- Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24), 5755. doi:10.3390/ma13245755.
- Antosz, K., Knapčíková, L., & Husár, J. (2024). Evaluation and Application of Machine Learning Techniques for Quality Improvement in Metal Product Manufacturing. Applied Sciences (Switzerland), 14(22), 10450. doi:10.3390/app142210450.
- Bai, J., Wu, D., Shelley, T., Schubel, P., Twine, D., Russell, J., Zeng, X., & Zhang, J. (2025). A Comprehensive Survey on Machine Learning Driven Material Defect Detection. ACM Computing Surveys. 57(11), 1-36. doi:10.1145/3730576.
- Liu, J., Zhan, C., Wang, H., Zhang, X., Liang, X., Zheng, S., Meng, Z., & Zhou, G. (2023). Developing a Hybrid Algorithm Based on an Equilibrium Optimizer and an Improved Backpropagation Neural Network for Fault Warning. Processes, 11(6). doi:10.3390/pr11061813.
- Wang, Y., Yin, M., Wang, H., Ye, X., & Ma, X. (2024). Sample-Evaluation-Enhanced Machine Learning Approach for Fault Diagnosis of Hybrid Systems. IEEE Transactions on Instrumentation and Measurement, 73, 1–13. doi:10.1109/tim.2024.3442849.
- Lee, K. B., Cheon, S., & Kim, C. O. (2017). A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 30(2), 135–142. doi:10.1109/TSM.2017.2676245.
- Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Applied Sciences (Switzerland), 13(12), 7082. doi:10.3390/app13127082.
- Howard, N., Chouikhi, N., Adeel, A., Dial, K., Howard, A., & Hussain, A. (2020). BrainOS: A Novel Artificial Brain-Alike Automatic Machine Learning Framework. Frontiers in Computational Neuroscience, 14. doi:10.3389/fncom.2020.00016.
- Ciaburro, G., & Iannace, G. (2021). Machine learning-based algorithms to knowledge extraction from time series data: A review. Data, 6(6), 55. doi:10.3390/data6060055.
- Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91. doi:10.3390/computers12050091.
- Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1). doi:10.1186/s12911-019-1004-8.
- Mehregan, M. R., & Khani, A. M. (2024). Improving organizational performance: the role of supply chain 4.0 and financing in reducing supply chain risk. Journal of International Business Administration, 7(3), 39-59. doi:10.22034/jiba.2024.60005.2164.
- Sarzaeim, P., Mahmoud, Q. H., Azim, A., Bauer, G., & Bowles, I. (2023). A Systematic Review of Using Machine Learning and Natural Language Processing in Smart Policing. Computers, 12(12), 255. doi:10.3390/computers12120255.
- Sharma, Y., Kaur, P., & Shingh, L. (2018). Theoretical perspectives on unsupervised learning: Clustering and dimensionality reduction techniques. International Journal of Applied Research, 4(7), 217–220. doi:10.22271/allresearch.2018.v4.i7c.11445.
- Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics (Switzerland), 9(8), 1–12. doi:10.3390/electronics9081295.
- Li, L., Liu, S., Peng, Y., & Sun, Z. (2016). Overview of principal component analysis algorithm. Optik, 127(9), 3935–3944. doi:10.1016/j.ijleo.2016.01.033.
- Alamiyan-Harandi, F., & Ramazi, P. (2024). Environmental-Impact-Based Multi-Agent Reinforcement Learning. Applied Sciences (Switzerland), 14(15), 6432. doi:10.3390/app14156432.
- Xiang, X., & Foo, S. (2021). Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing. Machine Learning and Knowledge Extraction, 3(3), 554–581. doi:10.3390/make3030029.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. doi:10.1038/nature14236.
- Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A. A., Alsariera, Y. A., Ali, A. Q., Hashim, W., & Tiong, S. K. (2022). Toward Predicting Student’s Academic Performance Using Artificial Neural Networks (ANNs). Applied Sciences (Switzerland), 12(3), 1289. doi:10.3390/app12031289.
- Liu, F., Zheng, H., Ma, S., Zhang, W., Liu, X., Chua, Y., Shi, L., & Zhao, R. (2024). Advancing brain-inspired computing with hybrid neural networks. National Science Review, 11(5). doi:10.1093/nsr/nwae066.
- Sadikin, M. A. (2023). Defect reduction in the manufacturing industry: Systematic literature review. International Journal of Industrial Engineering and Engineering Management, 5(2), 73–83. https://doi.org/10.24002/ijieem.v5i2.7495
- Brennan, M. C., Keist, J. S., & Palmer, T. A. (2021). Defects in Metal Additive Manufacturing Processes. Journal of Materials Engineering and Performance, 30(7), 4808–4818. doi:10.1007/s11665-021-05919-6.
- Pietsch, D., Matthes, M., Wieland, U., Ihlenfeldt, S., & Munkelt, T. (2024). Root Cause Analysis in Industrial Manufacturing: A Scoping Review of Current Research, Challenges and the Promises of AI-Driven Approaches. Journal of Manufacturing and Materials Processing, 8(6), 277. doi:10.3390/jmmp8060277.
- Montgomery, D. C. (2020). Introduction to statistical quality control. John wiley & sons. Hoboken, United States.
- Kitayama, S. (2022). Process parameters optimization in plastic injection molding using metamodel-based optimization: a comprehensive review. International Journal of Advanced Manufacturing Technology, 121(11–12), 7117–7145. doi:10.1007/s00170-022-09858-x.
- Xu, K., Li, Y., Liu, C., Liu, X., Hao, X., Gao, J., & Maropoulos, P. G. (2020). Advanced Data Collection and Analysis in Data-Driven Manufacturing Process. Chinese Journal of Mechanical Engineering, 33(1). doi:10.1186/s10033-020-00459-x.
- Blondheim, D. (2021). Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the Critical Error Threshold. International Journal of Metalcasting, 16(2), 502–520. doi:10.1007/s40962-021-00637-0.
- Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine Learning and Deep Learning Techniques: An Empirical Approach. AI (Switzerland), 5(4), 1743–1758. doi:10.3390/ai5040086.
- Al-Isawi, M.K., Abdulkader, H. (2024). Software Defects Detection in Explainable Machine Learning Approach. Emerging Trends and Applications in Artificial Intelligence. ICETAI 2023. Lecture Notes in Networks and Systems, vol 960. Springer, Cham, Switzerland. doi:10.1007/978-3-031-56728-5_42.
- Yan, W., Wang, J., Lu, S., Zhou, M., & Peng, X. (2023). A Review of Real-Time Fault Diagnosis Methods for Industrial Smart Manufacturing. Processes, 11(2), 369. doi:10.3390/pr11020369.
- Meddaoui, A., Hachmoud, A., & Hain, M. (2024). Advanced ML for predictive maintenance: a case study on remaining functional life prediction and reliability enhancement. International Journal of Advanced Manufacturing Technology, 132(1–2), 323–335. doi:10.1007/s00170-024-13351-y.
- Wang, Z., Wang, X., Liu, X., Zhang, J., Xu, J., & Ma, J. (2024). A Novel Stacked Generalization Ensemble-Based Hybrid SGM-BRR Model for ESG Score Prediction. Sustainability (Switzerland), 16(16), 6979. doi:10.3390/su16166979.
- Lu, L., Chen, J., Ulbricht, M., & Krstic, M. (2024). Machine Learning Methodologies to Predict the Results of Simulation-Based Fault Injection. IEEE Transactions on Circuits and Systems I: Regular Papers, 71(5), 1978–1991. doi:10.1109/TCSI.2024.3349928.
- Li, S., Jin, N., Dogani, A., Yang, Y., Zhang, M., & Gu, X. (2024). Enhancing LightGBM for Industrial Fault Warning: An Innovative Hybrid Algorithm. Processes, 12(1), 221. doi:10.3390/pr12010221.
- Tang, W., Wu, X., & Chen, J. (2023). Graph Neural Networks for Chemical Process Fault Diagnosis Based on Hybrid Variable Feature Learning. 2023 China Automation Congress (CAC), 4893–4898. doi:10.1109/cac59555.2023.10451911.
- Li, R., Wang, X., Wang, Z., Zhu, Z., & Liu, Z. (2023). Multistage Quality Prediction Using Neural Networks in Discrete Manufacturing Systems. Applied Sciences (Switzerland), 13(15), 8776. doi:10.3390/app13158776.
- Kosim, M., Wibowo, A., Setioputro, N. T., Kasda, & Susanto, D. (2023). Optimization of Prediction and Prevention of Defects on Metal Based on Ai Using Vgg16 Architecture. Journal of Mechanical and Manufacture, 3(1), 39–55. doi:10.31949/jmm.v3i1.6542.
- Ma, L., Zhao, L., & Wang, X. (2017). Prediction of thermal system parameters based on PSO-ELM hybrid algorithm. 2017 Chinese Automation Congress (CAC), 3136–3141. doi:10.1109/cac.2017.8243315.
- El Kharoua, R. (2024). Predicting manufacturing defects dataset [Data set]. Kaggle. doi:10.34740/KAGGLE/DSV/8715500
- Khani, A. M., Kazazi, A., & Taqhavi Fard, M. T. (2022). Evaluating the quality of services of the cultural and social deputy of Tehran municipality in the field of culture and art. Social Development & Welfare Planning, 13(50), 205-250. doi:22054/qjsd.2021.58035.2110
- Motiei, M., Beyrami, S., & Khani, A. M. (2022). The impact of applying knowledge, social capital and e-commerce activism on organizational agility in response to the corona crisis (Case study: Golestan export companies). Journal of International Business Administration, 5(2), 167–192. https://doi.org/10.22034/jiba.2022.48850.1797
- Mendoza, T., Lee, C. H., Huang, C. H., & Sun, T. L. (2021). Random forest for automatic feature importance estimation and selection for explainable postural stability of a multi-factor clinical test. Sensors, 21(17), 5930. doi:10.3390/s21175930.
- Yuan, X., Liu, S., Feng, W., & Dauphin, G. (2023). Feature Importance Ranking of Random Forest-Based End-to-End Learning Algorithm. Remote Sensing, 15(21), 5203. doi:10.3390/rs15215203.
- Hairani, H., Saputro, K. E., & Fadli, S. (2020). K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes. Jurnal Teknologi Dan Sistem Komputer, 8(2), 89–93. doi:10.14710/jtsiskom.8.2.2020.89-93.
- Chen, Y., Zou, J., Liu, L., & Hu, C. (2024). Improved Oversampling Algorithm for Imbalanced Data Based on K-Nearest Neighbor and Interpolation Process Optimization. Symmetry, 16(3), 273. doi:10.3390/sym16030273.
- Kumar, M., Singhal, S., Shekhar, S., Sharma, B., & Srivastava, G. (2022). Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning. Sustainability (Switzerland), 14(21), 13998. doi:10.3390/su142113998.
- Alserhani, F., & Aljared, A. (2023). Evaluating Ensemble Learning Mechanisms for Predicting Advanced Cyber Attacks. Applied Sciences (Switzerland), 13(24), 13310. doi:10.3390/app132413310.
- Mbazaia, O., Kamoun, K. (2019). CaRT: Framework for Semantic Query Correction and Relaxation. Digital Economy. Emerging Technologies and Business Innovation. ICDEc 2019. Lecture Notes in Business Information Processing, vol 358. Springer, Cham, Switzerland. doi:10.1007/978-3-030-30874-2_12.
- Hassanali, M., Soltanaghaei, M., Javdani Gandomani, T., & Zamani Boroujeni, F. (2024). Software development effort estimation using boosting algorithms and automatic tuning of hyperparameters with Optuna. Journal of Software: Evolution and Process, 36(9). doi:10.1002/smr.2665.
- Noorunnahar, M., Chowdhury, A. H., & Mila, F. A. (2023). A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh. PLOS ONE, 18(3), e0283452. doi:10.1371/journal.pone.0283452.
- Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: an Effective Decision Tree Gradient Boosting Method to Predict Customer Loyalty in the Finance Industry. 2019 14th International Conference on Computer Science & Education (ICCSE), 1111–1116. doi:10.1109/iccse.2019.8845529.
- Rezasoltani, A., Jafarnejad, A., & Khani, A. M. (2025). A voting-based hybrid machine learning model for predicting backorders in the supply chain. Journal of Decisions and Operations Research, 10(1), 194–213. https://doi.org/10.22105/dmor.2025.511401.1924
- Yousefpour, H., & Ghasemi, J. (2024). Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C. Contributions of Science and Technology for Engineering, 1(1), 32–42. doi:10.22080/cste.2024.5012.
- Waoo, A. A., & Soni, B. K. (2021). Performance Analysis of Sigmoid and Relu Activation Functions in Deep Neural Network. In Algorithms for intelligent systems (pp. 39–52). doi:10.1007/978-981-16-2248-9_5.
- Coppola, C., Papa, L., Boresta, M., Amerini, I., & Palagi, L. (2024). Tuning parameters of deep neural network training algorithms pays off: a computational study. TOP, 32(3), 579–620. doi:10.1007/s11750-024-00683-x.
- Wang, Z., Wang, X., Liu, X., Zhang, J., Xu, J., & Ma, J. (2024). A Novel Stacked Generalization Ensemble-Based Hybrid SGM-BRR Model for ESG Score Prediction. Sustainability (Switzerland), 16(16), 6979. doi:10.3390/su16166979.
- Jafarnejad Chaghoshi, A., Rezasoltani, A., & Khani, A. M. (2024). Unleashing the Power of Ensemble Learning: Predicting National Ranks in Iran’s University Entrance Examination. Industrial Management Journal, 16(3), 457–481. doi:10.22059/imj.2024.381521.1008178.
- Cao, Y., Zhao, P., Xu, B., & Liang, J. (2024). An Improved Random Forest Approach on GAN-Based Dataset Augmentation for Fog Observation. Applied Sciences (Switzerland), 14(21), 9657. doi:10.3390/app14219657.
- Mehregan, M. R., Taghavifard, M. T., Khani, A. M., Rezasoltani, A., & Nikkhah, M. A. (2025). A hybrid machine learning model based on deep learning for air quality prediction. Pollution, 11(4), 1199–1215. https://doi.org/10.22059/poll.2025.388743.2750Yuan, X., Liu, S., Feng, W., & Dauphin, G. (2023). Feature Importance Ranking of Random Forest-Based End-to-End Learning Algorithm. Remote Sensing, 15(21), 5203. doi:10.3390/rs15215203.
- Jafarnejad Chaghoshi, A., Khani, A. M., & Rezasoltani, A. (2024). Risk Modeling in Banking Services for the Blind Using Fuzzy FMEA and Graph Neural Network (GNN). Journal of Industrial Management Perspective, 14(4), 223-255. doi:10.48308/JIMP.14.4.223
- Kosari, A. (2025). Real-time network traffic anomaly detection using spiking neural networks (SNNs) with adaptive learning. Contributions of Science and Technology for Engineering, 2(2), 17–22. https://doi.org/10.22080/cste.2025.28763.1016
- Jafarnejad, A., Rezasoltani, A., & Khani, A. M. (2025). Predicting Heart Disease Using Automated Machine Learning Based on Genetic Algorithms. Journal of Information Technology Management, 17(2), 91–122. doi:10.22059/jitm.2024.382556.3829.
|