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Abstract: 

This research focuses on the analysis of free vibration of a rectangular plate made of multi-

directional functionally graded materials on an elastic foundation, taking into account the effect 

of temperature. The temperature at different points of the plate may differ from its initial 

temperature, leading to the development of initial stresses within the plate. In this research, 

gradual variations in the mechanical properties of the material are possible in all three coordinate 

directions. Additionally, the mechanical properties of the material, except for the thermal 

conductivity coefficient, can be temperature-dependent. The governing equations are derived 

based on three-dimensional elasticity theory and discretized using the Generalized Differential 

Quadrature Method (GDQM). The validation of the proposed method demonstrates the high 

accuracy of the employed approach. Subsequently, several cases are solved, considering the 

effects of variations in the mechanical properties of the material in each coordinate direction or a 

combination of different directions, and the results are compared. The effects of temperature, 

elastic foundation stiffness, aspect ratio, thickness, power-law indices, and boundary conditions 

are investigated. The results indicate that an increase in temperature leads to a reduction in the 

vibrational frequency. Furthermore, the effect of temperature on frequency reduction is less 

pronounced for softer plates. In the case of one-directional property distribution, the frequency 

decreases with an increase in the power-law index. For multi-directional property distribution, 

the frequency initially decreases with an increase in the power-law index and then remains 

relatively unchanged. 
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1. Introduction 

Frequency analysis of structures, particularly plates, has 

long been a subject of interest for researchers. Due to their 

relatively small thickness compared to the other two 

dimensions, plates are highly sensitive to vibrations. Xing 

et al. [1] derived a closed-form analytical solution for the 

free vibrations of functionally graded rectangular plates in a 

thermal environment. Kang et al. [2] studied the free 

vibrations of functionally graded rectangular plates in a 

thermal environment using three-dimensional elasticity 

theory. The effect of multiple hole distributions in 

functionally graded plates was investigated by Slimane et 

al. [3]. In this research, a high-order deformation theory has 

been employed to investigate the vibrational behavior of 

structures, including porosity distribution, which has been 

the focus of researchers. The influence of the porosity 

coefficient on the vibrational frequencies of the plate for 

various thickness ratios, geometric proportions, and 

different material properties has been among the 

achievements of this study. Hashemi and Jafari analyzed the 

nonlinear free vibration of functionally graded material 

plates with exponential distribution. They utilized the first-

order shear deformation theory [4]. Kumar et al. [5] 

investigated the vibrational parameters of porous 

functionally graded plates, considering a foundation with 

variable thickness. In this study, higher-order shear 

deformation theories and various boundary conditions were 

employed. Kumar and Harsha studied the static and 

dynamic behavior of exponentially distributed functionally 

graded piezoelectric materials under thermo-electro-

mechanical loading. They derived the governing equations 

using the first-order shear deformation theory and 

Hamilton's principle [6]. Shahverdi et al. proposed a method 

https://cste.journals.umz.ac.ir/
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for solving the free vibration of arbitrarily shaped plates 

using the Generalized Differential Quadrature Method 

(GDQM) based on Kirchhoff's plate theory [7]. Hu and Fu 

examined the free vibration of porous plates using the first-

order shear deformation theory. They applied four types of 

porosity distributions, each with three variations: power-

law, exponential, and sigmoid distributions. These 

researchers investigated the effects of various factors, such 

as the width-to-thickness ratio, power-law index, porosity 

distribution, and ceramic materials. The results of this study 

revealed that in the exponential distribution, the frequency 

of non-uniform porosity increased significantly by 

approximately 67.3% compared to uniform porosity. In the 

case of uniform porosity, the frequency values for the 

sigmoid distribution increased by approximately 54% and 

70%, respectively, compared to the power-law and 

exponential distributions [8]. 

Functionally graded materials have attracted significant 

attention in recent decades [9]. Although the earliest 

productions of such plates were probably one-dimensional, 

many applications in industries such as the energy industry 

(e.g., turbine blades exposed to very high temperatures and 

requiring resistance to applied stresses) demand surfaces 

with greater heat resistance, which necessitates the 

distribution of material phases in all three directions. 

Specifically, the higher the temperature that these 

components can withstand, the greater the efficiency and 

production of the device. On the other hand, this means 

reduced energy consumption and can lead to a decrease in 

environmental pollution. Moreover, nature, as a suitable 

model for advanced engineering designs, usually includes 

structures that are closer to functionally graded materials 

rather than completely isotropic materials. In nature, 

material distribution typically occurs in each coordinate 

direction as needed. It is not limited to a single direction 

(such as human bones, trees, etc.), which can serve as an 

appropriate pattern for developing engineering designs. 

Additionally, there may be a need to alter the natural 

frequencies of a designed structure when the geometry and 

boundary conditions cannot be significantly changed due to 

constraints, and the constituent materials have been 

specifically selected. In such cases, changes in the material 

distribution may be able to alter the natural frequency 

without causing any changes in geometry or boundary 

conditions. Investigating the numerical methods required 

for such analyses in structures, such as plates, and 

examining how the natural frequency changes with 

variations in material distribution can be helpful in various 

industries. 

Multidirectionally functionally graded plates have gained 

significant attention in recent years. In addition to various 

analyses of these plates, such as bending and dynamic 

response [10-15], vibrations have also been investigated. 

Tahouneh and Naei [16] studied the vibrations of a 

rectangular plate made of bidirectional functionally graded 

materials under specific boundary conditions. In their study, 

material variations were allowed along the thickness and 

one in-plane direction. Still, due to the limitations of the 

solution method, variations in two in-plane directions were 

not feasible. Khorshidi et al. [17] studied the effect of a 

thermal environment on the free vibrations of bi-directional 

functionally graded rectangular plates on an elastic 

foundation using third-order shear deformation plate theory. 

Yin et al. [18] analyzed the free vibrations and buckling of 

in-plane functionally graded plates using higher-order shear 

deformation theory and the Iso-geometric method. Thai et 

al. [19] examined the bending and free vibrations of three-

dimensional multi-directional functionally graded 

rectangular plates in a thermal environment using the Iso-

geometric method. Xiang et al. [20] provided a three-

dimensional solution for the free vibrations and buckling of 

rectangular plates with gradual material property variations 

in two in-plane directions. Adineh [21] studied the natural 

frequencies of multi-directional functionally graded 

rectangular plates on an elastic foundation using three-

dimensional elasticity theory and the generalized 

differential quadrature method, without considering 

temperature effects. Ahlawat and Lal [22] investigated 

axisymmetric vibrations of multi-directional functionally 

graded circular plates under uniform in-plane loads resting 

on elastic foundations. The generalized differential 

quadrature method is applied to derive frequency equations 

from the governing differential equations for supported 

plates. Lahdiri and Kadsi [23] investigated the free vibration 

frequencies of imperfect tri-directional functionally graded 

material plates. The analysis covers multiple plate 

geometries with two porosity types (even and uneven) and 

different material configurations. Pham et al. [24] 

developed an analytical method to analyze the thermal 

vibration of multi-directional functionally graded porous 

(MFG) rectangular plates in fluid media. The mechanical 

properties of MFG porous plates vary along their length, 

width, and thickness directions. They used Hamilton's 

principle and refined the higher-order shear deformation 

plate theory.  

Based on the reviewed literature, it can be concluded that 

a three-dimensional analysis of the free vibration of 

rectangular plates resting on an elastic foundation, 

considering the effects of temperature, has not yet been 

investigated.  In the present study, the properties of 

materials, except for the thermal conductivity coefficient, 

are considered to be temperature dependent. In order to 

include the effect of temperature, a plate bending solution is 

performed under temperature conditions, and the stresses 

created as a result are calculated as residual stresses. Then, 

the calculated residual stresses are applied to the matrices, 

and an eigenvalue solution is performed to estimate the 

natural frequencies. 

Both bending analysis and natural frequency determination 

of the plate have been investigated using the three-

dimensional generalized differential quadrature method. 

This solution method allows for material variations to be 

considered in all coordinate directions and for the boundary 

conditions of each edge to be defined independently. A 

comparison of the obtained results with those available in 

published articles shows good agreement. The effects of 

various parameters, including material distribution 

exponents, plate thickness, length-to-width ratio, and 

temperature variations, on free vibrations have been 

investigated. Since three-dimensional elasticity theory was 
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used in this study, the obtained results can also serve as a 

reliable reference for validating future work. 

2. Problem Definition 

Figure 1 shows a multi-directional functionally graded 

rectangular plate resting on an elastic foundation. The origin 

of the coordinate system is assumed to be at the lower corner 

of the plate. The parameters a, b, and h represent the length 

of the plate in the x-direction, the length of the plate in the 

y-direction, and the thickness of the plate, respectively. 

 

Figure 1. Multi-directional functionally graded rectangular 

plate resting on an elastic foundation under thermal loading  

2.1. Material Distribution 

In this research, gradual material variations exist in all 

three coordinate directions. Functionally graded plates are 

typically composed of two phases, where the material 

properties at different points of the plate gradually transition 

between the properties of these two phases according to 

specific relationships. These relationships can be power-

law, exponential, or sigmoid. In most cases, one phase is a 

soft metal, and the other is a brittle and resistant material, 

such as ceramic. To determine the mechanical properties of 

the functionally graded plate, the linear rule of mixture is 

applied. Equation 1 represents this rule. 

𝑃 = (𝑃1 − 𝑃2) (
𝑥

𝑎
)

𝑛𝑥
(

𝑦

𝑏
)

𝑛𝑦
(

𝑧

ℎ
)

𝑛𝑧
+ 𝑃2  (1) 

Here, P represents the effective material property, such as 

the modulus of elasticity, Poisson's ratio, mass density, etc., 

at any point on the plate. In this article, the material 

distribution follows a power-law function. In this equation, 

nx, ny, and nz are referred to as the power-law indices of the 

material distribution. To calculate the mechanical properties 

of the constituent material at any point on the plate, 

Equation 1 is used.  

Additionally, all material properties except the thermal 

conductivity coefficient can be temperature-dependent. 

Equation 2 illustrates the nature of this dependency. 

where P is a material property such as the elastic modulus, 

Poisson's ratio, or density; the Pi are constant coefficients 

determined based on the material type, and T is the 

temperature. 

3. Formulation 

3.1. Thermo-elastic Equations and Boundary 

Conditions 

First, the initial stresses generated in the plate are 

calculated. For this purpose, a static thermo-elastic analysis 

is employed. The output of this analysis is the thermal 

stresses at all nodal points. Then, using the equations of 

motion, the stiffness and inertia matrices are extracted. 

Subsequently, the matrix equations required for solving the 

eigenvalue problem are formulated. Finally, by solving this 

system of equations, the natural frequency of vibration of 

the plate is obtained. The differential equation of heat 

transfer is represented by Equation 3. This equation is used 

to determine the temperature distribution within the plate. 

−
𝜕

𝜕𝑧
[𝐾

𝜕𝑇

𝜕𝑧
] = 0  (3) 

In this Equation, K represents the thermal conductivity 

coefficient. This parameter can vary at different points on 

the plate. The boundary conditions applied are constant 

temperatures on the top and bottom surfaces of the plate. 

Equation 4 shows it. 

𝑇 = 𝑇𝑡 at   z=h (4) 

𝑇 = 𝑇𝑏  at   z=0  

The temperature distribution resulting from solving 

Equation 3 with the boundary conditions given by relations 

in Equation 4 for a plate made of isotropic materials or 

plates, in which material properties vary in the in-plane 

directions, is approximately a linear distribution through the 

thickness. However, for plates in which the thermal 

conductivity coefficient (K) varies through the thickness 

(such as one-directional functionally graded materials along 

the thickness or three-directional functionally graded 

materials), the temperature distribution deviates somewhat 

from the linear distribution. 

Based on the fundamentals of elasticity theory, the 

equilibrium equations in three-dimensional space are given 

by Equations 5 to 7. 

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0 (5) 

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
= 0 (6) 

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧

𝜕𝑧
= 0 (7) 

The components of stress and strain (mechanical and 

thermal) are also related to each other by Equations 8 to 11. 

𝜎𝑥 =
𝐸

(1+𝜈)(1−𝜈)
[(1 − 𝜈)𝜀𝑥 + 𝜈(𝜀𝑦 + 𝜀𝑧)] 

−
𝐸

1−2𝜈
𝛼(𝑇 − 𝑇0) 

(8) 
𝑃 = 𝑃0(𝑃−1𝑇

−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇
2 + 𝑃3𝑇

3)  (2) 
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𝜎𝑦 =
𝐸

(1+𝜈)(1−𝜈)
[(1 − 𝜈)𝜀𝑦 + 𝜈(𝜀𝑥 + 𝜀𝑧)] 

−
𝐸

1−2𝜈
𝛼(𝑇 − 𝑇0) 

(9) 

𝜎𝑧 =
𝐸

(1+𝜈)(1−𝜈)
[(1 − 𝑣)𝜀𝑧 + 𝜈(𝜀𝑥 + 𝜀𝑦)] 

−
𝐸

1−2𝜈
𝛼(𝑇 − 𝑇0) 

(10) 

𝜏𝑥𝑦 =
𝐸

(1 + 𝜈)
𝜀𝑥𝑦, 𝜏𝑥𝑧 =

𝐸

(1 + 𝜈)
𝜀𝑥𝑧 , 𝜏𝑦𝑧

=
𝐸

(1 + 𝜈)
𝜀𝑦𝑧  

(11) 

Here, T0 is the initial temperature of the plate. This value 

represents the temperature of the plate in a stress-free state. 

An increase in temperature relative to T0 can lead to the 

development of initial stresses within the plate. Equations 

12 and 13 represent the strain-displacement relationships. 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
, 𝜀𝑦 =

𝜕𝑣

𝜕𝑦
, 𝜀𝑧 =

𝜕𝑤

𝜕𝑧
 (12) 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
), 𝜀𝑥𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
), 𝜀𝑦𝑧

=
1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) 

(13) 

In this research, four distinct boundary conditions are 

applied. The values of displacement and stress at these 

boundaries are defined according to Equations 14 to 17. 

SSSS {
𝑥 =0, 𝑎 → 𝜈 = 𝑤 = 𝜎𝑥 = 0
𝑦 = 0, 𝑏 → 𝑢 = 𝑤 = 𝜎𝑦 = 0 (14) 

SCSC {
𝑥 =0, 𝑎 → 𝜈 = 𝑤 = 𝜎𝑥 = 0
𝑦 = 0, 𝑏 → 𝑢 = 𝜈 = 𝑤 = 0

 (15) 

CFCF {
𝑥 = 0, 𝑎 → 𝑢 = 𝜈 = 𝑤 = 0
𝑦 = 0, 𝑏 →𝜎𝑦 = 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 0 (16) 

CCCC {
𝑥 = 0, 𝑎 → 𝑢 = 𝜈 = 𝑤 = 0
𝑦 = 0, 𝑏 → 𝑢 = 𝜈 = 𝑤 = 0

 (17) 

Additionally, the force boundary conditions on the top and 

bottom surfaces of the plate are considered, as outlined in 

Equations 18 and 19. Equation 18 states that no external 

force is applied to the top surface of the plate. Equation 19 

represents the effect of the elastic foundation [16]. 

𝜎𝑧 = 0, 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 at   𝑧 = ℎ (18) 

𝜎𝑧 = 𝑘𝑤𝑤 − 𝑘𝑠𝑥
𝜕2𝑤

𝜕𝑥2 − 𝑘𝑠𝑦
𝜕2𝑤

𝜕𝑦2 , 𝜏𝑥𝑧 =

𝜏𝑦𝑧 = 0 at z=0 
(19) 

In Equation 19, the parameters of the elastic foundation are 

determined according to the following relationships. 

𝐾𝑤 =
𝑘𝑤𝑎4

𝐷𝑚
, 𝐽𝑠𝑥 =

𝑘𝑠𝑥𝑎2

𝐷𝑚
, 𝐽𝑠𝑦 =

𝑘𝑠𝑦𝑏2

𝐷𝑚
  (20) 

𝐷𝑚 =
𝐸𝑚ℎ3

(12(1 − 𝜈𝑚
2))

⁄  

In these relationships, Ksx, Ksy, and Kw are constant values 

that determine the stiffness of the elastic foundation as they 

increase or decrease. Em and νm represent the elastic 

modulus and Poisson's ratio of the metal phase in the 

functionally graded material, respectively. Kw, Jsx and Jsy are 

constant coefficients. 

Using Equations 3 to 20, the thermal stresses generated 

within the plate are calculated. The stresses 𝜎𝑥
0 and 𝜎𝑦

0 are 

determined for all nodal points. In the subsequent analysis, 

these values are used as initial stresses. Using these stresses, 

the following expression is obtained. This value is added to 

the stiffness matrix used for calculating the eigenvalues 

[25]: 

𝜎0
𝑥

𝜕2𝑤

𝜕𝑥2 + 𝜎0
𝑦

𝜕2𝑤

𝜕𝑦2   (21) 

Next, the matrices required for solving the eigenvalue 

problem are determined using the equations of motion. 

Equations 22 to 24 represent the dynamic equilibrium 

equations in Cartesian coordinates based on three-

dimensional elasticity theory.  

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 𝜌

𝜕2𝑢

𝜕𝑡2
 (22) 

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
= 𝜌

𝜕2𝑣

𝜕𝑡2
 (23) 

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2
 (24) 

By substituting Equations 12 and 13 into Equations 8 to 11 

and then inserting them into Equations 22 to 24, the 

equations of motion can be derived in terms of the 

displacement components. Equations  25 to 27 represent 

these Equations. 

(

𝜕𝐸
𝜕𝑥

(1 + 𝜈)(1 − 2𝜈) − 𝐸(
𝜕𝜈
𝜕𝑥

(1 − 2𝜈) − 2
𝜕𝜈
𝜕𝑥

(1 + 𝜈))

(1 + 𝜈)2(1 − 2𝜈)2 ) [(1

− 𝜈)
𝜕𝑢

𝜕𝑥
+ 𝜈(

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)] 

+
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 −

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ (1 − 𝜈)

𝜕2𝑢

𝜕𝑥2

+
𝜕𝜈

𝜕𝑥
(
𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

+𝜈(
𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
)

]
 
 
 
 
 
 

−

𝜕𝐸
𝜕𝑥

(1 − 2𝜈) + 2𝐸
𝜕𝜈
𝜕𝑥

(1 − 2𝜈)2
∫ 𝛼𝑑𝑇

𝑇𝑝

𝑇0

−
𝐸

(1 − 2𝜈)

𝜕(∫ 𝛼𝑑𝑇
𝑇𝑝

𝑇0
)

𝜕𝑥
 

 

(25) 
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+
1

2

𝜕𝐸
𝜕𝑦

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑦

(1 + 𝜈)2 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑢

𝜕𝑦2

+
𝜕2𝑣

𝜕𝑥𝜕𝑦
) 

+
1

2

𝜕𝐸
𝜕𝑧

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑧

(1 + 𝜈)2 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑤

𝜕𝑥𝜕𝑧
+

𝜕2𝑢

𝜕𝑧2)

= 𝜌
𝜕2𝑢

𝜕𝑡2
 

1

2

𝜕𝐸
𝜕𝑥

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑥

(1 + 𝜈)2 (
𝜕𝑢

𝜕𝑦
+

𝜕𝜈

𝜕𝑥
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑣

𝜕𝑥2)

+ (

𝜕𝐸
𝜕𝑦

(1 + 𝜈)(1 − 2𝜈) − 𝐸(
𝜕𝜈
𝜕𝑦

(1 − 2𝜈) − 2
𝜕𝜈
𝜕𝑦

(1 + 𝜈))

(1 + 𝜈)2(1 − 2𝜈)2 )[(1

− 𝜈)
𝜕𝑣

𝜕𝑦
+ 𝜈(

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
)] 

+
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 −

𝜕𝜈

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ (1 − 𝜈)

𝜕2𝑣

𝜕𝑦2
+

𝜕𝜈

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
) +

𝜈(
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑦𝜕𝑧
)

]
 
 
 
 
 
 

 

−

𝜕𝐸
𝜕𝑦

(1 − 2𝜈) + 2𝐸
𝜕𝜈
𝜕𝑦

(1 − 2𝜈)2 ∫ 𝛼𝑑𝑇
𝑇𝑝

𝑇0

−
𝐸

(1 − 2𝜈)

𝜕(∫ 𝛼𝑑𝑇
𝑇𝑝

𝑇0
)

𝜕𝑦
 

+
1

2

𝜕𝐸
𝜕𝑧

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑧

(1 + 𝜈)2 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑣

𝜕𝑧2 +
𝜕2𝑤

𝜕𝑦𝜕𝑧
)

= 𝜌
𝜕2𝑣

𝜕𝑡2  

(26) 

1

2

𝜕𝐸
𝜕𝑥

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑥

(1 + 𝜈)2 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑢

𝜕𝑥𝜕𝑧

+
𝜕2𝑤

𝜕𝑥2
) 

+
1

2

𝜕𝐸
𝜕𝑦

(1 + 𝜈) − 𝐸
𝜕𝜈
𝜕𝑦

(1 + 𝜈)2 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

+
1

2

𝐸

(1 + 𝜈)
(
𝜕2𝑣

𝜕𝑦𝜕𝑧

+
𝜕2𝑤

𝜕𝑦2 ) 

(27) 

+(
𝜕𝐸

𝜕𝑧
(1+𝜈)(1−2𝜈)−𝐸(

𝜕𝜈

𝜕𝑧
(1−2𝜈)−2

𝜕𝜈

𝜕𝑧
(1+𝜈))

(1+𝜈)2(1−2𝜈)2
) [(1 −

𝜈)
𝜕𝑤

𝜕𝑧
+ 𝜈(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)] 

+
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 −

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑧
+ (1 − 𝜈)

𝜕2𝑤

𝜕𝑧2

+
𝜕𝜈

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)

+𝜈(
𝜕2𝑢

𝜕𝑥𝜕𝑧
+

𝜕2𝑣

𝜕𝑦𝜕𝑧
)

]
 
 
 
 
 
 

 

−

𝜕𝐸
𝜕𝑧

(1 − 2𝜈) + 2𝐸
𝜕𝜈
𝜕𝑧

(1 − 2𝜈)2
∫ 𝛼𝑑𝑇

𝑇𝑝

𝑇0

−
𝐸

(1 − 2𝜈)

𝜕(∫ 𝛼𝑑𝑇
𝑇𝑝

𝑇0
)

𝜕𝑧

= 𝜌
𝜕2𝑤

𝜕𝑡2  

3.2. Differential Quadrature Method 

To discretize the Equations described in the previous 

section, the differential quadrature method is employed. In 

the differential quadrature method, the derivatives of a 

function are related to the values of the function at all nodal 

points within the domain. In this approach, the domain of 

the parameter l is divided into N points. Equation 28 

represents the m-th order derivative of the function f with 

respect to the parameter l. 

𝑑𝑚𝑓(𝑥)

dl𝑚
|
𝑛=𝑛𝑖

= ∑𝑁
𝑗=1 𝐶ij

(𝑚)
𝑓(𝑙𝑗), i =

1, 2,… ,N
𝑑𝑚𝑓(𝑥)

dl𝑚
|
𝑛=𝑛𝑖

 =  ∑𝑁
𝑗=1 𝐶ij

(𝑚)
𝑓(𝑙𝑗), i =  1,  2,  … , N  

(28) 

The weighting coefficients are denoted by 𝐶𝑖𝑗
(𝑚)

. This 

coefficient is calculated for the first-order derivative using 

Equation 29. For higher-order derivatives, matrix 

multiplication according to Equation 30 can be used. 

𝐶𝑖𝑗
(1)

=
∏ (𝑙𝑖−𝑙𝑗)

𝑁
𝑗=1,𝑗≠𝑖

(𝑙𝑖−𝑙𝑘)∏ (𝑙𝑘−𝑙𝑗)
𝑁
𝑗=1,𝑗≠𝑘

,   

  𝑖, 𝑗, 𝑘 = 1,2, … . , 𝑁     

 𝐶𝑖𝑖
(1)

= −∑ 𝐶𝑖𝑗
(1)𝑁

𝑗=1,𝑗≠𝑖 ,  

 𝑖 = 1,2, … , 𝑁  

(29) 

𝐶ij
(𝑚)

 = 𝐶ik
(1)

𝐶kj
(𝑚−1)

𝐶ij
(𝑚)

 = 𝐶ik
(1)

𝐶kj
(𝑚−1)  (30) 

Additionally, the Chebyshev polynomial is used to 

determine the coordinates of the points within the domain. 

Equation 31 represents this polynomial. The parameter L in 

this equation denotes the length of the domain. 

𝑙𝑖 =  0.5𝐿 (1 −
cos(𝑖−1)×𝜋

𝑁−1
)  (31) 

In the differential quadrature method, since the derivative 

of a function at each point is approximated by a linear 

combination of the function values at all nodal points, the 

equations usually reach accurate solutions with a relatively 

small number of points. 
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3.3. Calculation of Natural Frequencies 

After discretizing the equations of motion, the stiffness 

matrix [Ke] corresponding to those equations can be 

calculated. At this stage, the matrix [KT] related to thermal 

stresses is added to the stiffness matrix [25]: 

[𝐾] = [𝐾𝑇] + [𝐾𝑒][𝐾] = [𝐾𝑇] + [𝐾𝑒]  (32) 

where: 

[𝐾𝑇] = [
0
0
0

  0
  0

   0   

 0
 0

[𝐾𝑇]𝑤

] [𝐾𝑇] = [
0
0
0

  0
  0

     0   

 0
 0

[𝐾𝑇]𝑤

]  (33) 

The term [KT]w is an n×n matrix, where n is the number of 

nodal points. The matrix [KT]w is derived from the 

discretized coefficients of Equation 21. After substituting 

the discretized forms of the boundary conditions (Equations 

14 to 20) into the appropriate nodal points, the stiffness 

matrix is completed. To obtain the natural frequencies, the 

nodal points corresponding to the equations of motion (d) 

and those where the boundary conditions are defined (b) are 

separated. Consequently, the stiffness matrix is also divided 

into four distinct parts. Equations 34 and 35 illustrate these 

cases. 

[[𝐾𝑑𝑏][𝐾𝑑𝑑]] {
{𝑏}

{𝑑}
} −𝜔2[[𝑀𝑑𝑏][𝑀𝑑𝑑]] {

{𝑏}

{𝑑}
} = {0}  (34) 

[𝐾𝑏𝑑]{𝑑} + [𝐾𝑏𝑏]{𝑏} = {0}  (35) 

Based on the above relationships, the stiffness and mass 

matrices required for calculating the natural frequencies can 

be determined using Equations 36 and 38. Finally, by 

solving the eigenvalue problem of Equation 38, the natural 

frequencies are computed. 

𝐾𝑛𝑓 = [𝐾𝑑𝑑] − [𝐾𝑑𝑏][𝐾𝑏𝑏]
−1[𝐾𝑏𝑑]  (36) 

𝑀𝑛𝑓 = [𝑀𝑑𝑑] − [𝑀𝑑𝑏][𝐾𝑏𝑏]
−1[𝐾𝑏𝑑]  (37) 

([𝐾𝑛𝑓] − 𝜔2[𝑀𝑛𝑓]){𝑑} = {0}  (38) 

4. Validation 

To validate the proposed formulation, the first eight 

vibrational frequencies of a square plate made of the 

functionally graded material SUS304/Si3N4 are compared 

with the results from references [25-27]. The mechanical 

properties of this plate follow a power-law distribution 

similar to Equation 39. 

𝑃(𝑧, 𝑇) = (𝑃𝑈 − 𝑃𝐿) (
2𝑧+ℎ

2ℎ
)

𝑝

+ 𝑃𝐿   (39) 

Here, P represents a material property, such as the modulus 

of elasticity. Additionally, PU and PL denote the values of 

that property at the top and bottom surfaces of the plate (z=h 

and z=0), respectively. For validation, the power-law index 

p is assumed to be 2. The bottom surface of the plate is made 

of stainless steel SUS304, and the top surface is composed 

of silicon nitride Si3N4. The mechanical properties of these 

two materials are listed in Table 1. Furthermore, the 

constant coefficients of Equation 2 for these materials are 

also included in this Table.

Table 1. Mechanical Properties of SUS304 and Si3N4 Materials (parameters used in Equation 2) [9] 

Material property P-1 P0 P1 P2 P3 

 E (Pa) 0 348.43 × 109 −3.070 × 10−4 2.160 × 10−7 −8.946 × 10−11 

 ν 0 0.24 0 0 0 

Si3N4 α(
1

K
) 0 5.8723 × 10−6 9.095 × 10−4 0 0 

 ρ(
kg

m3
) 0 2370 0 0 0 

 K(
W

mK
) 0 9.19 0 0 0 

 E (Pa) 0 201.04 × 109 3.079 × 10−4 −6.534 × 10−7 0 

 ν 0 0.3262 −2.002 × 10−4 3.797 × 10−7 0 

SUS304 α(
1

K
) 0 12.330 × 10−6 8.086 × 10−4 0 0 

 ρ(
kg

m3
) 0 8166 0 0 0 

 K(
W

mK
) 0 12.04 0 0 0 

The plate under study is square with sides a=b=0.2 m and 

the thickness ratio of a/h=10. This plate is analysed under 

two conditions. In the first case, all four edges are clamped. 

In the second case, the plate has supported boundary 

conditions on all edges. Equation (40) represents the 

dimensionless natural frequency of the plate. 

𝜔 =
𝜔𝑏2

𝜋2 √
𝐼0

𝐷0
  (40) 

where 𝛚 refers to the calculated and ω refers to the non-

dimensionalized natural frequency, 𝐼0 = 𝜌𝑚ℎ and 𝐷0 =
𝐸𝑚ℎ3

12(1−𝜈𝑚
2)

. Additionally, ρm, Em, and νm have values 

corresponding to the SUS304 material at the reference 

temperature of 300 K. The values of the first eight 

frequencies of this plate with clamped boundary conditions 

are listed in Table 2. The first observation from this table is 

the good agreement with the results published in references 

[25-27]. In the studied plates, the lower surface of the plate 

is at a temperature of 300 K, and the temperature difference 
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between the upper and lower surfaces of the plate is 

indicated as ΔT. 

Table 2. Convergence and Validation of Natural Frequencies of a CCCC Functionally Graded Square Plate, a=b=10h=0.2m  

𝚫𝑻 Reference 𝝎𝟏 𝝎𝟐 𝝎𝟑 𝝎𝟒 𝝎𝟓 𝝎𝟔 𝝎𝟕 𝝎𝟖 

0 

Yang and Shen [26] 4.1062 7.8902 7.8902 11.1834 12.5881 13.7867 15.4530 16.0017 

Kim [27] 4.1165 7.9696 7.9696 11.2198 13.1060 13.2089 15.9471 15.9471 

Li et al. [25] 4.1658 7.9389 7.9389 11.1212 13.0973 13.2234 15.3627 15.3627 

7 × 7 × 7 4.1430 8.1119 8.1119 11.2683 13.5805 13.7470 15.4554 15.4554 

9 × 9 × 9 4.1222 7.8648 7.8648 11.0271 12.9786 13.1017 15.4399 15.4399 

11 × 11 × 11 4.1152 7.8546 7.8546 11.0150 12.9867 13.1114 15.4375 15.4375 

13 × 13 × 13 4.1127 7.8510 7.8510 11.0108 12.9789 13.1030 15.4362 15.4362 

300 

Yang and Shen [26] 3.6636 7.2544 7.2544 10.3924 11.7054 12.3175 14.4520 15.0019 

Kim [27] 3.6593 7.3098 7.3098 10.4021 12.1982 12.3052 14.9090 14.9090 

Li et al. [25] 3.7202 7.3010 7.3010 10.3348 12.2256 12.3563 14.8112 14.8112 

7 × 7 × 7 3.7030 7.5049 7.5049 10.5136 12.7863 12.9609 14.9130 14.9130 

9 × 9 × 9 3.6817 7.2355 7.2355 10.2520 12.1185 12.2462 14.7213 14.7213 

11 × 11 × 11 3.6758 7.2308 7.2308 10.2476 12.1402 12.2703 14.7401 14.7401 

13 × 13 × 13 3.6743 7.2249 7.2249 10.2393 12.1269 12.2563 14.7279 14.7279 

500 

Yang and Shen [26] 3.6717 7.2210 7.2210 10.2348 12.1185 12.2473 14.7204 14.7204 

Kim [27] 3.2357 6.6281 6.6281 9.5900 10.8285 11.4350 13.4412 13.9756 

Li et al. [25] 3.2147 6.6561 6.6561 9.5761 11.2708 11.3812 13.8346 13.8346 

7 × 7 × 7 3.2741 6.6509 6.6509 9.5192 11.3126 11.4468 13.7907 13.7907 

9 × 9 × 9 3.2780 6.9079 6.9079 9.7558 11.9833 12.1661 14.1653 14.1653 

11 × 11 × 11 3.2548 6.6124 6.6124 9.4691 11.2384 11.3698 13.7104 13.7104 

13 × 13 × 13 3.2465 6.6010 6.6010 9.4555 11.2478 11.3811 13.7176 13.7176 

Table 3 presents the results of the studied plate for SSSS 

boundary conditions. The results are compared with those 

from reference by Kang et al. [2].  

In Table 4, the fundamental natural frequency of a 

homogeneous, supported square plate (a=b=1) resting on an 

elastic foundation is investigated. The Young’s.modulus, 

Poisson’s ratio, and density of the plate material are Em=380 

MPa, 𝜈𝑚=0.3, and 𝜌𝑚=3800
𝑘𝑔

𝑚3, respectively. The 

dimensionless natural frequency is defined according to 

Equation 41. The results demonstrate good agreement with 

those reported by Zhou et al. [28] and Hosseini-Hashemi et 

al. [29], particularly by Zhou et al. [28], which employed 

three-dimensional elasticity theory. 

𝐷𝑚 = 𝐸𝑚ℎ
3/12(1 − 𝜈𝑚

2)  

𝜔 =
𝜔𝑎2

𝜋2 √
ℎ𝜌𝑚

𝐷𝑚
  

(41) 

5. Numerical Examples 

In this research, a rectangular functionally graded plate, 

whose mechanical properties vary in all three coordinate 

directions, has been investigated. This plate is analyzed 

under two boundary conditions. In one case, all four edges 

of the plate are clamped (CCCC). For the other boundary 

condition, the plate is solved with supported edges. The 

constituent materials of the plate are Si3N4 and SUS304. 

The temperature-dependent mechanical properties of these 

materials are listed in Table 1. The material distribution 

follows a power-law distribution, as shown in Equation 1. 

The temperature dependency of the material properties is in 

accordance with Equation 2. The dimensionless coefficients 

of the elastic foundation are determined based on Equation 

20, and the dimensionless frequency is calculated using 

Equation 41, where the subscript m indicates that the 

properties of the metal phase (SUS304), have been used in 

this Equation. 

Table 3. Convergence and Validation of Natural Frequencies of a SSSS Functionally Graded Square Plate, a=b=10h=0.2m 

𝚫𝑻 Reference 𝝎𝟏 𝝎𝟐 𝝎𝟑 𝝎𝟒 𝝎𝟓 𝝎𝟔 𝝎𝟕 𝝎𝟖 

0 

Kang et al. [2] 2.4003 5.7316 5.7316 8.1033 8.1033 8.8040 10.7305 10.7318 

7 × 7 × 7 2.4002 5.6998 5.6998 8.1035 8.1035 8.7657 10.4931 10.4931 

9 × 9 × 9 2.3996 5.7340 5.7340 8.1033 8.1033 8.8056 10.7685 10.7685 

11 × 11 × 11 2.3997 5.7305 5.7305 8.1033 8.1033 8.8014 10.7270 10.7270 

13 × 13 × 13 2.3997 5.7306 5.7306 8.1033 8.1033 8.8015 10.7297 10.7297 
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300 

Kang et al. [2] 1.8923 5.1159 5.1159 7.7323 7.7323 8.0706 9.9209 9.9222 

7 × 7 × 7 1.8442 5.0470 5.0470 7.7906 7.7906 8.0017 9.6732 9.6732 

9 × 9 × 9 1.8435 5.0824 5.0824 7.7904 7.7904 8.0418 9.9312 9.9312 

11 × 11 × 11 1.8435 5.0789 5.0789 7.7904 7.7904 8.0376 9.8896 9.8896 

13 × 13 × 13 1.8435 5.0789 5.0789 7.7904 7.7904 8.0377 9.8924 9.8924 

600 

Kang et al. [2] 0.7264 4.0256 4.0256 6.7796 7.0273 7.0273 8.4896 8.4908 

7 × 7 × 7 0.7747 4.0348 4.0348 6.7978 7.1741 7.1741 8.3610 8.3610 

9 × 9 × 9 0.7724 4.0709 4.0709 6.8359 7.1731 7.1731 8.5886 8.5886 

11 × 11 × 11 0.7725 4.0672 4.0672 6.8319 7.1732 7.1732 8.5479 8.5479 

13 × 13 × 13 0.7725 4.0673 4.0673 6.8320 7.1732 7.1732 8.5506 8.5506 

Table 4. Convergence and Validation of Natural Frequencies of a SSSS Homogeneous Square Plate on an Elastic Foundation 

h/a Kw Jsx=Jsy 
𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 

Zhou et al. [28] Hosseini-Hashemi et al. [29] 
7x7x7 9x9x9 11x11x11 

0.2 10 10 2.2542 2.2539 2.2539 2.2539 2.2722 

0.2 0 10 2.2337 2.2334 2.2334 2.2334 2.2505 

0.2 100 10 2.4302 2.4300 2.4300 2.4300 2.459 

0.01 100 0 2.2417 2.2413 2.2413 2.2413 2.2413 

0.01 100 10 2.6554 2.655 2.6551 2.6551 2.6551 

Figure 2 shows the variations of the first natural frequency 

of a square plate with supported edges against the 

dimensionless elastic foundation coefficient (a=0.2 m, 

b=0.2 m, h=0.02 m, Jsx=Jsy=100). In this figure, as well as in 

the subsequent figures in this paper, the expression inside 

the parentheses indicates the power exponents of the 

material distribution function in Equation (1), i.e., (nx, ny, 

nz). For example, (0, 0, 1) represents a one-directional 

functionally graded plate with graded material properties in 

the thickness direction, and (1, 1, 1) represents a three-

directional functionally graded plate. As a first result, it can 

be observed that an increase in temperature leads to a 

reduction in the first natural frequency of the plate in all 

cases. An increase in temperature softens the plate, causing 

it to oscillate at a higher frequency. Additionally, in all 

solved examples, an increase in the stiffness of the elastic 

foundation increases in frequency. However, the change in 

frequency relative to foundation stiffness is initially small, 

as indicated by the shallow slope of the graph at the 

beginning. As the foundation stiffness increases, the slope 

of the graph also increases. In other words, the effect of 

foundation stiffness on the vibrational response of the plate 

becomes more pronounced. For very high values of elastic 

foundation stiffness, the graph approaches a horizontal line. 

This indicates that for tremendous values of elastic 

foundation stiffness, the first natural frequency becomes 

independent of the foundation stiffness.

 

Figure 2. Variation of the first natural frequency of an SSSS FG plate on an elastic foundation versus Kw
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The graphs in Figure 2 also reveal that the difference in the 

first natural frequency of the plate, with and without 

temperature effects, is more or less the same across all 

graphs for high foundation stiffness. 

The previous plate is now analysed with clamped edges. 

Figure 3 shows the results of this analysis for the first 

natural frequency. The trend of the response is similar to that 

of the SSSS plate. However, the difference in frequency 

between the cases with and without temperature effects is 

smaller compared to the supported plate. For the CCCC 

plate, the first natural frequency converges to a constant 

value at very high stiffness values (greater than 106). In 

contrast, for the SSSS plate, the first natural frequency 

converges at stiffness values greater than 105. For stiffness 

values between 102 and 104, the slope of the graph for the 

clamped plate is steeper than that of the SSSS plate. In other 

words, the rate of change in the first natural frequency of the 

CCCC plate is higher than that of the supported plate for 

stiffness values between 102 and 104. In Figures 2 and 3, it 

is observed that the difference in the first natural frequency 

between the plate affected by temperature and the plate 

unaffected by temperature varies depending on the slope of 

the graph.  Areas characterized by steeper slopes exhibit 

more minor variations in natural frequencies, while regions 

with gentler slopes show greater differences in these 

frequencies. This means that at lower and higher values of 

Kw, where the slope of the graph is minimal, the difference 

between the solid and dashed curves is more pronounced. 

Conversely, at intermediate values of Kw, where the slope 

increases, the difference between the two curves diminishes. 

This characteristic is more evident in Figure 3. This pattern 

is observed for all the different material distributions 

studied in Figures 2 and 3.

 

Figure 3. Variation of the first natural frequency of a CCCC FG plate on an elastic foundation versus Kw

In Figures 4 and 5, the effect of the length-to-width ratio 

a/b of the plate is investigated for SSSS and CCCC 

boundary conditions, respectively. The width of the plate in 

all calculations is b=0.04 m, and its length (a) varies 

between 0.04 m and 0.2 m (h=0.02 m, Kw=Jsx=Jsy=100). 

These graphs also indicate that an increase in temperature 

leads to a reduction in frequency. Heat softens the plate, 

resulting in a decrease in stiffness, which causes the plate to 

oscillate at a lower frequency. These figures show that 

although the material distribution has a significant effect on 

the first natural frequency of the plate, the difference 

between the temperature-affected and non-temperature-

affected plates (solid and dashed graphs) follows a similar 

pattern across all material distributions. This trend holds for 

both types of boundary conditions. As the length-to-width 

ratio of the plate increases, the difference between the first 

natural frequency of the temperature-affected plate and the 

non-temperature-affected plate increases. 

Figures 6 and 7 show the effect of thickness variation on 

the first natural frequency of a square plate for SSSS and 

CCCC boundary conditions, respectively. In these graphs, 

the elastic foundation coefficients are Kw=Jsx=Jsy=100 and 

a=b=0.2 m. These graphs indicate that an increase in 

thickness leads to a reduction in frequency. Increasing 

thickness enhances stiffness, which increases in frequency. 

However, if the thickness increases, the mass of the plate 

also increases, leading to a reduction in frequency. 

Therefore, it can be concluded that for the studied plates, the 

effect of increasing mass outweighs the effect of increasing 

stiffness, resulting in a decrease in frequency. Nevertheless, 

for the SSSS plate, as the thickness increases, the reduction 

in response becomes less pronounced. For the three-

directional distribution of this plate, a 33% reduction in the 

dimensionless first natural frequency is observed when the 

thickness ratio increases from 0.1 to 0.2, 30% from 0.2 to 

0.3, 25% from 0.3 to 0.4, and 21% from 0.4 to 0.5. In 

contrast, for the CCCC plate, a similar trend is not observed. 

The corresponding reductions for this plate are 12%, 17%, 

24%, and 21%, respectively. Furthermore, an increase in 

temperature leads to a decrease in frequency. However, for 

thicker plates, this reduction is less pronounced, as indicated 

by the slope of the graphs. 
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Figure 4. Variation of the first natural frequency of a SSSS FG plate on an elastic foundation versus the length-to-width ratio of 

the plate 

 

Figure 5. Variation of the first natural frequency of a CCCC FG plate on an elastic foundation versus the length-to-width ratio of 

the plate

In Figures 8 and 9, the effect of increasing the power-law 

index n of the material distribution function on the first 

natural frequency of the plate is shown (a=b=10h=0.2 m, 

Kw=Jsx=Jsy=100). Accordingly, with an increase in 

temperature, the slope of the graphs remains constant 

despite variations in n. In other words, the reduction in 

frequency in both cases (with and without temperature 

effects) is the same for different values of the power-law 

index n and for each distribution. These graphs show that as 

n increases in the case of one-directional distribution, the 

frequency decreases. However, the reduction is less 

pronounced for higher values of the power-law index. For 

example, when the power-law index increases from 1 to 5 

for thickness-wise distribution, the frequency decreases by 

14.8%, and when it increases from 5 to 10, the frequency 

decreases by 4.1% for the SSSS plate. For the CCCC plate, 

these values are 16% and 3.8%, respectively. In contrast, for 

multi-directional material property distribution, the 

frequency initially decreases significantly with an increase 

in the power-law index n and then remains relatively 

unchanged. The slope of the graphs indicates this. 

Thickness-wise one-directional distribution results in a 

higher frequency compared to in-plane one-directional 

distribution, as previously observed. However, for two-

directional distribution, if the distribution is along the length 

and width, the frequency is higher than for a two-directional 

distribution where one direction is the thickness, although 

the difference is not significant. This trend is slightly 

different for the CCCC plate, as can be seen in Figure 9 for 

linear material distribution (n=1). 
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Figure 6. Variation of the first natural frequency of an SSSS FG plate on an elastic foundation versus thickness 

 

Figure 7. Variation of the first natural frequency of a CCCC FG plate on an elastic foundation versus thickness 

 

Figure 8. Variation of the first natural frequency of an SSSS FG plate on an elastic foundation versus power-law index 
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Figure 9. Variation of the first natural frequency of a CCCC FG plate on an elastic foundation versus power-law index

In Figure 10, the effect of boundary conditions on the first 

natural frequency of the plate is investigated 

(a=b=10h=0.2 m, Kw=Jsx=Jsy=100). Based on these graphs, 

the stiffer the boundary conditions, the higher the frequency 

of the plate. The CCCC plate, with all four edges clamped, 

exhibits the highest frequency. In contrast, the FCFC plate, 

with two free edges, has the lowest frequency. Between 

these two plates, the SSSS and SCSC plates are positioned, 

with two and four supported edges, respectively, which are 

softer compared to clamped edges. Figure 10 shows that the 

effect of temperature in reducing the frequency is less 

pronounced for softer plates. Therefore, the difference in 

frequency between the cases with and without temperature 

effects is less for the FCFC plate compared to the CCCC 

plate. Additionally, the direction of material distribution has 

a significant impact on the response for one-directional 

distribution in the FCFC plate. Specifically, the 

dimensionless frequency for thickness-wise one-directional 

distribution is 4.9, while for in-plane one-directional 

distribution, it is 4.05, indicating a difference of 

approximately 20%. In contrast, for other plates and 

material distribution types, such a difference is not 

observed. 

 

Figure 10. Variation of the first natural frequency of an FG plate on an elastic foundation versus different boundary conditions 

Finally, the effect of increasing temperature on the first 

natural frequency is investigated (a=b=10h=0.2 m, 

Kw=Jsx=Jsy=100). Figures 11 and 12 show the responses 

for the SSSS and CCCC plates, respectively. These graphs 

indicate that an increase in temperature leads to a reduction 

in the vibrational frequency. This can be explained by the 

fact that an increase in temperature softens the plate, 

resulting in a decrease in stiffness. Consequently, the 

frequency also decreases. It should be noted that as the 

temperature increases further, the reduction in frequency 

becomes less pronounced. The slopes of the graphs illustrate 

this point. Based on Figures 11 and 12, the difference in 

frequency due to the direction of material distribution at 

various temperatures was found to be consistent. In other 
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words, the slopes of the graphs for one-directional 

distribution are equal. This consistency in slope also applies 

to two-directional distribution. However, a slight difference 

was observed for the CCCC plate with a two-directional 

distribution. 

 

Figure 11. Variation of the first natural frequency of an SSSS FG plate on an elastic foundation versus ∆𝑻 

 

Figure 12. Variation of the first natural frequency of a CCCC FG plate on an elastic foundation versus ∆𝑻

6. Conclusions 

In this research, for the first time, the natural frequencies 

of a multi-directional functionally graded rectangular plate 

on an elastic foundation in a thermal environment were 

studied using three-dimensional elasticity theory. A power-

law distribution function was used to determine the 

distribution of mechanical properties at different points on 

the plate. The generalized differential quadrature method 

was employed to discretize the equations. All mechanical 

properties related to the free vibrations of the plate, 

including Poisson's ratio, were considered with the 

possibility of variation in all three coordinate directions. 

Additionally, all material properties, except for the thermal 

conductivity coefficient, were temperature-dependent. 

Various factors, such as the direction of material variation, 

the effect of elastic foundation parameters, boundary 

conditions, geometric aspect ratios of the plate, and plate 

temperature, were investigated. The results showed that 

although  the direction of material variation (thickness-wise, 

in-plane, or various combinations thereof) can have a 

significant impact on the natural frequency of the plate, the 

effect of plate temperature on its first natural frequency does 

not depend much on the direction of material distribution. 

The results showed that for very high and very low elastic 

foundation coefficient (Kw). In those regions, the first 

natural frequency depends less on the change in the Kw 

coefficient, the difference between the plate under the 

influence of temperature and the plate without the influence 

of temperature is greater, and in regions where the values of 

the first natural frequency are more sensitive to the Kw, the 

difference between the two is smaller. From the graphs 

shown, it can be seen that as the length to width ratio of the 
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plate increases, the difference in the magnitude of the first 

natural frequency of the plate affected by temperature and 

the plate without temperature effects increases. The results 

also showed that with increasing plate thickness, the 

decrease in the first natural frequency due to temperature 

application decreases slightly. Another result of this study 

was the lesser effect of temperature in reducing the 

frequency of plates with softer boundary conditions. 

Additionally, as the temperature increased, the reduction in 

vibrational frequency became less pronounced. 
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