تعداد نشریات | 31 |
تعداد شمارهها | 494 |
تعداد مقالات | 4,808 |
تعداد مشاهده مقاله | 7,447,883 |
تعداد دریافت فایل اصل مقاله | 5,559,542 |
Transcriptomic Analysis of Probiotic Oxidative Stress Resistance in Anti-inflammatory Pathways | ||
Journal of Genetic Resources | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 تیر 1404 اصل مقاله (1.08 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/jgr.2025.28783.1428 | ||
نویسندگان | ||
Arezu Heydari1؛ Farshid Parvini* 2؛ Najaf Allahyari Fard* 3 | ||
1Department of Biotechnology, Faculty of Biotechnology, Semnan University, Semnan, Iran | ||
2Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran | ||
3Department of Systems Biotechnology, National Institute of Genetic Engineering & Biotechnology, Tehran, Iran | ||
تاریخ دریافت: 21 اردیبهشت 1404، تاریخ بازنگری: 30 اردیبهشت 1404، تاریخ پذیرش: 09 تیر 1404 | ||
چکیده | ||
Oxidative stress caused by reactive oxygen species such as H₂O₂ and HOCl plays a central role in inflammation-related diseases. This study aimed to identify key genes and biological pathways that enable probiotics to tolerate oxidative stress, using transcriptomic analysis of E. coli, L. plantarum, and L. reuteri under exposure to H₂O₂ and HOCl. We retrieved three related probiotics datasets from the Gene Expression Omnibus (GEO) database and the Sequence Read Archive (SRA) databases, including Lactobacillus plantarum (GSE99096), Lactobacillus reuteri (GSE127961), and Escherichia coli (GSE144068). We used the CLC Genomics Workbench software to identify the differentially expressed genes (DEGs) and then applied STRING 11.5 to identify the interactions between the DEGs. The CytoHubba was used to determine the hub genes in the interactive networks. We assessed the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of hub genes and evaluated the associated biological pathways. Among the identified hub genes, GuaA and Tig in E. coli were found to be uniquely involved in purine metabolism and ribosome assembly, highlighting novel targets for oxidative stress resistance. In addition, ComEA in L. plantarum and UvrB, Mfd and GrpE in L. reuteri represent diverse molecular strategies used by probiotics to cope with oxidative stress. These genes were associated with key pathways such as purine metabolism, mismatch repair, nucleotide excision repair and the pentose phosphate pathway. These critical genes and biological pathways can be used to improve the efficacy of probiotics in treating inflammatory diseases. | ||
کلیدواژهها | ||
Anti-inflammatory pathways؛ Oxidative stress؛ Probiotics؛ Systems Biology؛ Transcriptome Analysis | ||
مراجع | ||
Ajam-Hosseini, M., Akhoondi, F., Parvini, F., & Fahimi, H. (2024). Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Frontiers in Cellular and Infection Microbiology, 13, 1305510. https://doi.org/10.3389/fcimb.2023.1305510
Akhgarjand, C., Vahabi, Z., Shab-Bidar, S., Etesam, F., & Djafarian, K. (2022). Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer’s disease: A randomized, double-blind, and placebo-controlled study. Frontiers in Aging Neuroscience, 14, 1032494. https://doi.org/10.3389/fnagi.2022.1032494
Arntzen, M. Ø., Karlskås, I. L., Skaugen, M., Eijsink, V. G. H., & Mathiesen, G. (2015). Proteomic investigation of the response of Enterococcus faecalis V583 when cultivated in urine. PLoS One, 10(4). https://doi.org/10.1371/JOURNAL.PONE.0126694
Batty, D. P., & Wood, R. D. (2000). Damage recognition in nucleotide excision repair of DNA. Gene, 241(2), 193-204. https://doi.org/10.1016/S03781119(99)00489-8
Bhandari, V., & Houry, W. A. (2015). Substrate interaction networks of the Escherichia coli chaperones: trigger factor, DnaK and GroEL. Prokaryotic Systems Biology, 271-294. https://doi.org/10.1007/978-3-319-23603-2_15
Broadbent, J. R., Larsen, R. L., Deibel, V., & Steele, J. L. (2010). Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. Journal of Bacteriology, 192(9), 2445-2458. https://doi.org/10.1128/JB.01618-09
Calderini, E., Celebioglu, H. U., Villarroel, J., Jacobsen, S., Svensson, B., & Pessione, E. (2017). Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis. Proteomics, 17(5) 1600178. https://doi.org/10.1002/PMIC.201600178
Cappa, F., Cattivelli, D., & Cocconcelli, P. S. (2005). The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Research in Microbiology, 156(10), 1039-1047. https://doi.org/10.1016/j.resmic.2005.06.003
Chen, I., & Dubnau, D. (2004). DNA uptake during bacterial transformation. Nature Reviews Microbiology, 2(3), 241-249. https://doi:10.1038/nrmicro844
Chen, J., Zhao, T., Li, H., Xu, W., Maas, K., Singh, V., ... & Cong, X. S. (2024). Multi-omics analysis of gut microbiota and host transcriptomics reveal dysregulated immune response and metabolism in young adults with irritable bowel syndrome. International Journal of Molecular Sciences, 25(6), 3514. https://doi.org/10.3390/ijms25063514
Christodoulou, D., Link, H., Fuhrer, T., Kochanowski, K., Gerosa, L., & Sauer, U. (2018). Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Systems, 6(5), 569-578. https://doi.org/10.1016/j.cels.2018.04.009
Crowley, D. J., Boubriak, I., Berquist, B. R., Clark, M., Richard, E., Sullivan, L., ... & McCready, S. (2006). The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Systems, 2, 1-13. https://doi:10.1186/1746-1448-2-11
Deaconescu, A. M., Chambers, A. L., Smith, A. J., Nickels, B. E., Hochschild, A., Savery, N. J., & Darst, S. A. (2006). Structural basis for bacterial transcription-coupled DNA repair. Cell, 124(3), 507-520. https://doi: 10.1016/j.cell.2005.11.045
Dhawale, A., Bindal, G., Rath, D., & Rath, A. (2021). DNA repair pathways important for the survival of Escherichia coli to hydrogen peroxide mediated killing. Gene, 768, 145297. https://doi.org/10.1016/j.gene.2020.145297
Duwat, P., Cesselin, B., Sourice, S., & Gruss, A. (2000). Lactococcus lactis, a bacterial model for stress responses and survival. International Journal of Food Microbiology, 55(1-3), 83-86. https://doi.org/10.1016/S01681605(00)00179-3
Fei, Y. Y., Bhat, J. A., Gai, J. Y., & Zhao, T. J. (2020). Global transcriptome profiling of Enterobacter strain NRS-1 in response to hydrogen peroxide stress treatment. Applied Biochemistry and Biotechnology, 191, 1638-1652. https://doi.org/10.1007/S12010-020-03313-X
López de Felipe, F., De Las Rivas, B., & Muñoz, R. (2021). Molecular responses of lactobacilli to plant phenolic compounds: a comparative review of the mechanisms involved. Antioxidants, 11(1), 18. https://doi.org/10.3390/antiox11010018
Fernandez, A., Ogawa, J., Penaud, S., Boudebbouze, S., Ehrlich, D., Van De Guchte, M., & Maguin, E. (2008). Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus. Proteomics, 8(15), 3154-3163. https://doi.org/10.1002/PMIC.200700974
Gu, L., Liu, X., Wang, Y. Q., Zhou, Y. T., Zhu, H. W., Huang, J., ... & Zhou, H. (2020). Revelation of AbfR in regulation of mismatch repair and energy metabolism in S. epidermidis by integrated proteomic and metabolomic analysis. Journal of Proteomics, 226, 103900. https://doi.org/10.1016/j.jprot.2020.103900
Hanna, M. N., Ferguson, R. J., Li, Y. H., & Cvitkovitch, D. G. (2001). uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. Journal of Bacteriology, 183(20), 5964-5973. https://doi.org/10.1128/JB.183.20.5964-5973.2001
Hartke, A., Bouche, S., Laplace, J. M., Benachour, A., Boutibonnes, P., & Auffray, Y. (1995). UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis. Archives of Microbiology, 163, 329-336. https://doi.org/10.1007/BF00404205
Heunis, T., Deane, S., Smit, S., & Dicks, L. M. (2014). Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. Journal of Proteome Research, 13(9), 4028-4039. https://doi.org/10.1021/PR500353X
Heydari, A., Parvini, F., & Fard, N. A. (2022). Functional foods and antioxidant effects: emphasizing the role of probiotics. Current Topics in Functional Food. IntechOpen. https://doi.org/10.5772/INTECHOPEN.104322
Hong, D., Kim, H. K., Yang, W., Yoon, C., Kim, M., Yang, C. S., & Yoon, S. (2024). Integrative analysis of single-cell RNA-seq and gut microbiome metabarcoding data elucidates macrophage dysfunction in mice with DSS-induced ulcerative colitis. Communications Biology, 7(1), 731. https://doi.org/10.1186/s12967-025-06147-5
Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., ... & Ren, F. (2012). Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One, 7(12), e50777. https://doi.org/10.1371/JOURNAL.PONE.0050777
Johnsborg, O., & Håvarstein, L. S. (2009). Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiology Reviews, 33(3), 627-642. https://doi.org/10.1111/j.1574-6976.2009.00167.x
Kajfasz, J. K., & Quivey Jr, R. G. (2011). Responses of lactic acid bacteria to acid stress. Stress Responses of Lactic Acid Bacteria (pp. 23-53). Boston, Springer US.
Li, M., Wang, Q., Song, X., Guo, J., Wu, J., & Wu, R. (2019). iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance. Annals of Microbiology, 69(4), 377-394. https://doi.org/10.1007/S13213-018-1425-0
Lv, L. X., Yan, R., Shi, H. Y., Shi, D., Fang, D. Q., Jiang, H. Y., ... & Li, L. J. (2017). Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. Journal of Proteomics, 150, 216-229. https://doi.org/10.1016/j.jprot.2016.08.021
Martin, H. A., Porter, K. E., Vallin, C., Ermi, T., Contreras, N., Pedraza-Reyes, M., & Robleto, E. A. (2019). Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiology, 19, 1-14. https://doi.org/10.1186/S12866-019-1394-X
Mazzeo, M. F., Lippolis, R., Sorrentino, A., Liberti, S., Fragnito, F., & Siciliano, R. A. (2015). Lactobacillus acidophilus-rutin interplay investigated by proteomics. PLoS One, 10(11), e0142376. https://doi.org/10.1371/JOURNAL.PONE.0142376
Naji, P., Parvini, F., & Fard, M. A. F. (2025). Probiotics against oxidative stress. Current Topics in Functional Food, 213. https://doi.org/10.5772/intechopen.1005325
Pravda, J. (2020). Hydrogen peroxide and disease: towards a unified system of pathogenesis and therapeutics. Molecular Medicine, 26(1), 41. https://doi.org/10.1186/S10020-020-00165-3
Priya, S., Burns, M. B., Ward, T., Mars, R. A., Adamowicz, B., Lock, E. F., ... & Blekhman, R. (2022). Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nature Microbiology, 7(6), 780-795. https://doi.org/10.1038/s41564-022-01121-z
Pruchniak, M. P., Araźna, M., & Demkow, U. (2016). Biochemistry of oxidative stress. Advances in Clinical Science, 9-19. https://doi.org/10.1007/5584_2015_161
Rallu, F., Gruss, A., Ehrlich, S. D., & Maguin, E. (2000). Acid- and multistress-resistant mutants of Lactococcus lactis: Identification of intracellular stress signals. Molecular Microbiology, 35(3), 517-528. https://doi.org/10.1046/J.1365-2958.2000.01711 .X
Saio, T., Guan, X., Rossi, P., Economou, A., & Kalodimos, C. G. (2014). Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science, 344(6184), 1250494. https://doi. 10.1126/science.1250494
Truglio, J. J., Croteau, D. L., Van Houten, B., & Kisker, C. (2006). Prokaryotic nucleotide excision repair: The UvrABC system. Chemical Reviews, 106(2), 233-252. https://doi.org/10.1021/CR040471U
Van Bokhorst-van de Veen, H., Abee, T., Tempelaars, M., Bron, P. A., Kleerebezem, M., & Marco, M. L. (2011). Short- and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum. Applied and Environmental Microbiology, 77(15), 5247-5256. https://doi.org/10.1128/AEM.00515-11
Yamamoto, N., Kato, R., & Kuramitsu, S. (1996). Cloning, sequencing and expression of the uvrA gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. Gene, 171(1), 103-106. https://doi.org/10.1016/0378-1119(96)00052-2
Zhang, C., Gui, Y., Chen, X., Chen, D., Guan, C., Yin, B., ... & Gu, R. (2020). Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress. Applied Microbiology and Biotechnology, 104(6), 2611-2621. https://doi.org/10.1007/S00253-020-10407-3
Zhang, H., Zhang, C., Liu, H., Chen, Q., & Kong, B. (2021). Proteomic response strategies of Pediococcus pentosaceus R1 isolated from Harbin dry sausages to oxidative stress. Food Bioscience, 44, 101364. https://doi.org/10.1016/j.fbio.2021.101364
Zhang, M., Chen, J., Zhang, J., & Du, G. (2014). The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses. Journal of the Science of Food and Agriculture, 94(15), 3125-3133. https://doi.org/10.1002/JSFA.6662
Zhao, S., Zhang, Q., Hao, G., Liu, X., Zhao, J., Chen, Y., ... & Chen, W. (2014). The protective role of glycine betaine in Lactobacillus plantarum ST-III against salt stress. Food Control, 44, 208-213. https://doi.org/10.1016/j.foodcont.2014.04.002
Zheng, Y., Chen, X., Wang, J., Yin, H., Wang, L., & Wang, M. (2015). Expression of gene uvrA from Acetobacter pasteurianus and its tolerance to acetic acid in Escherichia coli. Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume II (pp. 163-169). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46318-5_18
Zolghadrpour, M. A., Jowshan, M. R., Seyedmahalleh, M. H., Imani, H., Karimpour, F., & Asghari, S. (2024). Consumption of a new developed synbiotic yogurt improves oxidative stress status in adults with metabolic syndrome: a randomized controlled clinical trial. Scientific Reports, 14(1), 20333. https://doi.org/10.1038/s41598-024-71264-y | ||
آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 16 |