- Sarbijan, M. J., Asadi, S., Hamze-Ziabari, S. M. Formulation of stress intensity factor under pure bending condition in multilayer pavements using numerical study and model tree approach. Fatigue & Fracture of Engineering Materials & Structures, 2024; 47: 2506-2520. doi:10.1111/ffe.14314.
- Kouzegaran, S., Oliaei, M. Numerical Analysis of the Cellular Geosynthetics Performance in Unpaved Roads and Influencing Factors. Transportation Infrastructure Geotechnology, 2025; 12: 108. doi:10.1007/s40515-024-00500-9.
- Aliha, M. R. M., Ziari, H., Sobhani Fard, E., Jebalbarezi Sarbijan, M. Heterogeneity effect on fracture parameters of a multilayer asphalt pavement structure containing a top-down crack and subjected to moving traffic loading. Fatigue & Fracture of Engineering Materials & Structures, 2021; 44: 1349-1371. doi:10.1111/ffe.13434.
- Aliha, M. R. M., Ziari, H., Mojaradi, B., Sarbijan, M. J. Heterogeneity effects on mixed-mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen. Fatigue & Fracture of Engineering Materials & Structures, 2020; 43: 586-604. doi:10.1111/ffe.13154.
- Teng, G., Zheng, C., Chen, X., Lan, X., Zhu, Y., Shan, C. Numerical fracture investigation of single-edge notched asphalt concrete beam based on random heterogeneous FEM model. Construction and Building Materials, 2021; 304: 124581. doi:10.1016/j.conbuildmat.2021.124581.
- Chen, J., Ouyang, X., Sun, X. Numerical Investigation of Asphalt Concrete Fracture Based on Heterogeneous Structure and Cohesive Zone Model. Applied Sciences, 2022; 12: doi:10.3390/app122111150.
- Shi, L., Wang, Y., Li, H., Liang, H., Lin, B., Wang, D. Recycled asphalt mixture's discrete element model-based composite structure and mesoscale-mechanical properties. Case Studies in Construction Materials, 2023; 18: e01987. doi:10.1016/j.cscm.2023.e01987.
- Zhang, L., Zhou, S., Xiong, Z., Mo, Z., Lu, Q., Hong, J. Research on the crack resistance of semi-flexible pavement mixture based on meso-heterogeneous model. Construction and Building Materials, 2024; 411: 134495. doi:10.1016/j.conbuildmat.2023.134495.
- Chen, A., Airey, G. D., Thom, N., Li, Y., Wan, L. Simulation of micro-crack initiation and propagation under repeated load in asphalt concrete using zero-thickness cohesive elements. Construction and Building Materials, 2022; 342: 127934. doi:10.1016/j.conbuildmat.2022.127934.
- Lu, D. X., Nguyen, N. H. T., Bui, H. H. A cohesive viscoelastic-elastoplastic-damage model for DEM and its applications to predict the rate- and time-dependent behaviour of asphalt concretes. International Journal of Plasticity, 2022; 157: 103391. doi:10.1016/j.ijplas.2022.103391.
- Wu, H., Li, Q., Song, W., Chen, X., Wada, S. A., Liao, H. Meso-mechanical characterization on thermal damage and low-temperature cracking of asphalt mixtures. Engineering Fracture Mechanics, 2025; 316: 110862. doi:10.1016/j.engfracmech.2025.110862.
- Xue, B., Pei, J., Zhou, B., Zhang, J., Li, R., Guo, F. Using random heterogeneous DEM model to simulate the SCB fracture behavior of asphalt concrete. Construction and Building Materials, 2020; 236: 117580. doi:10.1016/j.conbuildmat.2019.117580.
- Gao, L., Zhou, Y., Jiang, J., Yang, Y., Kong, H. Mix-mode fracture behavior in asphalt concrete: Asymmetric semi-circular bending testing and random aggregate generation-based modelling. Construction and Building Materials, 2024; 438: 137225. doi:10.1016/j.conbuildmat.2024.137225.
- Du, C., Sun, Y., Chen, J., Gong, H., Wei, X., Zhang, Z. Analysis of cohesive and adhesive damage initiations of asphalt pavement using a microstructure-based finite element model. Construction and Building Materials, 2020; 261: 119973. doi:10.1016/j.conbuildmat.2020.119973.
- Sun, Y., Du, C., Gong, H., Li, Y., Chen, J. Effect of temperature field on damage initiation in asphalt pavement: A microstructure-based multiscale finite element method. Mechanics of Materials, 2020; 144: 103367. doi:10.1016/j.mechmat.2020.103367.
- Kim, H., Buttlar, W. G. Multi-scale fracture modeling of asphalt composite structures. Composites Science and Technology, 2009; 69: 2716-2723. doi:10.1016/j.compscitech.2009.08.014.
- Kim, H., Wagoner Michael, P., Buttlar William, G. Simulation of Fracture Behavior in Asphalt Concrete Using a Heterogeneous Cohesive Zone Discrete Element Model. Journal of Materials in Civil Engineering, 2008; 20: 552-563. doi:10.1061/(ASCE)0899-1561(2008)20:8(552).
- Kim, H., Wagoner, M. P., Buttlar, W. G. Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures, 2009; 42: 677-689. doi:10.1617/s11527-008-9412-8.
- Li, Y., Metcalf John, B. Two-Step Approach to Prediction of Asphalt Concrete Modulus from Two-Phase Micromechanical Models. Journal of Materials in Civil Engineering, 2005; 17: 407-415. doi:10.1061/(ASCE)0899-1561(2005)17:4(407).
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO TP105-13: Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB). Washington, D.C. (US): AASHTO;
- Mull, M. A., Stuart, K., Yehia, A. Fracture resistance characterization of chemically modified crumb rubber asphalt pavement. Journal of Materials Science, 2002; 37: 557-566. doi:10.1023/A:1013721708572.
- Eissa, E. A., Kazi, A. Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988; 25: 479-482. doi:10.1016/0148-9062(88)90987-4.
- Alanazi, N., Kassem, E., Grasley, Z., Bayomy, F. Evaluation of viscoelastic Poisson’s ratio of asphalt mixtures. International Journal of Pavement Engineering, 2019; 20: 1231-1238. doi:10.1080/10298436.2017.1398550.
- Gercek, H. Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 2007; 44: 1-13. doi:10.1016/j.ijrmms.2006.04.011.
- Williams, M. L. On the Stress Distribution at the Base of a Stationary Crack. Journal of Applied Mechanics, 2021; 24: 109-114. doi:10.1115/1.4011454.
- Anderson, T. L. Fracture Mechanics: Fundamentals and applications. 4th ed. Boca Raton (FL): CRC Press; 2017. doi:10.1201/9781315370293.
- Lawn, B. Fracture of Brittle Solids. 2nd ed. Cambridge (UK): Cambridge University Press; 1993. doi:10.1017/CBO9780511623127.
- Broek, D. Elementary engineering fracture mechanics. 1st ed. Berlin (DE): Springer Science & Business Media; 1982. doi:10.1007/978-94-009-4333-9.
- Christensen, R. M. Mechanics of Composite Materials. 1st ed. Mineola (NY): Dover Publications; 2005.
|