- Xing, Y. F., Wang, Z. K., & Xu, T. F. (2018). Closed-form Analytical Solutions for Free Vibration of Rectangular Functionally Graded Thin Plates in Thermal Environment. International Journal of Applied Mechanics, 10(3). doi:10.1142/S1758825118500254.
- Kang, R., Xin, F., Shen, C., & Lu, T. J. (2022). 3D Free Vibration Analysis of Functionally Graded Plates with Arbitrary Boundary Conditions in Thermal Environment. Advanced Engineering Materials, 24(5). doi:10.1002/adem.202100636.
- Slimane, M., Adda, H. M., Mohamed, M., Hakima, B., Hadjira, H., & Sabrina, B. (2020). Effects of even pores distribution of functionally graded plate porous rectangular and square. Procedia Structural Integrity, 26, 35–45. doi:10.1016/j.prostr.2020.06.006.
- Hashemi, S., & Jafari, A. A. (2020). Nonlinear free vibration analysis of functionally graded rectangular plate using modified Lindstedt-Poincare method. Journal of Science and Technology of Composites, 6(4), 637-648. doi:10.22068/JSTC.2019.106866.1542.
- Kumar, V., Singh, S. J., Saran, V. H., & Harsha, S. P. (2021). Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation. European Journal of Mechanics, A/Solids, 85. doi:10.1016/j.euromechsol.2020.104124.
- Kumar, P., & Harsha, S. P. (2021). Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Composite Structures, 267. doi:10.1016/j.compstruct.2021.113901.
- Shahverdi, H., Navardi, M. M., & Sadr, M. H. (2022). A Proposed Approach to Simulate Thin Quadrilateral Plates Using Generalized Differential Quadrature Method Based on Kirchhoff–Love Theory. AUT Journal of Mechanical Engineering, 6(1), 15–30. doi:10.22060/ajme.2021.20283.5995.
- Hu, X., & Fu, T. (2023). Free vibration analysis of functionally graded plates with different porosity distributions and grading patterns. Journal of Mechanical Science and Technology, 37(11), 5725–5738. doi:10.1007/s12206-023-1012-6.
- Adineh, M., & Kadkhodayan, M. (2017). Three-dimensional thermo-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundation. Acta Mechanica, 228(3), 881–899. doi:10.1007/s00707-016-1743-x.
- Adineh, M., & Kadkhodayan, M. (2017). Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation. Composites Part B: Engineering, 125, 227–240. doi:10.1016/j.compositesb.2017.05.070.
- Rajasekaran, S., Khaniki, H. B., & Ghayesh, M. H. (2022). Thermo-mechanics of multi-directional functionally graded elastic sandwich plates. Thin-Walled Structures, 176, 109266. doi:10.1016/j.tws.2022.109266.
- Tran, M. T., & Thai, S. (2023). Transient analysis of variable thickness multi-directional functionally graded plates using isogeometric analysis. Multidiscipline Modeling in Materials and Structures, 19(4), 652–679. doi:10.1108/MMMS-12-2022-0283.
- Kumar, S., & Kar, V. R. (2022). Three-dimensional thermal analysis of multidirectional (perfect/porous) functionally graded plate under in-plane heat flux. Materials Today: Proceedings, 56, 879–882. doi:10.1016/j.matpr.2022.02.524.
- Thai, S., Do, D. T. T., & Tan, T. N. (2022). Nonlinear bending analysis of variable thickness multi-directional functionally graded plates based on isogeometric analysis. Mechanics of Advanced Materials and Structures, 30(20), 4091–4109. doi:10.1080/15376494.2022.2088909.
- Srivastava, M. C., & Singh, J. (2023). Influences of elastic foundation on bending analysis of multidirectional porous functionally graded plate under industrial used loading: a meshfree approach. Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(4), 519–535. doi:10.1007/s41939-023-00156-x.
- Tahouneh, V., & Naei, M. H. (2014). A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation. Meccanica, 49(1), 91–109. doi:10.1007/s11012-013-9776-x.
- Khorshidi, K., Bakhsheshi, A., & Ghadirian, H. (2016). The study of the effects of thermal environment on free vibration analysis of two dimensional functionally graded rectangular plates on Pasternak elastic foundation. doi:10.22044/JSFM.2016.792
- Yin, S., Yu, T., Bui, T. Q., Zheng, X., & Tanaka, S. (2016). In-plane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis. Composites Part B: Engineering, 106, 273–284. doi:10.1016/j.compositesb.2016.09.008.
- Thai, S., Nguyen, V. X., & Lieu, Q. X. (2022). Bending and free vibration analyses of multi-directional functionally graded plates in thermal environment: A three-dimensional Isogeometric Analysis approach. Composite Structures, 295. doi:10.1016/j.compstruct.2022.115797.
- Xiang, T., Natarajan, S., Mana, H., Song, C., & Gao, W. (2014). Free vibration and mechanical buckling of plates with in-plane material inhomogeneity-A three dimensional consistent approach. Composite Structures, 118(1), 634–642. doi:10.1016/j.compstruct.2014.07.043.
- Adineh, M. (2024). Natural Frequency analysis of Multi-directional Functionally Graded Rectangular Plates on elastic Foundation using Three-dimensional Elasticity Theory. Mechanic of Advanced and Smart Materials, 4(1), 40–63. doi:10.61186/masm.4.1.40.
- Ahlawat, N., & Lal, R. (2016). Buckling and Vibrations of Multi-directional Functionally Graded Circular Plate Resting on Elastic Foundation. Procedia Engineering, 144, 85–93. doi:10.1016/j.proeng.2016.05.010.
- Lahdiri, A., & Kadri, M. (2022). Free vibration behaviour of multi-directional functionally graded imperfect plates using 3D isogeometric approach. Earthquake and Structures, 22(5), 527–538. doi:10.12989/eas.2022.22.5.527.
- Pham, Q. H., Tran, V. K., & Nguyen, P. C. (2024). Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium. Defence Technology, 35, 77–99. doi:10.1016/j.dt.2023.09.004.
- Li, Q., Iu, V. P., & Kou, K. P. (2009). Three-dimensional vibration analysis of functionally graded material plates in thermal environment. Journal of Sound and Vibration, 324(3–5), 733–750. doi:10.1016/j.jsv.2009.02.036.
- Yang, J., & Shen, H. S. (2002). Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. Journal of Sound and Vibration, 255(3), 579–602. doi:10.1006/jsvi.2001.4161.
- Kim, Y. W. (2005). Temperature dependent vibration analysis of functionally graded rectangular plates. Journal of Sound and Vibration, 284(3–5), 531–549. doi:10.1016/j.jsv.2004.06.043.
- Zhou, D., Cheung, Y. K., Lo, S. H., & Au, F. T. K. (2004). Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation. International Journal for Numerical Methods in Engineering, 59(10), 1313–1334. doi:10.1002/nme.915.
- Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H., & Omidi, M. (2010). Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Applied Mathematical Modelling, 34(5), 1276–1291. doi:10.1016/j.apm.2009.08.008.
|