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A  R  T  I  C  L  E I  N  F  O 

The construction and upkeep of concrete structures have posed significant technical and 

financial challenges over the past decade. In response, self-compacting concrete (SCC) has 

gained attention due to its superior mechanical performance and reduced environmental 

footprint. This study investigates the application of gene expression programming (GEP) 

in developing a predictive model for estimating the compressive strength (CS) of self-

compacting concrete incorporating rice husk ash (RHA). To assess the model’s reliability, 

its predictions were benchmarked against those from two well-established machine 

learning methods: multiple linear regression (MLR) and artificial neural networks (ANN). 

A total of 651 experimental records related to RHA-based SCC were gathered from 

trustworthy references. The model’s performance was then quantified using key statistical 

measures, including the correlation coefficient (R), root mean squared error (RMSE), and 

mean absolute error (MAE). The GEP model outperformed the ANN and MLR 

approaches, delivering greater accuracy and lower error levels. Additionally, the study 

introduced a gene expression-based formula derived from the GEP model for estimating 

compressive strength at different curing ages, achieving a correlation coefficient of 0.49 

and error values ranging from 5 to 9 MPa, which highlights its strong predictive ability. 

This equation provides a practical tool for preliminary mix design and the quick 

assessment of SCC mixtures. Sensitivity analysis revealed that binder content was the most 

significant parameter influencing CS prediction. 
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1. Introduction 

Self-compacting concrete (SCC) is regarded as one of the breakthroughs in modern concrete engineering practices. As a 

relatively recent innovation in construction materials, emerging over the past three decades, SCC was made possible by the 

development of superplasticizers as a new class of admixtures. SCC is a type of concrete with medium to high strength that can 

spread solely by the force of gravity, completely occupying the formwork without requiring external vibration [1]. In the early 

1980s, the increasing complexity of construction projects in Japan, combined with the growing volume of reinforcement, led to poor 

compaction and decreased execution quality [2]. Given the rising global population and growing human needs, the generation of 

industrial and agricultural waste is increasing steadily. The construction industry presents a valuable opportunity to utilize such 

waste materials. This research investigates the application of rice husk a byproduct of agriculture and its ash, which serves as a 

pozzolanic substance abundant in reactive silica, for potential use in construction materials. Appropriately processed rice husk ash 

(RHA) has been shown to enhance the durability of concrete against aggressive environments, reduce reinforcement corrosion, and 

play a significant role in soil stabilization, cementitious block production, and the fabrication of lightweight insulating concrete and 

bricks [3, 4]. 
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In recent years, the emergence of new materials and technologies has introduced a larger number of parameters into concrete 

mix design, sometimes doubling the number of influencing variables. Consequently, data-driven modeling approaches, particularly 

those built on experimental data, have attracted significant interest among researchers. Classical modeling methods such as multiple 

linear regression (MLR) and artificial neural networks (ANNs) have been widely used to solve problems in concrete technology. 

For instance, Chen and Pai [5] used MLR to predict compressive strength based on physical properties, analyzing various input 

variable combinations, and reporting results using statistical performance indicators. The capability of ANNs to predict concrete 

properties has also been assessed in several studies. Sonebi et al. [6] and Kalman Šipoš et al. [7] reported that ANN models could 

serve as effective alternatives to laboratory testing for estimating both fresh and hardened properties of concrete. Similarly, Wang 

et al. [8] applied both ANN and MLR methods to model the behavior of concrete and presented their results through statistical 

analyses. 

However, classical data-driven methods often fail to provide explicit predictive equations from the model outputs. Therefore, 

modern modeling techniques like GEP, which can deliver accurate and interpretable mathematical expressions, have gained 

attention among researchers [9]. As an illustration, Gholampour et al. [10] utilized datasets related to recycled concrete to construct 

predictive models using GEP, aiming to estimate key mechanical properties such as compressive strength, tensile strength, and 

elastic modulus. 

In recent years, while many studies have focused on applying machine learning techniques such as multiple linear regression 

and artificial neural networks for predicting the compressive strength of various types of concrete, limited research has been 

conducted on the use of GEP for modeling the compressive strength of self-compacting concrete incorporating rice husk ash. 

Moreover, previous studies have often relied on relatively small datasets or lacked explicit predictive equations that can be directly 

used for practical mix design. These limitations underscore the need for more comprehensive modeling approaches that provide 

both high predictive accuracy and interpretable formulations. 

The novel contributions of the present study can be summarized as follows: 

• Development of a GEP-based predictive model for estimating the compressive strength of SCC containing rice husk ash, 

trained and validated on an experimental dataset. 

• Comprehensive comparison of GEP performance with conventional models (MLR and ANN) to highlight its advantages in 

terms of accuracy and interpretability. 

• Derivation of an explicit mathematical equation from the GEP model to facilitate practical use in preliminary concrete mix 

design. 

• Sensitivity analysis to identify the most influential parameters affecting compressive strength prediction. 

2. Methodology 

2.1. Multiple linear regression (MLR) 

Regression analysis is a statistical approach used to explore how a dependent variable responds to changes in one or more 

independent variables, while holding others constant. This method provides insights into the nature and strength of these 

relationships. Typically, regression analysis aims to construct a mathematical model that relates independent variables to the 

prediction of a dependent variable’s value [11, 12]. Today, regression analysis is widely used for predictive modeling. Among 

various techniques available, linear regression and least squares regression are among the most commonly applied. According to 

Sobhani et al. [13] linear regression is a form of regression analysis that models the relationship between one or more independent 

variables and a dependent variable using a linear regression equation. In contrast, the goal of nonlinear regression is to find a suitable 

nonlinear equation that fits the relationship. 

2.2. Artificial neural networks (ANNs) 

The artificial neural network (ANN) model known as the perceptron was introduced by Frank Rosenblatt in 1958 [14]. These 

networks typically consist of three layers: input, hidden, and output. In feedforward neural networks, input signals propagate forward 

from the input layer through the hidden layers to the output layer [15]. The quantity of neurons in the input and output layers is 

directly aligned with the number of corresponding input and output variables. There is no definitive rule for determining the number 

of neurons in the hidden layer; this is generally determined based on problem complexity and through trial and error [16]. To 

minimize the error, the weights between neurons are updated in a backward direction from the output layer toward the input layer, 

and this process is repeated iteratively until the desired output is achieved. 

2.3. Gene expression programming (GEP) 

Gene expression programming (GEP), developed by Ferreira in 1999 [17], is a variant of genetic algorithms that evolves 

solutions by evaluating individuals through a fitness function and applying genetic operations via one or more operators. While 

similar in concept to genetic algorithms, which operate on binary strings, GEP differs in that it uses tree-based structures to generate 

optimal solutions [18]. Ferreira incorporated various operators in GEP, such as mutation and crossover. One of the key features of 

these operators is their ability to avoid producing invalid individuals by applying error-free operations. GEP utilizes different types 

of crossover mechanisms, including one-point, two-point, and gene crossover [17]. Among these, the two-point crossover is 
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considered more effective as it enables more frequent activation and deactivation of non-coding regions within chromosomes. GEP 

represents various phenomena by employing predefined sets of functions and terminal symbols. In this study, the GeneXpro Tools 

5.0 software was employed to implement the GEP model. To better illustrate the modeling approach employed in this research, a 

workflow diagram has been provided in Fig. 1. This flowchart depicts the key steps, including dataset compilation, preprocessing, 

selection of input parameters, model development using MLR, ANN, and GEP techniques, performance evaluation with statistical 

metrics, and sensitivity analysis to identify the most influential factors affecting compressive strength prediction. 

 
Fig. 1. Workflow of the computational modeling framework adopted in this study. 

3. Dataset used in this study 

To estimate the CS of SCC incorporating RHA using data-driven models, a comprehensive dataset was collected from various 

experimental studies. This dataset consists of 156 data points obtained from different laboratory tests related to the CS of SCC 

incorporating RHA, compiled from previous studies [19-22]. The dataset was split into training and testing subsets, with 75% 

allocated for model training and the remaining 25% reserved for evaluation. All samples were designed using different combinations 

of the following materials: fine aggregate (FA), coarse aggregate (CA), cement (C), rice husk ash (RHA), superplasticizer (SP), and 

water (W). The numerical surveys informed the success in simulating different problems using an ANN [23, 24]. On the other hand, 

the structural behavior of RC elements and beam-column joints, as well as retrofitting approaches by employing SCC and/or normal 

concrete, have been additionally investigated through cyclic or monotonic loadings [25-27]. 

To account for differences in mix proportions and testing conditions, the dataset includes concrete compressive strength values 

measured at 7, 28, and 90 days under standard curing conditions. The measured CS (MPa) served as the output variable (target), 

while the seven aforementioned components acted as the input variables. As this dataset was compiled from a variety of published 

research, it represents a valuable and credible source for modeling purposes. To assess the consistency and distribution 

characteristics of the data, statistical evaluations were carried out. Table 1 reports the range, mean, standard deviation, and 

coefficient of variation for each variable. Table 2 outlines the error metrics used to assess the models’ predictive accuracy. 

Table 1. Summary of descriptive statistics for the considered variables. 

CS SP AS RHA CA FA W C Variables 

106.5 7.33 90 135 1319 814 341 560 Max 

16.5 0 1 0 995 539 119 0 Min 

28.92 4.68 59.19 53.1 1250 608.3 162.1 441.54 Mean 

33.89 93.2 23.8 37.1 92.8 100.28 13.95 58.9 std dev 
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Table 2. Applied performance evaluation metrics to the models. 

Equation No. 

R = 
∑ (𝑂𝑖−𝑂).(𝑃𝑖−𝑃)𝑀

𝑖=1

√∑ (𝑂𝑖−𝑂)
2

∑ (𝑃𝑖−𝑃)
2𝑀

𝑖=1
𝑀
𝑖=1

 (1) 

RMSE =
∑ (𝑃𝑖−𝑂𝑖)2𝑀

𝑖=1

𝑀
 (2) 

MAE = 
∑ |𝑃𝑖−𝑂𝑖|𝑀

𝑖=1

𝑀
 (3) 

4. Comparison and evaluation of proposed models 

To compare the performance of the proposed models during the training and testing phases, statistical indices including the 

correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) were used, as presented in Table 2. In 

these equations, Oi represents the observed values, Pi denotes the predicted values, �̅� is the mean of observed values, �̅� is the mean 

of predicted values, and M is the total number of data points. 

Additionally, the developed models were compared and evaluated against other data-driven models reported by previous 

researchers. Specifically, the compressive strength prediction models of Belalia Douma et al. [28], Kaveh et al. [29], Inqiad et al. 

[30], and Siddique et al. [31] were examined, and their performance was compared with the GEP-based model proposed in this 

study. 

5. Results and discussion 

5.1. Determining the optimal input combination for developing predictive models 

In this study, an effort was made to identify the best combination of input parameters for developing predictive models. Various 

combinations of input parameters were tested, and the proposed models were developed accordingly. It should be noted that the 

parameters were assessed both individually and in combination. 

To determine the optimal combination, previous literature and experimental data were reviewed, and different groupings of 

parameters were analyzed. Based on model performance results, the following input configuration was selected as the best-

performing scenario: 

1. Compressive strength as the output, and the following as inputs: 

Water (W), Cement (C), Fine aggregate (FA), Coarse aggregate (CA), Rice husk ash (RHA), and Superplasticizer (SP). 

2. W/C, FA/C, CA/C, SP, and RHA content. 

3. W/FA, FA/C, CA/C, SP, and RHA content. 

4. W/CA, FA/C, CA/C, SP, and RHA content. 

In this study, MLR was used to determine the best combination of input variables for predicting compressive strength. The goal 

was to select the optimal input set for model development using statistical regression techniques. MLR is known for its simplicity 

and interpretability and is widely used in preliminary modeling when dealing with real datasets. 

The very low error associated with this method suggests that MLR can be reliably used in early-stage model selection before 

adopting more complex nonlinear algorithms. Among the four tested combinations (shown in Table 3), the fourth input set consisting 

of W/CA, FA/C, CA/C, SP, and RHA content resulted in the best prediction accuracy. 

Table 3. Assessment of suggested scenarios for identifying the optimal set of input variables. 

MAE RMSE R Imput 

7.71 6.41 0.92 Scenario -1 

8.1 7.49 0.9 Scenario -2 

11.29 10.2 0.83 Scenario -3 

9.6 9.31 0.86 Scenario -4 

This configuration achieved an R of 0.92 and the lowest RMSE of 6.41 MPa in predicting compressive strength, indicating its 

superior predictive performance. Furthermore, when this optimal input set was tested using the ANN and GEP models, the results 

confirmed its higher reliability compared to the other three input combinations, as illustrated in Fig. 2. 

5.2. ANN model for predicting concrete strength 

After identifying the best combination of input variables for estimating the CS of SCC with RHA, the ANN modeling process 

was initiated. A multilayer feedforward ANN architecture was utilized in this study. The quantity of neurons in the hidden layer 

significantly influences the model’s overall performance. To identify the most suitable number of neurons, different values were 

tested in a trial-and-error process. In this study, a single hidden-layer architecture was used, as prior research has shown it to be 

sufficient for capturing complex nonlinear relationships [11-13]. 
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Fig. 2. Time series diagrams corresponding to the suggested alternatives. 

The Levenberg–Marquardt (trainlm) algorithm was used for training, given its high efficiency and minimal prediction error. 

Additionally, the sigmoid transfer function was employed in both the hidden and output layers, which has proven effective in 

previous studies. For training and testing the networks, 90% (141 samples) and 20% (31 samples) of the data were used, respectively, 

and the performance of each phase is reported in Table 4. The performance of the ANN model during both phases was evaluated 

using the same statistical indicators (R, RMSE, and MAE). Fig. 3 illustrates the evaluation metrics for each artificial neural network 

model in a graphical format. Among the different configurations tested, the optimal ANN model had 5 neurons in the hidden layer, 

a learning rate of 0.01, a momentum coefficient of 0.9, and was trained for 2000 epochs. It is important to mention that increasing 

the number of neurons in the hidden layer beyond a certain limit led to overfitting and reduced generalization capability. The best-

performing ANN model, as noted, consisted of a single hidden layer with 5 neurons and 2000 training iterations. In this study, ten 

different ANN configurations (ANN 1 to ANN 10) were developed by systematically varying the number of neurons in the hidden 

layer from 1 to 10. Each ANN model in Table 4 corresponds to a specific configuration with a distinct number of hidden neurons. 

This approach allowed us to evaluate the impact of the network complexity on prediction accuracy and to identify the optimal 

architecture providing the best performance metrics. 

Table 4. Performance metrics of ANN models during training and testing phases. 

Testing  Training 
Models 

MAE RMSE R  MAE RMSE R 

16.6 15.6 0.6  16.6 15.6 0.69 ANN 1 

14 13.3 0.79  12.8 11.2 0.73 ANN 2 

8.3 7.5 0.92  5.9 5.3 0.94 ANN 3 

5.6 5.1 0.93  5.1 4.5 0.95 ANN 4 

6.9 6.4 0.92  5.8 5.4 0.92 ANN 5 

7.5 6.9 0.92  6.7 5.8 0.93 ANN 6 

7.9 7.1 0.9  5.4 4.9 0.94 ANN 7 

10.2 9.9 0.85  7.5 6.46 0.92 ANN 8 

9.5 8.5 0.86  7.6 6.34 0.93 ANN 9 

11.5 1.9 0.83  10.9 9.76 0.86 ANN 10 

5.3 GEP model for predicting concrete strength 

In this study, GEP was used to predict the CS of self-compacting concrete containing RHA. The model was developed based on a 

set of initial input parameters, from which the algorithm started its search, and ultimately generated an explicit mathematical 

expression for the output. As presented in Table 5, the values assigned to each parameter in the GEP model are shown. This provides 

a straightforward and interpretable expression that connects mix design parameters with CS. 
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Fig. 3. Assessment of hidden layer neuron counts in ANN configurations. 

The final equation, derived using the GEP approach, provides a reliable and practical tool for predicting the compressive strength 

of SCC incorporating rice husk ash. For the prediction of compressive strength of concrete containing rice husk ash, the optimal 

number of individuals per generation was set to 30 chromosomes, and the best fitness value achieved was 633.68. Fig. 4 presents 

the prediction deviations of the GEP model in comparison to the experimentally obtained CS values of self-compacting concrete. A 

higher model accuracy is indicated by data points clustering near the zero-error line. As shown, most of the errors lie within the 

interval of -8 to +8 MPa. 

Table 5. Optimal configuration parameters for the GEP model. 

 Parameter details  Parameter details 

0.277 Gene transposition rate +, −, , exp, power Function set 

7 Head size 0.044 Mutation rate 

4 Number of genes 0.3 Inversion rate 

30 Number of chromosomes 0.3 One/two-point recombination rate 

  0.1 Gene recombination rate 

 

 

Fig. 4. Distribution of prediction errors in the GEP model. 

Based on previous studies and through a process of trial and error, the optimal combination of input parameters for predicting 

the compressive strength of concrete containing rice husk ash was identified. According to Table 5 and the structure shown in Fig. 

5, the GEP-based model was developed using a selection of parameters that significantly influence the target output. The notations 

used are: d0 = C, d1 = RHA, d2 = W, d3 = SP, d4 = FA, d5 = CA, and d6 = AS. The final input configuration selected C, W, RHA, 

SP, FA, CA, and AS, indicating that rice husk ash content, water-to-cement ratio, and superplasticizer dosage are the most influential 

variables, along with the type and size of aggregates and curing age. 
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Fig. 5. Expression tree of GEP model. 

Finally, the best predictive equation for estimating the CS of SCC with RHA, based on the optimal combination of input 

parameters, is expressed through Eq. (1). 

CS = {((
𝑅𝐻𝐴

𝐶
) + 𝑊0.5)

0.5

× ((𝐴𝑆 + 𝐹𝐴) −  (𝐹𝐴 + 3.49)−1)} + {𝑆𝑃 × (𝐶𝐴 + (𝐴𝑆 − 7.26))} +

{(𝐹𝐴 + (
𝐴𝑆

0.234
) − 7.9𝐴𝑆)

0.5

+ 6.8} 

(1) 

As shown in Table 6, the R in the training phase for MLR, ANN, and GEP models was 0.92, 0.95, and 0.98, respectively. The 

RMSE values were 6.4, 4.5, and 3.9, and the MAE values were 7.8, 5.1, and 5.4, respectively. These results indicate that the GEP 

model outperformed ANN and MLR in terms of prediction accuracy. 

The ranking of models based on error metrics shows that GEP had the highest accuracy and required less training time compared 

to ANN. This suggests that GEP is a more efficient and reliable approach, particularly when interpretability of the prediction model 

is important. Considering the mathematical structure of the GEP-derived equation and the strong consistency between predicted and 

observed values, it can be inferred that the GEP model delivers highly precise outcomes, with prediction errors remaining within 

acceptable limits. 

Table 6. Comparative analysis of developed models for predicting the CS of SCC. 

Testing  Training 
Models 

MAE RMSE R  MAE RMSE R 

9.5 8.2 0.9  7.8 6.4 0.92 MLR 

5.6 5.1 0.93  5.1 4.5 0.95 ANN 

4.9 4.3 0.95  5.4 3.9 0.98 GEP 

- - 0.94  - - 0.95 Belalia Douma et al. [28] 

5.5 6.8 0.95  5.1 5.2 0.95 Kaveh et al. [29]- a 

5.6 4.5 0.94  3.5 4.5 0.96 Kaveh et al. [29] - b 

5.6 4.5 0.33  23.1 733 0.22 Inqiad et al. [30] 

5.6 4.43 0.91  - - - Siddique et al. [31] 

In this study, Fig. 6 illustrates the observed and predicted compressive strength values, as estimated by the proposed MLR, ANN, 

and GEP models during the training phase. A comparative qualitative assessment shows that the GEP method more accurately tracks 

the observed compressive strength values. In contrast, the MLR model tends to diverge from the data points, especially in regions 

with high error. The GEP method exhibits greater consistency and lower dispersion around the regression line, focusing on a denser 

clustering of points near the actual values. The MLR model, on the other hand, displays a wider spread in the error range, indicating 
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reduced accuracy in certain regions. Fig. 7 further confirms that the GEP model yields predictions that are more closely aligned 

with experimental results. Additionally, it was observed that during the testing phase, the GEP model achieved lower error values 

compared to ANN, highlighting the superior accuracy of gene expression programming over artificial neural networks in this case. 

  

 

Fig. 6. Scatterplots of the developed models for training performance. 

 

  

 

Fig. 7. Scatterplots of the developed models for testing performance. 

Traditional approaches like ANNs and MLR were employed in this research to estimate the CS of SCC incorporating RHA. 

From a comparative standpoint, the quantitative evaluation results shown in Fig. 8 indicate that the proposed methods outperform 

traditional approaches. The GEP method, in particular, exhibited greater accuracy and lower error dispersion than the MLR model. 

Because linear regression cannot model intricate nonlinear patterns, it failed to reliably predict and generalize compressive strength 

values over the full spectrum of the dataset. On the other hand, the GEP-based model provided more accurate predictions and 

minimized the deviation from experimental results, especially when determining the influence of multiple variables. Additionally, 

previous studies [23] have emphasized that methods such as ANN are highly sensitive to the number of variables and input 
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conditions, which may lead to instability in model behavior. Therefore, based on the results of Fig. 8, it can be concluded that the 

GEP method offers higher predictive performance for compressive strength estimation compared to both ANN and MLR. 

  

 

 

Fig. 8. Time series plots of model performance in the testing phase. 

In this study, classical data-driven methods such as ANN and MLR encountered computational errors due to the trial-and-error 

nature of network optimization and their limited ability to address complex problems involving a large number of variables affecting 

the physical behavior of different systems [23]. Therefore, the use of metaheuristic algorithms has become essential for improving 

these methods and other predictive approaches. According to the timeline chart illustrated in Fig. 8, the CS predictions made using 

the MLR method demonstrated relatively weaker performance compared to the ANN and GEP models in predicting the CS of SC 

with RHA. The quantitative comparison shown in Fig. 8 confirms that the MLR method produced relatively inaccurate predictions 

and failed to effectively estimate both the maximum and minimum local values of compressive strength. The highest prediction 

errors were observed in the 40–60 MPa range, where the predicted values were generally lower than the experimentally measured 

compressive strengths. This highlights the MLR model’s inability to capture the nonlinear relationships involved in concrete strength 

development when using supplementary cementitious materials like rice husk ash. 

5.4. Assessment of the relevance of the developed regression models 

To test the significance of the regression coefficients, statistical testing using the F-value can be employed as follows: 

H0: β1 = β2 = ⋯ = βk = 0 → the regression model is not significant. 

H1: βi ≠ 0 : i = 1, 2, … , k → the regression model is significant. 

If all the regression coefficients are equal to zero, this would indicate that there is no linear relationship between the independent 

variables and the dependent variable. In that case, the model would be deemed statistically insignificant. If the result of the test 

indicates that at least one coefficient differs from zero, the regression model is considered significant. To test the significance of the 

regression model, the confidence level must be determined first. In this study, a 95% confidence level was selected, which means 

the probability of rejecting the null hypothesis should be less than 0.05. The critical value for model significance evaluation using 

the Fisher test [24] is determined based on Table 7. It should be noted that the F-test results reported in Table 8 were obtained based 

on the training dataset. The F-statistic and p-values were calculated in Python using the statsmodels library, which provides an 

automated regression analysis. This library computes the regression sum of squares, residual sum of squares, mean squares, and 

finally the F-value, following standard statistical procedures. In the results of model significance testing, the p-value is reported. If 

the p-value is less than the significance level (0.05), the null hypothesis is rejected, and the model is considered statistically 

significant. Also, as shown in the Table of statistical analysis results, the reported p-values are all less than 0.05, which confirms 

the significance of the regression model. Furthermore, the F-value reported is higher than the critical value (9.16), indicating a 

strong model fit.  
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Table 7. F-test outcomes for the developed models. 

P-value F-value Model 

0.0088 22.11 GEP 

0.02 15.1 ANN 

0.38 8.4 MLR 

5.5. Sensitivity analysis 

Sensitivity analysis refers to the study of how the input variables of a statistical model influence its output. In other words, it is 

a systematic method of varying the inputs of a model to predict the effects of these changes on the model's output [25]. In this 

research, sensitivity analysis was conducted using the GEP approach, which showed the highest accuracy among all developed 

models to evaluate the impact of each input variable on the predicted CS of SCC incorporating RHA. 

The results presented in Table 8 indicate that the parameter cement (C), with a correlation coefficient of R = 0.73 and other 

statistical indicators (RMSE = 10.4, MAE = 11.3), has the greatest influence on predicting the compressive strength of concrete. 

The parameter aggregate size (AS) also shows a high correlation with compressive strength, with a correlation coefficient of R = 

0.93, and statistical indicators (RMSE = 4.2, MAE = 4.2) demonstrating its strong predictive influence. 

Table 8. Sensitivity analysis of input variables for predicting CS. 

MAE RMSE R Imput 

11.3 10.4 0.73 CS = f(W, SP, FA, CA, AS, RHA) 

6.1 5.3 0.89 CS = f(C, SP, FA, CA, AS, RHA) 

4.2 4.2 0.92 CS = f(C, W, FA, CA, AS, RHA) 

5.3 4.7 0.9 CS = f(C, W, SP, CA, AS, RHA) 

10.4 9.7 0.79 CS = f(C, W, SP, FA, AS, RHA) 

4.2 4.2 0.93 CS = f(C, W, SP, FA, CA, RHA) 

7.8 7.7 0.82 CS = f(C, W, SP, FA, CA, AS) 

These findings confirm that cement and aggregate size are the two most influential parameters in determining the CS of SCC 

incorporating RHA [32-34]. In contrast, other input variables W, RHA, CA, FA, and SP had comparatively less influence. Overall, 

the sensitivity analysis revealed that cement and aggregate size are the dominant factors affecting the compressive strength of SCC 

with RHA. 

6. Conclusion 

In this study, one of the most advanced data-driven techniques, GEP, was employed to predict the CS of SCC incorporating 

RHA. To identify the most influential parameters affecting the compressive strength of this concrete type, four input scenarios were 

defined, and each case was evaluated using MLR. Ultimately, seven input parameters (C, AS, CA, FA, SP, W, and RHA) and one 

output parameter (concrete compressive strength) were used to develop the proposed models. 

Based on the evaluation of the developed models, the following conclusions were drawn: 

1. The performance of the proposed intelligent models was assessed for both training and testing phases using experimental data 

collected from previous studies. According to the statistical error indicators in the training phase, the GEP model (R = 0.97, 

RMSE = 3.364) outperformed the Artificial Neural Network model (R = 0.94, RMSE = 4.536) and the Multiple Linear 

Regression model (R = 0.91, RMSE = 6.762) in predicting the compressive strength of SCC. Furthermore, performance 

evaluation in the testing phase showed that the GEP model (R = 0.97, RMSE = 3.308) provided more accurate predictions 

under nonlinear formulations compared to the ANN (R = 0.92, RMSE = 5.136) and MLR (R = 0.89, RMSE = 9.212) models 

for the 21-day compressive strength of SCC containing RHA. 

2. The GEP and ANN models, used as explicit equations for estimating the compressive strength of SCC, demonstrated 

significantly higher accuracy compared to traditional linear methods. In particular, GEP, with its capability to formulate precise 

output estimations, proved to be a powerful tool for prediction and data mining in engineering technologies, especially in 

concrete technology. 

3. The statistical significance of the proposed models was verified using regression hypothesis testing through the Fisher test,  

showing that the F-values for all models were below the critical threshold and the confidence levels were less than 0.05, 

thereby validating the reliability of the developed models. 

4. To assess the sensitivity of the output variable to the input variables, the GEP method was used. The results indicated that 

variable C had the most substantial effect on predicting compressive strength, whereas SP exhibited the least influence on the 

model’s output. 

5. Based on the results of the sensitivity analysis and the performance of the developed models, the optimal RHA content for 



Farrokh Ghatte and Nazari Civil Engineering and Applied Solutions, 2025; 1(3): 17–28 
 

27 

achieving higher compressive strength in self-compacting concrete mixtures was found to be approximately 10–15% by weight 

of the binder. 
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