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Abstract. In this paper, Lie group and Lie algebra structures of
unit complex 3-sphere S3

C are studied. In order to do this, adjoint
representation of unit biquaternions (complexified quaternions) is
obtained. Also, a correspondence between the elements of S3

C and
the special bicomplex unitary matrices SU C2(2) is given by express-
ing biquaternions as 2-dimensional bicomplex numbers C2

2. The
relation SO(R3) ∼= S3/{±1} = RP3 among the special orthogonal
group SO(R3), the quotient group of unit real quaternions S3/{±1}
and the projective space RP3 is known as the Euclidean-projective
space [1]. This relation is generalized to the Complex-projective
space and is obtained as SO(C3) ∼= S3

C/{±1} = CP3.
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1. Introduction

It is known that the special orthogonal group SO(3) forms the set of
all the rotations in 3-dimensional Euclidean space E3, which preserves
lenght and orientation [2]. Thus, Lie algebra of the Lie group SO(3)
corresponds to the 3-dimensional Euclidean space R3, with the cross
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product operation. Killing bilinear form of the unit 3-sphere is the inner
product in E3. Adjoint representation adO(3) of the orthogonal group
O(3) is the group of all isometries that preserves the inner product on
the Lie algebra of O(3) [1]. Similar to SO(3), the special orthogonal
group SO(C3) forms the set of all the rotations in C3, which preserves
lenght and orientation.

In this paper, Lie group and Lie algebra structures of unit complex 3-
sphere S3

C are studied. In order to do this, adjoint representation of unit
biquaternions (complexified quaternions) is obtained. From the adjoint
representation of S3

C, it is obtained that the group adS3
C is the group of

all the complex isometries that preserves the complex metric tensor on
the Lie algebra of S3

C. Also, Killing bilinear form on the Lie algebra of
the group S3

C is obtained. It is shown that the Killing bilinear form of
S3

C can be given with the metric tensor in E3. It is obtained that S3
C

is not compact, because the value of the Killing bilinear form of S3
C is

obtained complex.
The relation SO(R3) ∼= S3/{±1} = RP3 among the special orthog-

onal group SO(R3), the quotient group of the unit real quaternions
S3/{±1} and the projective space RP3 is known as the Euclidean-
projective space [1]. Finally, this relation is generalized to the Complex-
projective space and is obtained as SO(C3) ∼= S3

C/{±1} = CP3.

2. Preliminaries

In this section, initially we will present basics of lie group and lie al-
gebra structures. Afterwards, we will present basics of real quaternions,
bicomplex numbers and biquaternions (complexified quaternions).

2.1. Basics of Lie Group and Lie Algebra Structures.

Definition 2.1. Left and right translation on the group G, determined
by an element a ∈ G, are the mappings

La : G → G defined by x 7→ La(x) = ax

and

Ra : G → G defined by x 7→ Ra(x) = xa

for all x ∈ G, respectively [3].

Definition 2.2. Let M be a topological manifold with an atlas S. Then,
M is called a differentiable manifold if transformations of coordinates
have all partial derivatives of all orders. M is called an analytic manifold
if transformations of coordinates are real analytic functions at every
point [3].
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Definition 2.3. Let G be a group. G is called a Lie group if G is an
analytic manifold and the mapping φ : G×G → G defined by φ(x, y) =
xy is analytic, for all x, y ∈ G [3].

Definition 2.4. An algebra V is called a Lie algebra if the operation of
multiplication in V denoted by [u,v] for u,v ∈ V satisfies

(1) [u,v] = −[v,u] (antisymetric);
(2)

[
u, [v,w]

]
+
[
v, [w,u]

]
+
[
w, [u,v]

]
= 0 for all w ∈ V (Jacobi

identity);

The operation [u,v] is called the bracket of vectors u and v. First
condition implies that [u,u] = 0 [3].

Definition 2.5. Let G be a Lie group. A vector field X on G is called
left-invariant if L′g(X) = X for all g ∈ G, where L′g is the differential of
the mapping Lg [3].

Definition 2.6. Let e be the unit element of the Lie group G and ξ, η ∈
Te(G). Denote by X and Y the left-invariant vector fields determined
by ξ and η. Then we define [ξ, η] = [X,Y ]e. Thus the tangent space
Te(G) at the unit element of the group becomes a Lie algebra (which
is the same as XL(G), of course; we limit ourselves to the unit of the
group for simplification only). This Lie algebra is called the Lie algebra
of the group Te(G) and is denoted by G [3].

Definition 2.7. Let a Lie group G be given and let g be a fixed choosen
element of the group G. For all h ∈ G the mapping

Intg : G → G defined by Intg(h) = ghg−1

is a differentiable isomorphism of the group G and we have Intg(e) =
geg−1 = e. This means that the differential of the mapping Intg at the
point e, i.e. (Intg)

′
e, maps Te(G) into Te(G). By denoting (Intg)

′
e with

adg then adg : G→ G. The mapping ad : G → Hom(G,G) is called the
adjoint representation of the group G [3].

Definition 2.8. Let G be a Lie algebra and let us define the transfor-
mation

K : G×G→ R defined by K(X,Y ) = Tr(AdX,AdY )

for all X,Y ∈ G. Then, the form K(X,Y ) is called the Killing bilinear
form on G and is a symmetric bilinear form where

AdX : G→ G defined by Y 7→ AdX(Y ) = [X,Y ] for all Y ∈ G,

and Tr(AdX,AdY ) stands for the trace of the mapping

AdX ·AdY : G→ G defined by Z 7→ AdX ·AdY (Z) =
[
X, [Y,Z]

]
.
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2.2. Basics of Real Quaternions. Real quaternion algebra

H = {q = w + xi + yj + zk
∣∣ w, x, y, z ∈ R}

is a four dimensional vector space over the field of real numbers R with
a basis {i , j , k} invented by Hamilton in 1843. Multiplication is defined
by the hypercomplex operator rules

i2 = j 2 = k2 = i j k = −1,

ij = −ji = k , jk = −kj = i , ki = −ik = j .

Also, H is an associative and non-commutative division ring.
For any real quaternion q = w + xi + yj + zk , we define the scalar

part and the vector part of q as S(q) = w and V(q) = xi + yj + zk ,
respectively, that is q = S(q) + V(q). The conjugate of q = S(q) + V(q)
is defined as q = S(q) −V(q), also known as quaternion conjugate. If
S(q) = 0, then q is called pure real quaternion. Pure real quaternions
set

Im(H) = {q = xi + yj + zk
∣∣ w, x, y, z ∈ R}

is a linear subspace of H spanned by {i , j , k} [4, 5].

2.3. Basics of Bicomplex Numbers. The algebra of complex num-
bers can be generalized to bicomplex numbers

C2 = {Z = A+ JB = (A,B) : A,B ∈ C)}
where J is the complex imaginary operator (therefore J 2 = −1) distinct
from the complex numbers operator I satisfying JI = IJ . For any
Z = A + JB ∈ C2, we define the real part and imaginary part of
Z as R(Z) = A and T(Z) = B, respectively, that is Z = A + JB.
The bicomplex conjugate of Z is defined as Z∗ = R(Z) − JT(Z). If
R(Z) = 0, then Z is called pure bicomplex number. The set of pure
bicomplex numbers

ImC2 = {Z = JB : B ∈ C}
is a linear subspace of C2. Let Z = A + JB and W = C + JD be any
two bicomplex numbers. Then, we define the sum and multiplication of
Z and W as follows:

Z +W = (A+ C) + J (B +D) = (A+ C,B +D),

ZW = (AC −BD) + J (AD +BC) = (AC −BD,AD +BC).

In addition, we can write ZW in the matrix form as

ZW =

[
A −B
B A

] [
C
D

]
.

Thus, C2 is a commutative ring with the unit element 1 = (1, 0).
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For any bicomplex number Z = A + JB, where A = a0 + Ia1 and
B = b0+I b1, the norm and the modulus of Z areNZ = ||Z|| = A2+B2 =

(a20 + b20) + J (2a0a1 + 2b0b1) and |Z| =
√
NZ =

√
||Z||, respectively. It

is essential to note that ||Z|| ∈ C. If ||Z|| = 1 then Z is called unit
bicomplex number. Moreover, we can write Z in polar form as

Z =
√
NZ(cosϕ+ J sinϕ) =

√
NZe

Jϕ,

where ϕ ∈ C, cosϕ = A/
√
NZ and sinϕ = B/

√
NZ . If Z is unit, then

its polar form will be equal to Z = cosϕ+ J sinϕ = eJϕ.
For any two unit bicomplex numbers in the polar form Z = cosϕZ +

J sinϕZ = eJϕZ and W = cosϕW + J sinϕW = eJϕW , we can write

W

Z
=
eJϕZ

eJϕW
= eJϕW−ϕZ .

By writing ϕ = ϕW − ϕZ , we get W = eJϕZ. Hence, the bicomplex
operator is ϕ → eJϕ = cosϕ + J sinϕ. Geometrically, multiplication of
bicomplex number Z by eJϕ means a rotation of Z by the complex angle
ϕ around the origin of the hypercomplex plane.

2.4. Basics of Biquaternions (Complexified Quaternions). The
algebra of quaternions can be generalized to biquaternions (complexified
quaternions) as

HC = {Q = W +Xi + Y j + Zk
∣∣ W,X, Y, Z ∈ C}

where i , j and k are exactly the same in the real quaternions [6, 7, 8].
Let Q = W +Xi + Y j + Zk ∈ HC, where the complex numbers are

W = R(W ) + IT(W ), X = R(X) + IT(X), Y = R(Y ) + IT(Y ), Z =
R(Z) +IT(Z). Here I denotes the complex number operator (therefore
I 2 = −1) distinct from i ,R() denotes the real part and T() denotes
the imaginary part of the complex number. Since reals commute with
the quaternion operator, so do all complex numbers. Therefore I com-
mutes with the quaternion operators, that is iI = I i, j I = I j and
kI = I k . So, we can write Q = R(Q)+IT(Q), where R(Q) = R(W )+
R(X)i +R(Y )j +R(Z)k and T(Q) = T(W ) +T(X)i +T(Y )j +T(Z)k
are real quaternions. We define the scalar part and vector part of Q
as S(Q) = W and V (Q) = Xi + Y j + Zk , respectively. The quater-

nion conjugate of Q is defined as Q = S(Q) − V (Q) = R(Q) + IT(Q)
[9]. If S(Q) = 0, then Q is called pure biquaternion. The set of pure
biquaternions

ImHC = {Q = Xi + Y j + Zk
∣∣ X,Y, Z ∈ C}

is a linear subspace of HC spanned by {i , j , k}.
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For biquaternions Q = W1 +X1i + Y1j + Z1k and P = W2 +X2i +
Y2j + Z2k , we define the sum of Q and P , multiplication of Q with a
scalar λ ∈ C and the product of Q and P as follows:

Q+ P = (W1 +W2) + (X1 +X2)i + (Y1 + Y2)j + (Z1 + Z2)k ,

λQ = λW1 + λX1i + λY1j + λZ1k ,

QP = S(Q)S(P )−〈V(Q),V(P )〉+S(Q)V(P )+S(P )V(Q)+V(Q)∧V(P ),

where 〈V(Q),V(P )〉 = X1X2+Y1Y2+Z1Z2 and V(Q)∧V(P ) = (Y1Z2−
Z1Y2)i − (X1Z2 − Z1X2)j + (X1Y2 − Y1X2)k . It should be considered
that the equations PQ = Q P and P +Q = P +Q = Q+ P are valid.

The norm and the modulus of a biquaternion Q = W +Xi +Y j +Zk
are defined, respectively, as

||Q|| = QQ = QQ = W 2 +X2 + Y 2 + Z2

and

|Q| =
√
NQ =

√
||Q||.

It is important to emphasize that ||Q|| ∈ C. If ||Q|| = 1 then Q is called
unit biquaternion. The multiplicative inverse of Q is

Q−1 = Q/||Q||.

Thus, the inverse of a nonzero biquaternion Q = R(Q) + IT(Q) is not
defined when

||R(Q)|| = ||T(Q)|| and R(Q)T(Q) = −T(Q)R(Q).

This is an important difference between real quaternions and biquater-
nions, because every nonzero real quaternion has an inverse. Also, the
algebra of biquaternions has zero divisors. So, HC is not a division al-
gebra.

A nonzero biquaternion Q = W + Xi + Y j + Zk can be written in
polar form as

Q =
√
NQ(cosφ+ Q̂sinφ) =

√
NQ e

Q̂φ

where φ ∈ C, Q̂ = (Xi + Y j +Zk)/
√
X2 + Y 2 + Z2, cosφ = W/

√
NQ

and sinφ =
√
X2 + Y 2 + Z2/

√
NQ [10]. Here Q̂ is the unit pure bi-

quaternion and the direction (or axis) of the vector part of the biquater-
nion Q in complex 3-space. The quaternion conjugate of Q in polar form

is defined as Q =
√
NQ(cosφ− Q̂sinφ). In addition, we can write Q in

complex form as

Q = A+ δB,
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where A = W ∈ C, δ = (Xi + Y j + Zk)/
√
X2 + Y 2 + Z2 ∈ C3 and

B =
√
X2 + Y 2 + Z2 ∈ C. The quaternion conjugate of Q in complex

form is defined as
Q = A− δB.

Lastly, we can write Q as

Q = (W +Xi) + (Y + Zi)j = C +Dj ,

where C = W +Xi , D = Y + Zi ∈ C2. Thus, HC is isomorphic to C2
2;

HC ∼= C2
2. The quaternion conjugate of Q is defined as

Q = (W −Xi)− (Y + Zi)j = C −Dj .

The unit complex 3-dimensional sphere, i.e. the set of unit biquater-
nions, S3

C = {Q ∈ HC : |Q| = 1} ⊂ HC constitutes a group under quater-
nion multiplication.

3. Matrix Representation of Unit Complex 3-Sphere S3
C

In this section, we will give a matrix representation of unit biquater-
nions. In terms of bicomplex variables, quaternionic multiplication of
biquaternions Q = Z1 +W1j and P = Z2 +W2j can be written as

QP = (Z1 +W1j )(Z2 +W2j ) = Z1Z2 + Z1W2j +W1jZ2 +W1jW2j .

By using the equalities jZ2 = Z2j , jW2 = W2j and j 2 = −1, we get

QP = (Z1Z2 −W1W2) + (Z1W2 +W1Z2)j

so that, under the correspondence HC ∼= C2
2, multiplying Q by P from

the right corresponds to the following matrix multiplication:

QP =

[
Z2 −W2

W2 Z2

] [
Z1

W1

]
.

By suppressing the incides, the right multiplication by Q = Z + W j ,
corresponds to left multiplication by matrix A given as

A =

[
Z −W
W Z

]
.

Restricting biquaternion Q to unit complex 3-sphere S3
C, i.e. choosing

Q a unit biquaternion, is equivalent to ||Q|| = ||W || + ||Z|| = 1 or
|Q|2 = |W |2 + |Z|2. In this instance, matrix A a special bicomplex
unitary matrix that is

A∗ = A
T

= A−1 with det(A) = 1,

where A∗,A
T

and A−1 are the adjoint matrix, the conjugate transpose
matrix and the inverse matrix of the matrix A, respectively. These
matrices constitute the group SU C2(2) of special bicomplex unitary
2× 2 matrices.
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The correspondence ψ : S3
C → SU C2(2) that associates to right multi-

plication by the unit biquaternion Q ∈ S3
C the special bicomplex unitary

matrix A is not quite an isomorphism, it is obviously one-to-one and
onto, but satisfies the following equation for P ∈ S3

C:

ψ(QP ) = ψ(P )ψ(Q).

We see that this follows by setting unit biquaternions Q = Z1 +W1j
and P = Z2 +W2j and comparing the first column of the product

ψ(P )ψ(Q) =

[
Z2 −W2

W2 Z2

] [
Z1 −W1

W1 Z1

]
with the bicomplex expression of the product QP above.

4. The Lie Algebra G3
C of Unit Complex 3-Sphere S3

C

The group S3
C is a Lie group of dimension 3. In fact, S3

C is a complex
3-dimensional analytic manifold since the mapping

f : S3
C 7→ C

defined by

f(Q) = W 2 +X2 + Y 2 + Z2 for all Q = W +Xi + Y j + Zk ∈ S3
C

is differentiable and its regular value is 1. Furthermore, the mapping

µ : S3
C × S3

C → S3
C defined by µ(Q,P ) = QP for all Q,P ∈ S3

C

is analytic.
Let us find the Lie algebra G3

C of the Lie group S3
C, i.e. the tangent

space of the unit element. Thus, let α(t) = A0(t) + A1(t)i + A2(t)j +
A3(t)k be a curve on S3

C and let α(0) = 1, i.e. A0(0) = 1, Am(0) = 0 for
m = 1, 2, 3. By differentiation the equation

3∑
m=0

[Am(t)]2 = 1

yields
3∑

m=0

[Am(t)A′m(t)] = 0.

Substituting t = 0 we obtain A0(0) = 0.
The Lie algebra G3

C is thus constituted by vectors of the form

ξ = ξm(∂/∂Am)
∣∣∣
α=1

, m = 1, 2, 3.

The vector ξ is formally written in the form ξ = ξ1i+ξ2j+ξ3k . Thus, the
Lie algebra G3

C is equal to ImHC and the tangent space Te(S
3
C) is equal

to situation transportation of the frame of complex 3-space C3 to the
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unit point e of the Lie group S3
C, where C3 = {Q = (X,Y, Z) : 〈Q,Q〉 =

X2 + Y 2 + Z2;X,Y, Z ∈ C}, e = (1, 0, 0, 0) ∈ S3
C ⊂ C4 and C4 = {Q =

(W,X, Y, Z) : 〈Q,Q〉 = W 2 +X2 +Y 2 +Z2;W,X, Y, Z ∈ C}. Hence, the
Lie algebra of left-invariant vector fields X L(S3

C) correspondences to C3.
Let us find the leftinvariant vector field X on S3

C for which Xα=1 = ξ.
Let β(t) be a curve on S3

C such that β(0) = 1 and β′(t) = ξ. Then
Lα(β(t)) = αβ(t) is the left translation of the curve β(t) by the unit
biquaternion α and its tangent vector is αβ′(0) = αξ. In particular,
denote by Xm those left invariant vector fields on S3

C for which

Xm

∣∣∣
α=1

=
∂

∂Am

∣∣∣∣∣
α=1

, m = 1, 2, 3.

These three vector fields are represented at the point α = 1, in bi-
quaternion notation, by the quaternions i , j and k . For the components
of these vector fields at the point α = A0 + A1i + A2j + A3k we have
(X1)α = αi , (X2)α = αj , (X3)α = αk .

The computations yields

X1 = −A1
∂

∂A0

+A0
∂

∂A1

+A3
∂

∂A2

−A2
∂

∂A3

,

X2 = −A2
∂

∂A0

−A3
∂

∂A1

+A0
∂

∂A2

+A1
∂

∂A3

,

X3 = −A3
∂

∂A0

+A2
∂

∂A1

−A1
∂

∂A2

+A0
∂

∂A3

,

where all the partial derivatives are at the point α. Further, we obtain

[X1,X2] = 2X3, [X2,X3] = 2X1, [X3,X1] = 2X2.

If we limit ourselves to the values at the point α = 1, we obtain in
quaternion notation

[i , j ] = 2k , [j , k ] = 2i , [k , i ] = 2j .

If we desire to replace [, ] by biquaternion multiplication, we have to
omit the complex part since, e.g. [i , i ] = 0 while i2 = −1. For ξ, η ∈ G3

C
we thus have [ξ, η] = 2ξη

∣∣
modC, i.e. the biquaternion without its complex

part.
To every element Q ∈ S3

C the mapping IntQ : S3
C → S3

C defined by
IntQ(X) = QXQ−1 for all X ∈ S3

C is assigned. The mapping IntQ is
a differentiable isomorphism of the group S3

C and we have IntQ(e) =
QeQ−1 = e. This means that the differential of the mapping IntQ at
the point e, i.e. (IntQ)′e, maps Te(S

3
C) into Te(S

3
C).
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Definition 4.1. Denote (IntQ)′e = adQ. Then the mapping

adQ : G3
C → G3

C

is called the adjoint representation of the group S3
C.

Theorem 4.2. Let Q ∈ S3
C and ξ, η ∈ G3

C. Then adQ[ξ, η] = [adQξ, adQη].

Theorem 4.3. The adjoint representation of any unit biquaternion Q =
W+Xi+Y j+Zk corresponds to the following complex orthogonal matrix

adQ =

 W 2 +X2 − Y 2 − Z2 2(XY −WZ) 2(WY +XZ)
2(WZ +XY ) W 2 −X2 + Y 2 − Z2 2(Y Z −WX)
2(XZ −WY ) 2(WX + Y Z) W 2 −X2 − Y 2 + Z2

 .
Proof. We know that the adjoint representation of Q is

adQ = (IntQ)′e : G3
C → G3

C,

which is defined by adQ(ξ) = (IntQ)′e(ξ) = d(IntQ)e(ξ) for all ξ ∈ G3
C.

Let α(t) be a curve on S3
C such that α0 = 1 and α′(0) = ξ. Then,

adQ(ξ) = (IntQ)′e(ξ) = d(IntQ)e

(
(dα)

( d
dt

∣∣∣
0

))

= d(IntQ ◦ α)
∣∣
0

( d
dt

∣∣∣
0

)
= d(QαQ−1)

∣∣
0

( d
dt

∣∣∣
0

)
= Q(dα)

∣∣
0

( d
dt

∣∣∣
0

)
Q−1

= Qα′(0)Q−1

= QξQ−1

Consequently, complex orthogonal matrix adQ corresponding to linear
isomorphism has been obtained according to the bases {i , j , k}. The
adjoint reprsentation adQ satisfies the following equations:

adQ(i) = QiQ−1, adQ(j ) = QjQ−1, adQ(k) = QkQ−1.

The complex orthogonality of the matrix adQ can be easily shown.
Therefore, adjoint representation of the unit complex 3-sphere adS3

C is
an isometry. �

Theorem 4.4. The Killing bilinear form of the unit complex 3-sphere
S3
C is invariant.

Proof. We know that the Killing bilinear form on G3
C is

K : G3
C ×G3

C → R
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which is defined by K(X,Y ) = Tr(AdX,AdY ) for all X,Y ∈ G3
C. For

every element X = X1i +X2j +X3k and Y = Y 1i + Y 2j + Y 3k from
G3

C, the following equations can be written:

[X,Y ] = 2X ∧ Y and 〈X,Y 〉 =

3∑
m=1

XmY m.

Further, for Z ∈ G3
C it can be obtained

1

4
(AdX ·AdY (Z)) =

1

4
(AdX([Y,Z])) =

1

4

[
X, [Y, Z]

]
= X ∧ (Y ∧ Z)

= 〈X,Z〉Y − 〈X,Y 〉Z.

From this relation, the matrix of the mapping (AdX · AdY (Z))/4 can
be written according to the bases {i , j , k} as follows: −(X2Y 2 +X3Y 3) X2Y 1 X3Y 1

X1Y 2 −(X1Y 1 +X3Y 3) X3Y 2

X1Y 3 X2Y 3 −(X1Y 1 +X2Y 2)

 ,
so that

Tr

(
1

4
(AdX ·AdY (Z))

)
= −2(X1Y 1 +X2Y 2 +X3Y 3) = −2〈X,Y 〉.

Hence, K(X,Y ) = Tr(AdX,AdY ) = −8〈X,Y 〉. The Killing bilinear
form is the complex inner product in G3

C. This means that group adS3
C

preserves the complex inner product that can be shown as

K(X,Y ) = K(AdQ(X), AdQ(Y ))

−8〈X,Y 〉 = −8〈AdQ(X), AdQ(Y )〉
〈X,Y 〉 = 〈AdQ(X), AdQ(Y )〉.

Consequently, the group adS3
C is a subgroup of the complex orthogonal

group O(C3), i.e. adS3
C ⊂ O(C3). �

S3
C is not compact because the value −8〈X,Y 〉 of the Killing bilinear

form of S3
C is obtained complex, i.e. −8〈X,Y 〉 ∈ C. In other words, since

K(X,Y ) = −8〈X,Y 〉 is not negative semi-definete, S3
C is not compact.

Theorem 4.5. The mapping adQ is a complex rotation of the vector
space G3

C about a certain axis through a certain complex angle.

Proof. For Q ∈ S3
C it can be written Q = cosφ + ε1sinφ, where φ ∈ C

and ε1 is a unit pure biquaternion. Therefore,

adQ(ε1) = Qε1Q = (cosφ+ ε1sinφ)ε1(cosφ− ε1sinφ) = ε1
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This means that to the biquaternion Q corresponds a complex rotation
about the axis determined by ε1.

Further, let us complete ε1 to a right-hand orthonormal base by the
biquaternions ε2 and ε3. For purely imaginary biquaternions ε and δ we
have the relation

εδ = −〈ε, δ〉+ ε ∧ δ
so that

ε1ε2 = ε3ε2ε3 = ε1ε3ε1 = ε3.

Now, let us find the image of the biquaternions ε2 and ε3 under the
mapping adQ:

adQ(ε2) = Qε2Q = (cosφ+ ε1sinφ)ε2(cosφ− ε1sinφ)

= ε2cos(2φ) + ε3sin(2φ)

adQ(ε3) = Qε3Q = (cosφ+ ε1sinφ)ε3(cosφ− ε1sinφ)

= −ε2sin(2φ) + ε3cos(2φ)

Thus, mapping adQ belonging to the biquaternion Q = cosφ + ε1sinφ
is the complex rotation in the complex plane about the axis determined
by the unit vector ε1 through the angle 2φ, see Fig. 1. �

12

Also, the mapping is not one-to-one. Because, the same rotations corresponds
to the biquaternions and .

The geometry of this rotation can be given as follows:

     ) 2

scalar axis
Figure: Rotation in complex plane

In the figure, is a unit pure biquaternion in the plane with normal , i.e. .
In fact, can be choosen as .

Interpretation the geometry of the complex angle is not easy. In fact, this
interpretation requires a further work.

For more information about the rotation when the angle is complex, the following
theorem can be given.

Theorem . . For an arbitrary biquaternion , where , and is unit pure
biquaternion, the transformation , where is any
unit pure biquaternion, leaves the scalar part of (that is, ) invariant, and reflects the
vector part of (that is, ) in the line defined by the axis of  (i.e. to rotate the vector part
in the complex plane by , about the axis of ) .

Theorem . . The mapping that associates to each unit biquaternion the
transformation ( ) restricted to Im is a surjective (or onto) group
homomorphism

with kernel

{ }.

Proof. From Theorem .  if  then defines a rotation which is an element of
. On the other hand, defines the identity element in  so that maps

into . It is clear that is homomorphism of groups and are in the kernel of .
Since all the elements in  are rotations, the mapping is onto. It remains to show
that the kernel of is exactly { }. Let  that is for all .

Figure 1. Rotation in complex plane

In Fig. 1, P is a unit pure biquaternion in the plane with normal ε1,
i.e. 〈ε1, P 〉 = 0. In fact, P can be choosen as ε2.

Consequently, the mapping adQ is an orientation preserving congru-
ence since it maps a right-hand frame into a right-hand frame so that
the determinant of this transformation is equal to 1. All the elements
of O(C3) whose determinants are equal to 1 constitute a subgroup of
the group O(C3). This subgroup is a Lie group of dimension 3 and has
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the same Lie algebra with the group O(C3). We call this subgroup the
special orthogonal group of degree 3 and denote it by SO(C3). These
facts imply that the groups adS3

C and SO(C3) are isomorphic. Also,
the mapping ad : S3

C 7→ adS3
C is not one-to-one. Because, the same

rotations corresponds to the biquaternions Q and −Q.

Theorem 4.6. For an arbitrary biquaternion Q = A + δB, where
A,B ∈ C and δ is unit pure biquaternion, the transformation fε1(Q) =
adε1(Q) = ε1Qε

−1
1 = − ε1Qε1, where ε1 is any unit pure biquaternion,

leaves the scalar part of Q (that is, A) invariant, and reflects the vector
part of Q (that is, δB) in the line defined by the axis of ε1 (i.e. a half
turn rotation of δB in the complex plane) about the axis of ε1 [9].

Theorem 4.7. The mapping adQ that associates to each unit biquater-
nion Q ∈ S3

C the transformation adQ(P ) = QPQ−1 restricted to ImHC
is a surjective (or onto) group homomrphism

adQ : S3
C 7→ SO(C3)

with kernel
Ker(adQ) = {±1}.

Proof. From Theorem 4.5, if ±1 ∈ S3
C then Q defines a rotation which is

an element of SO(C3). It is clear that adQ is homomorphism of groups
and ±1 are in the kernel of adQ. Since all the elements in SO(C3)
are rotations, the mapping adQ is onto. It remains to show that the
kernel of adQ is exactly ±1. Let Q ∈ Ker(adQ) that is QPQ−1 = P for
all P ∈ ImHC. Equivalently, Q commutes with all pure biquaternions.
Writing this condition out in terms of i, j and k, we obtain that Q must
be complex. Since it is in S3

C, it must be −1 or +1. �

Theorem 4.6 implies that the group S3
C of unit biquaternions modulo

the normal subgroup ±1 is isomorphic with the group SO(C3) of direct
spatial linear isometries. The quotient group S3

C/{±1} is the group of
right- (or left-) cosets of ±1. A right-coset containing Q ∈ S3

C has the
form {±1}Q = {±1Q}. Thus, topologically S3

C/{±1} can be considered
as a model for the Complex-projective space CP3. Also, by the Theo-
rem 4.7, CP3 can be identified by the group of direct spatial isometries
SO(C3). Thus, we obtain S3

C/{±1} = CP3. These relationships can be
illustrated by the following diagram:

S3
C SU C2(2)

SO(C3)

Diagram : The relationship among groups S3
C, SU C2(2) and SO(C3).



240 Murat Bekar, Yusuf Yayli

5. Conclusions

For illustrating the relationship among the groups unit complex 3-
sphere S3

C, special bicomplex unitary matrices SU C2(2) and special
complex orthogonal group SO(C3) it is firstly given a correspondence
between the elements of S3

C and SU C2(2) by expressing biquaternions
HC as 2-dimensional bicomplex numbers C2

2. Secondly, SO(C3), which
is a subgroup of the complex orthogonal group O(C3), is obtained by
obtaining the Lie algebra of S3

C. Finally, it is shown that the quaotient
group of biquaternions S3

C/{±1} can be considered topologically as a
model for the Complex-projective space CP3.
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