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 Abstract: 

The Internet of Things (IoT) has a vital role in the lives of people today. However, as the use of 

IoT devices becomes more widespread, there is a growing concern about security threats, like 

botnet attacks. Therefore, the use of inclusive solutions is required.   Intrusion detection systems 

(IDS) can detect and mitigate attacks on IoT devices by analyzing network traffic and device 

behavior. This paper proposes an IDS that uses Deep Learning (DL) techniques. It is based on an 

ensemble learning model that employs diversity and F1-score as a performance metric to select 

the best transfer learning models. It also proposes 20 individual and hybrid DL models, including 

Convolution Neural Networks (CNN), Recurrent Neural Networks (RNNs), and Deep Neural 

Networks (DNN), to detect and classify regular and botnet attack classes. The proposed IDS 

engages a feature engineering method to reduce unnecessary computation. The Bot-IoT dataset 

used in this paper contained DDoS, DoS, Reconnaissance, and theft attack labels. The proposed 

IDS was compared with existing methods using the Bot-IoT dataset. Experimental results 

disclose a high performance of the proposed model for detecting and classifying various attack 

and regular labels. 
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1. Introduction 

The Internet of Things (IoT) is a complex and intelligent 

system for connecting and communicating data from 

numerous devices, without human involvement, to the 

Internet. This technology, as the fastest growing field, is 

expected to increase from 16 billion connected devices in 

2015 to 30 billion in 2024 [1]. These devices can be used in 

medical and healthcare services, smart cities, smart homes, 

smart agriculture, and industrial applications [2]. IoT-based 

products and services are deployed and implemented using 

various technologies, such as IoT application software and 

cloud computing [3]. The benefits of IoT, which primarily 

encompass heightened comfort and convenience, are 

frequently offset by security risks. This inherent tradeoff 

poses a significant challenge in the development and 

deployment of IoT devices [4]. Due to the large-scale 

nature, component deployment abundance, limited power, 

and computing resources, most IoT devices are vulnerable 

to security and privacy threats. These vulnerabilities 

significantly increase with complex cyberattacks, such as 

Botnets. Attackers could use compromised IoT devices 

along with an IoT botnet, which induces more complex and 

large-scale attacks. The COVID-19 pandemic has 

accelerated the adoption of IoT devices. As people spend 

more time at home, the number of connected smart devices 

is increasing.  Therefore, the number of malware attacks 

targeting devices increased from 32.7 million in 2018 to 2.9 

billion in 2019. Likewise, the number of infected IoT 

devices increased from 16.17% in 2019 to 32.72% in 2020, 

as shown in Table 1 [5, 6]. According to Statista's report on 

“IoT attacks as a share of total worldwide malware activity” 

published in February 2022, the share of total worldwide 

malware activity attributed to IoT devices increased from 

1% in 2018 to 19% in Q4 2020 [7]. Since the COVID-19 

pandemic accelerated the growth of IoT devices, the 

importance of improved security measures has been 

highlighted to protect them from malware attacks. This 

research proposes a multiclass Network-based Intrusion 

Detection System (NIDS) to detect Botnet attacks in a 

realistic IoT network. A network traffic intrusion is defined 

as various types of attacks, such as theft, Reconnaissance, 

DDoS, and DoS in IoT. The proposed framework relies on 

https://creativecommons.org/licenses/by/4.0/deed.en
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the transfer and ensemble learning methods. The transfer 

learning models include 20 individual and hybrid DL 

models and investigate attack behavior patterns using 

temporal, spatial, and high-level learning features. Transfer 

learning models utilize feature engineering to decrease 

training time and memory cost by clearing (i) redundant and 

(ii) device-based features [8]. The ensemble learning model 

uses multiple transfer learning models to obtain the best 

prediction and compensate for the error rate. The ensemble 

learning model utilizes (i) the diversity of models to 

discover different attack patterns in network traffic [9, 10] 

(ii) the top-best transfer learning models according to their 

predictive performance [9, 10], and (iii) a grid search 

algorithm to compute the best weights based on the 

accuracy of the selected models. The proposed model was 

trained and tested on the Bot-IoT dataset [11], which has 

been employed in many studies [12-16].  

Bot-IoT is a reliable, up-to-date, and public botnet dataset 

containing realistic network traffic from five commercial 

IoT devices: motion-activated lights, a weather station, a 

smart thermostat, a smart fridge, and a remotely activated 

garage door in a smart home running four different attack 

scenarios: DDoS, DoS, Reconnaissance, and Theft. This 

paper is organized as follows. In Section 2, the state-of-the-

art DL models proposed for IDS in an IoT network 

environment were reviewed. Section 3 provides an 

overview of the Deep Learning process. The Proposed 

Framework is presented in Section 4. In Section 5, the 

experimental setup and comparisons are presented. Lastly, 

Section 6 concludes the study and offers ideas for future 

work. 

 

2 Related Works and Contributions 

Most datasets illustrate that the current network traffic 

attacks are private, and few reliable, real-world IoT network 

traffic datasets are available [17]. The Bot-IoT dataset is an 

excellent test bed for DL-based IDS models because it 

provides a reliable, up-to-date, and realistic IoT network 

dataset [18]. Table 2 compares various IDS-based studies 

conducted on the Bot-IoT dataset in terms of the methods, 

challenges, and advantages. Ferrag et al.[19] investigated a 

review of DL-based approaches for IDS, datasets, and a 

comparative study. They described 35 well-known cyber 

datasets, including IoT traffic-based datasets, and assessed 

seven DL models, including DNN, RNN, CNN, Deep Belief 

Networks (DBN), and other DL models on two realistic 

datasets, including the Bot-IoT dataset. Ge et al. [20] 

developed a feed-forward neural network (FNN) for 

multiclass and binary classification on the Bot-IoT dataset 

and compared accuracy and runtime with an SVM model. 

They applied the Adam optimizer and sparse categorical 

cross-entropy as a loss function, was used. L1, L2, and 

dropout were used as regulators to avoid overfitting. In 

another study, Ge et al. [21] improved their FNN model by 

tuning its  hyperparameters. Ferrag and Maglaras [22] 

Proposed an energy framework based on DL and 

Blockchain-based for smart grids, called DeepCoin. The 

DL-based scheme contains an Anomaly Detection System 

(ADS) that employs an RNN with Backpropagation 

Through Time (BPTT). It was evaluated on different 

datasets, including the Bot-IoT dataset, and the results were 

compared with those of SVM, Random Forest (RF), and 

Naive Bayes (NB) algorithms. To classify intrusions in the 

context of an IDS on the Bot-IoT dataset, Aldhaheri et al. 

[23] developed a hybrid model integrating Self-normalizing 

Neural Network (SNN) and the Dendritic Cell Algorithm 

(DCA) in order to select the features, where the information 

gain (IG) was used. Both the full features and the 10 best 

features subsets were used to train the model. They then 

contrasted the outcomes using Machine Learning (ML) 

algorithms. Alkadi et al. [24] mployed an IDS using a 

Bidirectional Long Short-Term Memory (BiLSTM) deep 

learning algorithm and evaluated it on two datasets, so that 

one of them includes the Bot-IoT dataset. NG BA et al. [25] 

Presented a Vector Convolutional Deep Learning (VCDL) 

approach, and Popoola et al. [26] developed a model that 

integrates a Deep Recurrent Neural Network (DRNN) and 

an LSTM Autoencoder (LAE) using the Synthetic Minority 

Oversampling Technique (SMOTE) on the Bot-IoT 

database. Ullah et al.[27] chose the CNN model based on its 

computational efficiency and due to its automatic key 

features classification capacity in the input data. They 

evaluated multiclass intrusions on four datasets, including 

the Bot-IoT dataset, and classified them using 1D, 2D, and 

3D CNN models. Research study of Khraisat et al. [28] 

considered a hybrid method using a C5 decision tree 

classifier and a one-class SVM and employed an ensemble 

technique to improve prediction accuracy. They applied the 

IG method for feature selection to the Bot-IoT dataset. The 

results suggest that the detection accuracy can be improved 

by using the boosting approach for ensemble learning. 

Derhab et al.[29] developed an IDS for IoT networks that 

implements Temporal CNN (TCNN), which combines CNN 

with causal convolution and assesses it on the Bot-IoT 

dataset. They argued that the learning model performance 

will fail to spot minority classes on the Bot-IoT dataset as 

an unbalanced dataset. To solve this issue, they used the 

Synthetic Minority Oversampling Technique-Nominal 

Continuous (SMOTE-NC) to handle the unbalanced dataset 

and increase the minority classes to 100,000 samples each 

in the training subset.  They also used data type conversion, 

label encoding, and unnecessary feature removal to reduce 

the feature space. They then evaluated the performance of  

 

Table 1. IoT share of Malware attacks and infected devices. 

Year 
Number of Malware 

attacks [5] 

Growth of infected IoT 

devices [6] 

2017 10.3 million - 

2018 32.7 million - 

2019 2.9 billion 16.17% 

2020 - 32.72% 
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Table 2. A comparison of intrusion detection systems based studies on the Bot-IoT dataset. 

Authors 

& Year 
Methods Challenges Advantages Dataset 

Ferrag et al. 
[19], 

2020 

Review of DL approaches for IDS, the datasets, 

and a comparative study with seven DL models, 
including DNN, CNN, and RNN for binary and 

multiclass classification on two real traffic 

datasets. 

Precision, F1-score, and recall were not 

used as performance metrics. 

Deep discriminative models were more 
efficient than generative/unsupervised 

methods.  

CSECIC-
DS2018 and 

Bot-IoT 

Ge et al. [20], 

2020 

FNN model for binary and multiclass 

classification was developed on 2% of the data 

extracted by the authors, and the results were 
compared with an SVM model. 

Binary and multiclass classifiers have been 

confused with DoS over UDP and 

subcategories of attacks under the same 
category, respectively. 

The DL model was more time-efficient 

than the ML model. 
Bot-IoT 

Ge et al. [21], 

2021 

Their earlier study [20] was improved to produce 

a more effective model. 

RNN and its improved variants are 

preferable for processing time series data. 

Enhanced model tweaking and the addition 

of a port-embedded layer. 
Bot-IoT 

Ferrag and 

Maglaras [22], 

2019 

It utilizes a Blockchain-based DL energy 

framework in Smart Grids. It uses an RNN with 
BPTT as an IDS. Results were contrasted with 

NB, RF, and SVM models. 

They did not mention how they avoided 
overfitting. 

Smart use of proposed NIDS for network 

attacks and fraudulent energy transactions. 
The DL model outperformed ML 

algorithms in terms of detection rate. 

CICIDS2017

, Power 
System, and 

Bot-IoT 

Aldhaheri et al. 

[23], 

2020 

A hybrid model integrating DCA and SNN was 
proposed, evaluated, and compared with ML 

algorithms such as MLP, SVM, and NB using 

both the 10 Best and All features. Information 
Gain (IG) was used for feature selection. 

Compared to MLP, the proposed method 
slightly improved time and complexity.  

The proposed IG-selected features 
performed well with imbalanced classes. 

Bot-IoT 

Alkadi et al. 

[24], 

2020 

The authors proposed a deep Blockchain 

framework that provides secure and distributed 
intrusion detection using privacy-based 

Blockchain using smart contracts in IoT networks. 

BiLSTM was used as IDS, and the results were 
compared with ML classifiers such as SVM, RF, 

and NB. 

Precision, F1-score and recall were not 

used as performance metrics. 

Using RNN improved models to process 
sequenced lists of crypto-records as a 

series of time steps. The proposed BiLSTM 

model achieved a better false alarm rate 
compared to ML classifiers. 

Bot-IoT and  

UNSW-

NB15 

NG BA et al. 

[25], 

2020 

The authors proposed a VCDL model consisting 

of two CNN layers. Training of IoT traffic was 
distributed, and computations were performed in 

Fog Nodes. It was performed for both binary and 

multiclass classification on all features and the 10 
best feature subsets. Then they compared the 

results with MLP, RNN, and LSTM models. 

The compared models needed more 
optimization. 

Less time to detect anomalies in a 

distributed fog environment than in a 

centralized architecture. 

Bot-IoT 

Popoola et al. 

[26], 
2021 

The authors proposed the SMOTE-DRNN model, 
which uses a deep RNN and LAE model with 

SMOTE as an oversampling method, and 

compared it with other ML and DL models. 

The main data set was manipulated using 

the oversampling method. 

Using the LAE method for feature 

reduction resulted in less memory for data 
storage. 

Bot-IoT 

Ullah et al. 
[27], 

2021 

The authors proposed 1D, 2D, and 3D CNN 

models for binary and multiclass classification on 
four IoT network traffic datasets. They then 

compared the results with existing 

implementations of the DL models. 

The EarlyStopping module could be used 

to avoid overtraining. As the complexity of 

the CNN models increases, the efficiency 
also an decreases. 

Combine four datasets and create two new 

datasets with increased number of attacks. 

The proposed model performed well on 
these new datasets. 

MQTT-IoT-
IDS2020, 

IoT-23, BoT-

IoT, IoT 
Network 

Intrusion 

Khraisat et al. 

[28], 
2019 

The authors proposed an ensemble of one-class 
SVM and C5 classifiers with an IG-based feature 

selection method and compared the results with 

other ML and DL models. 

Precision, F1-score, and recall were not 

used as performance metrics. 

The ensemble learning model successfully 
improved intrusion detection and showed 

better accuracy compared to the other 

models. 

Bot-IoT 

Derhab et al. 

[29], 
2020 

The authors proposed a TCNN model using 

SMOTE-NC as an oversampling method and 
compared the result with the ML and DL models. 

The main data set was manipulated using 

the oversampling method. 

The proposed model offered a good 

compromise between effectiveness and 
efficiency. 

Bot-IoT 
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their TCNN model and compared it with two legacy ML 

algorithms and two DL models, namely LSTM and CNN. 

In our study, we found that some researchers used 

oversampling methods instead of the original data, whereas 

others utilized accuracy as the only performance metric in 

the imbalanced dataset. Considering this context, the main 

contributions of this study are as follows: 

• An intrusion detection system is proposed in an 

IoT network environment based on an ensemble 

learning model that employs (i) diversity and (ii) 

F1-Score as the best performance metric in the 

imbalanced dataset to select the best transfer 

learning models. 

• Twenty individual and hybrid DL models are 

proposed as transfer learning based on different (i) 

types, (ii) layers, and (iii) neurons to detect and 

classify normal and four botnet attack classes. 

• The proposed method achieves better performance 

than other methods by proposing a feature 

engineering procedure that removes redundant 

features to reduce unnecessary complex 

computations. 

• A detailed comparison of the proposed IDS with 

the best results in the literature using the Bot-IoT 

dataset. 

 

3 METHODS & MATERIALS 

DL is a sophisticated form of ML based on artificial neural 

networks (ANN), which resemble biological brain cells. It 

is a feed-forward neural network in which all layers are 

connected, and each neuron is connected to another layer, 

with no connection within a layer. DL algorithms are used 

in a variety of research areas and are renowned for their 

ability to identify valuable features in unprocessed data 

through subsequent nonlinear transformations [30]. It is 

possible to improve the accuracy of classification and 

prediction tasks using DL algorithms. IoT devices produce 

substantial amounts of data, making DL techniques a viable 

IDS solution. In this section, the DL techniques used in this 

study are discussed: 

 

3.1 DNN 

Deep neural networks (DNNs) consist of neurons ordered in 

a series of layers, where neurons use the neuron activations 

of the previous layer as input and utilize them to conduct a 

simple computation. Certain values are assigned to the 

neurons in the input layer and propagated to the neurons in 

the middle layer of the network. The weighted sums from 

one or more hidden layers are ultimately propagated to the 

output layer to produce a prediction or classification [31]. 

An example of a DNN architecture is shown in Figure 1. 

Three layers exist: input layer, hidden layer, and output 

layer. Each layer can contain one or more neurons. As the 

neurons in each layer are fully connected, data are 

transferred forward from one layer to the next. 

 

Let 𝑋 = {𝑥1,𝑥1, … ,𝑥𝑚} be the input vector, 𝑛 be the size of 

the output vector 𝑂(𝑥), and 𝑂: ℝ𝑚 × ℝ𝑛. Each hidden layer 

𝐻𝑖  is mathematically calculated as follows: 

𝐻𝑖(𝑥) = 𝐴(𝑤𝑖
𝑇𝑥 + 𝑏𝑖)                                             (1) 

Where, 𝑏𝑖 and 𝑤𝑖  represent the bias and weight of the hidden 

layer 𝑖, and 𝐴 is the nonlinear activation function. Softmax 

is a nonlinear activation function for issues involving 

multiclass classification [32, 33]:  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                                          (2) 

Where, x is the input. 

 

3.1 CNN 

Convolutional Neural Networks (CNNs) are a type of DNN 

that can be trained to recognize patterns and anomalies in 

network traffic because of their ability to extract local 

features and spatial information using multiple 

convolutional kernels. This enables the CNN to learn to 

detect suspicious behaviors, such as malware or other types 

of attacks. Researchers have applied CNN to time series 

because of their excellent spatial feature extraction [34]. 

Because the convolutional layer of the CNN convolves the 

data parameters with a series of equally sized filters, and its 

pooling layer uses maximum or average pooling to 

minimize the size of subsequent layers, which is similar to 

downsampling [35].   

 

3.2 RNNs 

Recurrent Neural Networks (RNNs) are a type of DNN that 

is suitable for processing sequential data, such as analyzing 

network traffic, which often occurs in a time-series fashion. 

The RNN architecture resembles a feedforward network 

(FFN) with an additional internal feedback loop that 

generates a cyclic graph. These loops serve as short-term 

memories for storing and retrieving historical data over time 

and performing temporal tasks [36]. LSTM and GRU are 

 

Figure 1. A Feedforward DNN Architecture . 
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both improved types of RNNs that attempt to remove the 

limitations of traditional RNNs, which have difficulty 

learning long-term dependencies in sequential data [37]. 

LSTM architectures allow for the storage of long-term 

contextual information and prevent the vanishing gradient 

difficulty. GRU and LSTM architectures are both similar, 

but the GRU is easier to compute and implement [38-40]. 

Since IDSs are based on detecting unusual patterns and 

trends in network traffic, DNN derivatives have been used 

for anomaly detection. Given that RNNs are appropriate for 

time-series data and that CNNs excel at abstract feature 

extraction and identification, hybrid models of CNNs and 

enhanced RNNs were employed. 

 

3.3 Hybrid Models 

This technique takes advantage of the CNN and RNN 

methods. A CNN can capture patterns in network traffic data 

as time series data through convolutional layers and 

construct a feature map. To capture long-term dependencies, 

the feature map is passed to improved RNN models such as 

LSTM or GRU [41].  

 

3.4 Ensemble Learning 

Another machine learning technique, named Ensemble 

Learning (EL), consists of multiple classifier models and 

uses them simultaneously to make decisions to increase the 

performance in estimating data output and achieve better 

results. The three major ensemble algorithms include 

bagging, boosting, and stacking.  

 

4 Proposed Framework 

In this section, we present several algorithms and explain 

the DL model development process, as illustrated in Figure 

2. The goal is to find an optimal method for detecting 

intrusions in IoT networks, which involves data 

preprocessing, feature engineering, and model design. To 

achieve this, we chose the Bot-IoT dataset as a standard 

testbed to analyze the performance of our approach.  

 

4.1 Bot-IoT Dataset  

Koroniotis et.al [11] designed and simulated a realistic IoT 

testbed environment in the Research Cyber Range Lab at 

UNSW Canberra and published it as Bot-IoT dataset in 

2019. After simulating IoT devices on multiple network 

platforms, data features were extracted through forensic 

analysis and statistical and ML models to determine 

abnormal and normal instances. They then extracted a 

subset containing 5% of the original dataset with 

approximately 3,700,000 records, with All and 10 Best 

features using the joint entropy and correlation coefficient 

to ease the handling of the dataset. All features and 10 Best 

features are listed in Table 3. The original Bot-IoT dataset 

includes approximately 72,000,000 records represented by 

43 features, with each record labeled as attack or normal. 

These four types of attacks are Information Theft, Denial of 

Service (DoS), Distributed Denial of Service (DDoS), and 

Reconnaissance. The taxonomy and numbers of attack and 

benign samples used in this study are summarized in Table 

4. In this study, the introduced extracted subset with All and 

10 Best features are employed for training, validating, and 

testing models. 

Dataset

Integrating CSV Files

Removing Incomplete Records
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Feature Normalization
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Figure 2. The Proposed Framework Architecture. 
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4.2 Data Preprocessing 

It is necessary to transform the raw and voluminous network 

traffic data in the Bot-IoT dataset into a format that can be 

processed easily and effectively. Data preprocessing 

includes the following steps: 

(a) Integrating CSV Files: The dataset is present in 

several Comma-Separated Values (CSVs) and is 

obtained from Pcap files, which belong to the 

virtualized setup, containing both normal and attack 

traffic. Therefore, it is necessary to integrate the 

separated values .csv data files into a single data-

frame file. 

(b) Removing Incomplete Records: Incomplete data 

leads to inconsistencies in the data and incorrect 

calculations.  

(c) Feature Normalization: To enhance the distribution 

of the model and to preserve the original distribution 

of network traffic features, the feature elements were 

scaled to a range of [0,1] using the min-max 

transformation method: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                          (3) 

Where 𝑥,  𝑥𝑚𝑖𝑛 , and 𝑥𝑚𝑎𝑥  are a network traffic 

feature vector and its minimum and maximum 

values, respectively.  

(d) Label Encoding: The labels in the dataset, containing 

Reconnaissance, Dos, DDoS, Theft, and Normal, 

should be converted to a numeric form so that DL 

algorithms perform better in performance metrics. 

(e) Data Splitting: In the final step, all network traffic 

data should be divided indiscriminately into training, 

testing, and validation subsets. The validation subset 

was used for cross-validation and to avoid overfitting 

and underfitting during the training process. 

 

4.3 DL Prediction Models 

4.3.1 Transfer Learning 

This is used as a starting point for ensemble learning in 

some primary models. It accelerates training and improves 

learning performance. Transfer learning aims to develop 

models that perform the best classification of the test data. 

For this purpose, training data were used to train the models, 

and using validation data resulted in their performance 

improvement.    

Transfer learning models contain 14 pre-trained individual 

and 6 hybrid models. These models consist of different 

layers, neurons in each layer, and hyperparameters. Table 5 

presents the specifications of each model. 

(a) Individual models: These models were selected so 

that they contained the top basic deep learning 

models in different contextual patterns. They 

include DNNs as basic models, CNNs as spatial 

feature extraction models, RNNs, and GRUs for 

time-series data. 

(b) Hybrid models: These models are comprised of 

CNN and RNN derivations. Three CNN+LSTM 

and three CNN+GRU models were included. The 

CNN model excels in learning features from IoT 

raw data, and the RNN model handles sequential 

IoT data efficiently [42, 43].  

 

4.3.2  Ensemble Learning 

In the first step, the best transfer learning models based on 

the best predictive performance and diversity [9] were 

chosen. Next, the Weighted Averaging technique was 

employed as a combination method in ensemble learning. 

The grid Search optimization algorithm was used for 

finding the weights  0,0.5iw   in steps of 0.1, 

considering the best accuracy value. In the last step, the 

weighted values are combined as follows:  

1
( ) ( )

T

i ii
H x w h x

=
=                                           (4) 

Where ( )ih x  is the output value of the transfer learning 

model; ( )ih for instance x , T is the number of selected 

transfer learning models 1, , Th h , and the maximum 

value output ( )( )H x is selected for the final prediction 

( )P .  

( )1 ( )T

i iP MAX H x==                                   (5) 

Ensemble learning prediction is described in Algorithm 1. 

Table 3. The Features of Bot-IoT Dataset 

Features Feature Names 

Best 10 
state_number, seq, drate, srate, N_IN_Conn_P_SrcIP, min, 

mean, N_IN_Conn_P_DstIP, , max, stddev 

All 

TnBpDstIP, max, Pkts_P_State_P_Protocol_P_SrcIP, saddr, 

rate, proto_number, N_IN_Conn_P_SrcIP, dbytes, dur, 

stddev, pktSeqID, bytes, stddev, spkts, AR_P_Proto_P_Sport, 

seq, srate, min, Pkts_P_State_P_Protocol_P_DestIP, max 

AR_P_Proto_P_SrcIp, TnBPSrcIp, dport, psize_mean, dpkts 

AR_P_Proto_P_DstIP, state_number, sum, flgs, TnP_PDstIP, 

Pkts_P_State_P_Protocol_P_DstIP, mmax, proto_number 

N_IN_Conn_P_DstIP, flgs_number, stddev, mean, psize, 

TnP_perProto, Pkts_P_State_P_Protocol_P_SrcIP, pcount, 

spkts, pvelocity, stddev, daddr, sbytes, rate, max, ptime, 

TnP_PSrcIP Pkts_P_State_P_Protocol_P_DestIP. 

 

 Table 4. Bot-IoT Dataset Attack Taxonomy and Data 

Distribution. 

IoT Traffic  Samples 

Class Subclass   Training Testing 

DDoS 

TCP 

  1540576 386048 HTTP 

UDP 

DoS 

TCP 

  1320794 329466 HTTP 

UDP 

Reconnaissance 
OS Fingerprint 

  73016 18066 
Service Scan 

Normal Normal   367 110 

Theft 
Data Exfiltration 

  64 15 
Keylogging 
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5 RESULTS 

The details of the evaluation metrics, experimental setup, 

and evaluation parameters are provided in this section.  

5.1 Performance Metrics 

The confusion matrix, which displays the convergence 

between the detected and real values, is a crucial tool for 

assessing the effectiveness and performance of 

classification tasks. Each row shows the actual samples and 

each column shows the predicted samples, of a class, which 

is presented in Table 6. The confusion matrix and the 

following metrics were used to evaluate and compare the 

performance of the proposed transfer models: 

(a) Accuracy= (TP+TN)/(TP+TN+FP+FN)  

(b) Precision= TP/(TP+FP) 

(c) Recall= TP/(TP+FN) 

(d) F1-Score=2× (Precision×Recall)/(Precision 

+Recall) 

Where TP, TN, FP, and FN denote the true positives, true 

negatives, false positives, and false negatives, respectively. 

In the first step, to identify the best models, the accuracy 

metric was applied. Thereafter, the precision, recall, and F1-

score were used as effective metrics to select the optimal 

model.   

 

5.2 Experimental Setup 

To evaluate and implement the proposed models on the Bot-

IoT dataset, experiments were conducted on an Asus laptop 

running Windows 10 with 16 GB of RAM, an Intel Core I7-

10510U processor, and an NVIDIA GeForce GTX 1650 

Max-Q as an integrated GPU. Model training, validation, 

and testing were implemented using MiniConda, Keras API, 

and TensorFlow frameworks developed in the Python 

programming language (version 3.9). 

5.3 Experimental Parameters 

Figure 3 depicts the process of training, validating, and 

optimizing the transfer models: 

(i) During the training process, the decrease in the loss 

function on the validation set was tracked using the 

early stopping feature of the Keras API. If there was 

no improvement after several epochs, the training 

was halted. This approach helps in avoiding 

overfitting and prevents unnecessary consumption 

of computational resources. It is important to note 

that the overall training duration, the number of 

iterations, and the model's accuracy can vary due to 

the inherent randomness of the training process. 

(ii) The batch size was set to 128 for the DNN, CNN, 

and hybrid models; 256 for the GRU models; and 

512 for the RNN models. By reducing the batch 

size, the model became more accurate as the 

training time increased. 

(iii) The dropout is set to 0.10 for DNN, GRU, and 

hybrid models, 0.20 for RNN models, and 0.50 for 

CNN models.  

(iv) The ReLU activator function was used in the Dense, 

Conv1D, and MaxPool1D layers; the Tanh activator 

function is used in the GRU, SimpleRNN, and 

LSTM layers; and the Softmax activator function is 

used in the final layer for multi-class classification. 

(v) Weights and biases were randomly selected. 

Table 5. The proposed individual and hybrid models 

 Model Name Hidden Layers Neurons in Each Layer 

1 DNN(1) 1 layer 1024 

2 DNN(2) 2 layers 1024-768 

3 DNN(3) 3 layers 1024-768-512 

4 DNN(4) 4 layers 1024-768-512-256 

5 DNN(5) 5 layers 1024-768-512-256-128 

6 CNN(1) 1 layer 64 

7 CNN(2) 2 layers 64-64 

8 CNN(3) 4 layers 64-64-128-128 

9 RNN(1) 4 layers (30)-60-80-90 

10 RNN(2) 4 layers (90)-60-80-90 

11 RNN(3) 4 layers (90)-512-256-128 

12 GRU(1) 4 layers (30)-60-80-90 

13 GRU(2) 4 layers (90)-60-80-90 

14 GRU(3) 4 layers (90)-512-256-128 

15 CNN+LSTM(1) 1 layer 64-(70)-128 

16 CNN+LSTM(2) 2 layers 64-64-(70)-128 

17 CNN+LSTM(3) 3 layers 64-64-128-128-(70) 

18 CNN+GRU(1) 1 layer 64-(70)-128 

19 CNN+GRU(2) 2 layers 64-64-(70)-128 

20 CNN+GRU(3) 4 layers 64-64-128-128-(70)-128 

 

 

Table 6. Confusion Matrix. 

 Predicted Attack Predicted Normal 

Actual Attack True Positive (TP) False Negative 

Actual Normal False Positive True Negative 
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(vi) A Sparse Categorical Cross-entropy was used as the 

loss function. 

(vii) An Adam optimizer, with a learning rate of 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Results of 20 proposed models trained and tested on the Bot-IoT dataset. 

Model Name 

Best Epoch 
Time  

(sec) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
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F
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t.
 

A
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F
e
a

t.
 

1
0
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e
st

 

F
e
a
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DNN(1) 30 13 3095 2115 99.95 97.363 95.3 90 98.4 96.9 96.7 92.3 

DNN(2) 14 23 3332 3686 99.96 97.971 99.8 95 97.6 95.4 98.6 94.9 

DNN(3) 21 16 5570 2973 99.96 97.865 96.1 95.7 98.9 91.5 97.3 93.3 

DNN(4) 17 22 5272 4202 99.9 97.879 99.9 93.5 87.1 83.7 91.5 84.3 

DNN(5) 10 25 3812 5057 99.93 97.821 86 78.8 89.8 62.4 86.8 64.6 

CNN(1) 23 13 4480 2302 99.86 97.11 99.9 75.9 83.3 66 88.1 68.7 

CNN(2) 10 16 2957 2956 99.98 98.06 99.3 96.5 98.3 81.9 98.8 87.2 

CNN(3) 10 18 3962 4197 99.98 98.18 99.6 94.1 93.3 94.9 96.1 94.5 

RNN(1) 12 15 2377 2738 97.69 96.79 76.6 74.7 71.8 59.5 73.6 60.2 

RNN(2) 11 23 2299 2247 97.93 97.08 78.8 73.1 76 64.7 77.2 66.8 

RNN(3) 7 12 1940 2118 97.8 97.01 90.1 74.1 82.4 67.1 84.5 69.4 

GRU(1) 29 35 4096 3386 99.83 98.3 95.1 92.6 91 94.8 92.9 93.6 

GRU(2) 16 35 2534 3834 99.89 98.07 97.5 91.4 88.5 88.1 92.3 89.3 

GRU(3) 24 16 3711 1801 99.97 98.04 94.6 95 97.4 91.3 95.8 93 

CNN+LSTM(1) 19 21 7105 5407 99.98 98.21 99.6 98.6 86.1 96.2 89.5 97.4 

CNN+LSTM(2) 10 18 5805 5272 99.98 98.26 98.2 96.8 99.3 94.8 98.7 95.7 

CNN+LSTM(3) 11 9 5817 3670 99.97 98 98.2 97.3 99.1 81.2 98.6 85.3 

CNN+GRU(1) 24 20 6277 4589 99.74 98.14 99.9 97 98.6 93.7 99.2 95.2 

CNN+GRU(2) 8 8 2213 1889 99.6 97.92 99.3 89.8 99.1 95.1 99.2 91.3 

CNN+GRU(3) 8 14 2687 3711 99.97 98.12 99.8 95.5 90.3 89.1 94 92 

 

Table 8. Weights and Performance Metrics of Transfer and Ensemble Learning Models. 

Model 

Weights Accuracy Precision Recall F1-Score 

A
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1
0
 B
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t 

F
ea

t.
 

DNN 0.20 0.10 99.950 97.925 97.92 95.19 98.09 97.35 98.00 96.05 

CNN+GRU 0.30 0.40 99.955 98.187 98.28 95.80 98.10 95.10 98.19 95.28 

CNN+LSTM 0.20 0.50 99.973 98.330 96.09 97.48 98.71 95.53 97.24 96.47 

Proposed - - 99.985 99.331 99.28 96.80 99.80 96.83 99.54 96.76 
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Data Splitting 

The total network traffic data was divided indiscriminately 

into training (80%) and test (20%) sets. For cross-validation 

and to avoid overfitting or underfitting in the training 

process, 15% of the test set was used as the validation set. 

Proposed Model

Hidden Layers

Output Layer

Softmax 

activation function

Prediction

Sparse Categorical 

Crossentropy 

Loss Function

Evaluate 

Model

Training 

Subset

Validation 

Subset

Loss Score

Evaluation 

Metrics

Test 

Subset

 EarlyStopping

Module

Yes

Adam 

Optimizer

Input Layer

W
ei

g
h
t 

an
d

 B
ia

s 
A

d
ju

st
m

en
t

No

 

Figure 3. Architecture for Training, Validation, and 

Optimization of the Proposed Models. 

5.4 Ensemble Learning 

Table 7 shows the computed performance results of all the 

proposed transfer models. Conventional deep learning 

models, including DNNs, CNNs, and RNNs as individual 

models, and CNN+GRU and CNN+LSTM models were 

chosen as hybrid models that take advantage of these 

transfer models. CNN models can capture patterns in 

network traffic data as time-series data through 

convolutional layers and construct a feature map. To learn 

long-term temporal dependencies, they were passed to 

improved RNN models: LSTM and GRU. The best transfer 

models are selected according to (i) the best F1-score as the 

best performance metric for the imbalanced dataset [10, 44] 

and (ii) having diversity in models to find different patterns 

in the dataset and improve the prediction results [9]. Table 

8 shows the selected transfer models, their computed 

weights, and the calculated performance metrics. 

 

 

6 DISCUSSION 

According to the results shown in Tables 7 and 8, it can be 

concluded that the proposed transfer learning models 

outperformed similar studies in terms of the F1-score, which 

was the best performance metric for imbalanced datasets. 

This improvement can be attributed to the integration of 

individual and hybrid deep learning models, selected based 

on their ability to capture different patterns in IoT network 

traffic data. In addition, the ensemble learning approach 

using the weighted averaging technique provides a further 

boost in performance by combining the outputs of the best 

Table 9. Comparative Analysis Between Related Works for Bot-IoT Dataset. 

Reference Best Model Task 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Koroniotis et al. 

 [11] 
LSTM Multiclass 98.057 99.99 98.05 - 

Ge et al. 

 [20] 
FNN Multiclass 98.09 - - - 

Ferrag and Maglaras 

 [22] 
RNN with BPTT Multiclass 98.20 - - - 

Ferrag et al.  

[19] 
CNN Multiclass 98.37 - - - 

Aldhaheri et al.  

[23] 
SNN Multiclass 98.73 99.17 98.36 98.77 

Alkadi et al.  

[24] 
BLSTM Multiclass 98.91 - - - 

NG BA et al.  

[25] 
VCDL Binary 99.74 99.99 99.75 - 

Ge et al. 

 [21]  
FNN Binary 99.79 - - - 

Popoola et al.  

[26] 
LS-DRNN Multiclass 99.93 96.87 99.75 98.22 

Ullah et al. 

 [27] 
CNN1D Multiclass 99.97 - - - 

Khraisat et al.  

[28] 
Ensemble Learning Multiclass 99.97 - - - 

Derhab et al. 

 [29] 
TCNN Multiclass 99.998 99.997 97.49 98.66 

Proposed Model Ensemble Learning Multiclass 99.985 99.28 99.80 99.54 
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transfer models with the optimized weights. It should be 

noted that this study was conducted using the Bot-IoT 

dataset as a standard testbed. The proposed method involves 

several important steps, such as data and feature 

preprocessing and model design, each of which contributes 

to the overall success of the proposed method. Furthermore, 

the proposed transfer learning models were carefully 

selected based on their diversity and ability to capture the 

different patterns in the dataset. This approach led to the 

implementation of a more accurate and robust intrusion 

detection system that can effectively identify various types 

of attacks, such as Theft, DoS, DDoS, Reconnaissance, and 

Normal. Compared with other similar studies, as shown in 

Table 9, the proposed model demonstrated superior 

performance in accurately detecting intrusions in IoT 

networks. It has been demonstrated that the integration of 

individual and hybrid deep learning models, along with 

ensemble learning techniques, is a viable approach for 

performance improvement of intrusion detection systems in 

IoT networks. The results of this research provide valuable 

insights into the development of more efficient and reliable 

intrusion detection methods to secure IoT networks against 

cyber threats. The proposed method demonstrated 

promising results and can serve as a basis for future research 

in the field of intrusion detection in IoT networks. By 

continuing to refine and optimize these techniques, we can 

improve the security of IoT systems and devices, thereby 

protecting them from potential cyberattacks. 

 

7 CONCLUSION 

The proposed approach demonstrated promising results in 

detecting intrusions in IoT networks by combining data 

preprocessing, feature engineering, and model design. The 

Bot-IoT dataset was utilized as a standard testbed to 

evaluate the performance of the proposed approach. Data 

preprocessing was performed to transform the raw and 

voluminous network traffic data into a format that could be 

processed easily and effectively. Ensemble learning was 

employed to combine the best transfer learning models 

based on their predictive performance and diversity. The 

transfer learning models used in this study included 

individual models, such as DNNs, CNNs, and RNNs, and 

hybrid models, such as CNN+GRU and CNN+LSTM. The 

ensemble learning technique employed in this study, using 

the Weighted Averaging method, resulted in improved 

accuracy and F1-score for the detection of intrusions in IoT 

networks. Overall, the proposed approach makes a valuable 

contribution to the field of intrusion detection in IoT 

networks. The combination of data preprocessing, feature 

engineering, and model design with transfer learning and 

ensemble learning techniques holds great potential for 

improving the accuracy and effectiveness of intrusion 

detection systems in IoT networks. Further research is 

required to explore the efficacy of this approach in real-

world scenarios and develop more sophisticated models that 

can adapt to the evolving nature of cybersecurity threats in 

IoT networks. This research presents a valuable contribution 

towards improving the accuracy and effectiveness of 

intrusion detection systems in IoT networks and lays the 

groundwork for future research in this field. 
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