control of a Permanent Magnet Synchronous Generators based Wind Energy Conversion. 2021 7th International Conference on Control, Instrumentation and Automation, ICCIA 2021. doi:10.1109/ICCIA52082.2021.9403590.
- Veisi, A., & Delavari, H. (2021). Adaptive Fractional order Control of Photovoltaic Power Generation System with Disturbance Observer. 2021 7th International Conference on Control, Instrumentation and Automation, ICCIA 2021. doi:10.1109/ICCIA52082.2021.9403598.
- Delavari, H., & Veisi, A. (2024). A new robust nonlinear controller for fractional model of wind turbine based DFIG with a novel disturbance observer. Energy Systems, 15(2), 827–861. doi:10.1007/s12667-023-00566-3.
- Veisi, A., & Delavari, H. (2024). Adaptive optimized fractional order control of doubly-fed induction generator (DFIG) based wind turbine using disturbance observer. Environmental Progress & Sustainable Energy, 43(2), 14087. doi:10.1002/ep.14087.
- Veisi, A., Delavari, H., & Shanaghi, F. (2023). Maximum Power Point Tracking in a Photovoltaic System by Optimized Fractional Nonlinear Controller. 2023 8th International Conference on Technology and Energy Management, ICTEM 2023. doi:10.1109/ICTEM56862.2023.10083639.
- Veisi, A., & Delavari, H. (2023). Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system. Journal of Renewable and Sustainable Energy, 15(6). doi:10.1063/5.0161571.
- Chen, G. S. (2011). A generalized Young inequality and some new results on fractal space. arXiv preprint arXiv:1107.5222.
- Gajic, Z., & Qureshi, M. T. J. (2008). Lyapunov matrix equation in system stability and control. Courier Corporatio, Chelmsford, United States.
- Veisi, A., & Delavari, H. (2025). Deep reinforcement learning optimizer based novel Caputo fractional order sliding mode data driven controller. Engineering Applications of Artificial Intelligence, 140, 109725. doi:10.1016/j.engappai.2024.1097255.
- Veisi, A., & Delavari, H. (2024). Fractional data driven controller based on adaptive neural network optimizer. Expert Systems with Applications, 257. doi:10.1016/j.eswa.2024.125077.
- Fu, H., & Kao, Y. (2025). Robust sliding mode control of discrete fractional difference chaotic system. Nonlinear Dynamics, 113(2), 1419–1431. doi:10.1007/s11071-024-10279-6.
|