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 Abstract: 

Cardiac arrhythmias are a major concern in clinical cardiology, often leading to critical outcomes 

if not diagnosed promptly. This research introduces a novel deep learning-based architecture that 

merges time–frequency signal transformation, transfer learning, and sequential modeling to 

detect arrhythmias from ECG signals. The raw signals are first converted into scalogram 

representations using continuous wavelet transform (CWT), emphasizing both time and 

frequency patterns. These images are then passed through a pre-trained convolutional neural 

network (CNN) to derive abstract, high-level features. To model temporal dependencies in heart 

rhythms, an LSTM network follows, capturing dynamic signal behavior. Finally, a dense layer 

classifies the signals into normal and abnormal classes. Evaluations conducted on publicly 

available ECG datasets show the proposed method achieves 98.76% accuracy, surpassing several 

current models. These results affirm the effectiveness of integrating transfer learning with 

temporal modeling in automated arrhythmia detection, paving the way for improved clinical 

workflows. 
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1. Introduction 

Cardiovascular diseases (CVDs) are among the leading 

causes of death worldwide, with over 17.9 million deaths 

annually [1]. Early diagnosis of heart disease is crucial for 

effective treatment and prevention, making it an important 

problem in the field of healthcare that can lead to more 

effective treatment and prevention, resulting in a reduction in 

the burden of heart disease on individuals and society. It also 

helps decrease the healthcare costs associated with late 

detection and intervention. Signal processing-based and 

machine learning-based algorithms are capable of 

significantly improving the ability to recognize and diagnose 

heart diseases early [2-3]. The use of sophisticated signal 

processing algorithms can help extract essential features from 

different physiological signals, such as Electrocardiogram 

(ECG), Echocardiography, and Magnetic Resonance Imaging 

(MRI). Advanced neural architectures like convolutional and 

recurrent models are capable of capturing intricate temporal 

and spatial features in cardiac signals, thereby enhancing the 

precision of cardiovascular disease classification. 

These techniques have advantages in heart disease detection, 

such as improved accuracy, speed, efficiency, scalability, and 

personalized medicine. The potential impact of developing 

effective and accurate heart disease detection techniques 

using signal processing and deep learning techniques is vast. 

It is instrumental in enhancing the quality and efficiency of 

healthcare and advancing the field of medical research. An 

algorithm for detecting premature ventricular contractions 

based on discrete wavelet transform (DWT) coefficients and 

probabilistic neural network (PNN) was proposed in [4], 

which classified eight different heartbeats. [5] presented a 

diagnostic model that classified four cardiac arrhythmia data 

classes based on a combination of SVM-based categories and 

features of wavelet coefficients, local binary patterns, and 

wave amplitude values. [6] introduced the usage of features 

of morphology, wavelet transform, and S transform for heart 

disease diagnosis based on SVM classification and a 

Gaussian process detector. [7] presented an online algorithm 

for premature ventricular arrhythmia diagnosis by using the 

PCA algorithm, which compared the main directions of 

changes in the heart rate of normal and sick people. [8] 

evaluated the performance of different routines based on 

https://creativecommons.org/licenses/by/4.0/deed.en
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discrete wavelet transform coefficients and PCA analysis for 

the Recognition of Cardiac Rhythm Irregularities as normal 

and abnormal heartbeats. [9] utilized 12 morphological 

coefficients, tiger energy operator coefficients, and features 

obtained from DWT for neural network training for the 

diagnosis of heart diseases. Both ML-based and deep 

learning-based methods have demonstrated strong 

performance in ECG rhythm classification. The choice of 

algorithm may depend on the complexity of the ECG signal, 

the size of the dataset, and the desired accuracy of the 

classifier. However, deep learning-based methods are more 

common in today's research and development owing to their 

superior performance in classification tasks. The advantages 

of deep learning-based methods include their ability to learn 

complex and nonlinear interactions between input features, 

which helps to identify more robust and discriminative 

features. Additionally, their capacity to handle large amounts 

of data and extract high-level features has enabled them to 

achieve state-of-the-art results in many applications, 

including medical imaging and natural language processing. 

So, in this paper, an attempt has been made to investigate 

classifiers based on deep learning methods further.  

Recent research has explored a variety of deep learning 

strategies for automatic ECG interpretation. For instance, 

[11] introduced a fully automated one-dimensional 

convolutional network designed to identify five heartbeat 

categories, incorporating wavelet-based noise reduction as 

a preprocessing step. In a comprehensive survey, [12] 

outlined various deep learning frameworks along with data 

preparation techniques and performance metrics 

specifically tailored to arrhythmia classification. A study in 

[13] proposed a hybrid architecture combining two-

dimensional CNNs with LSTM layers, where ECG signals 

were first converted into color-coded scalograms using 

wavelet transforms to facilitate spatial-temporal learning. In 

[14], a pre-trained DenseNet model was employed to extract 

deep representations from ECG-derived spectrograms, 

which were subsequently classified using a support vector 

machine (SVM) into four arrhythmia types. Reference [15] 

utilized a convolutional network to detect seven forms of 

premature ventricular contractions directly from raw ECG 

time-series inputs, with classification performed via a 

softmax decision layer. Lastly, [16] integrated convolutional 

autoencoders and transfer learning mechanisms to 

distinguish between normal and pathological signals, 

relying on their two-dimensional scalogram representations 

as model inputs. 

The proposed method for detecting cardiac arrhythmias 

involves several steps. The first step is to obtain a 2D 

encoding of ECG characteristics in both frequency and time 

domains. A scalogram algorithm is used to break the signal 

down into its frequency components over time. This 

representation provides information about the behavior and 

features of the signal over time. The next step is to extract 

important frequency-domain features from the scalogram 

using a 2D CNN. A series of convolutions is used to identify 

important areas in the signal and extract associated features. 

The third step is to feed the extracted features from the 

scalogram to an LSTM network to capture the structure of 

the ECG signal. The final step is to use a fully connected 

layer to obtain the final output of the model, indicating the 

presence or absence of cardiac arrhythmias. The model 

combines the features extracted from the scalogram and 

LSTM network and passes them through a fully connected 

layer. The model ultimately produces a binary value 

indicating whether cardiac arrhythmias are present in the 

ECG signal. 

Section 2 outlines the methodology adopted for arrhythmia 

detection using ECG signals, including comprehensive 

details on the utilized dataset, signal preprocessing pipeline, 

feature transformation strategies, and configuration of the 

developed model. The third section provides an in-depth 

analysis of the experimental procedures along with 

quantitative performance metrics. Section 4 offers a critical 

interpretation of the outcomes achieved by the proposed 

framework. Finally, Section 5 summarizes the key findings 

and outlines potential directions for future work. 

 

2. Materials and Methods 

The developed framework leverages time–frequency 

characteristics of ECG signals, employing a CNN module 

for effective feature extraction and an LSTM network for 

sequential classification. This hybrid strategy integrates 

signal processing with deep learning to enable accurate 

identification of cardiac arrhythmias. The method involves 

several steps, each of which performs a specific task: 1) 

Obtaining a time-frequency domain representation of the 

ECG signal: The first step in the process is to obtain a 2D 

representation of the ECG signal in both frequency and time 

domains. This is achieved by processing the input ECG 

signal through a scalogram algorithm, which breaks the 

signal down into its frequency components over time. This 

representation provides information about the behavior and 

features of the signal over time. 2) Extracting features from 

the scalogram using a 2D CNN: The second step is to extract 

important frequency-domain features from the scalogram 

using a 2D CNN. This involves passing the scalogram 

through a series of convolutions, which helps to identify 

important areas in the signal and extract associated features. 

The CNN can learn to localize these features in time, 

allowing it to identify important patterns and trends in the 

structure of the signal. 3) Feeding the CNN features to an 

LSTM network to capture the structure of the ECG signal: 

The third step involves feeding the extracted features from 

the scalogram to an LSTM network, which can model the 

time-frequency structure of the ECG signal. The LSTM 

network can learn long-term dependencies in the signal and 

capture important time-frequency features that might not be 

apparent in the individual frames of the spectrogram. By 

analyzing these features, the LSTM network can identify 

patterns and trends that indicate the presence of cardiac 

arrhythmias. 4) Using a fully connected layer to obtain the 

final output: The final step is to use a fully connected layer 

to obtain the final output of the model, indicating the 

presence or absence of cardiac arrhythmias. This is achieved 

by combining the features extracted from the scalogram and 

LSTM network and passing them through a fully connected 

layer. The model produces a binary output that indicates the 

presence or absence of cardiac arrhythmias in the ECG 
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signal. Figure 1 illustrates the block diagram of the 

proposed approach, and the individual components of this 

diagram are described in detail in the following subsections. 

2.1. Dataset 

To evaluate the effectiveness of the proposed arrhythmia 

detection approach, the Physionet arrhythmia datasets were 

utilized. These datasets contain labeled cardiac signals 

corresponding to different types of arrhythmias [17]. 

Physionet provides access to diverse ECG datasets that can 

be used to train and evaluate deep learning models for 

cardiovascular disease detection, diagnosis, and monitoring. 

The datasets typically include information about the 

patients, such as their medical history and demographic 

information, which can be used to label and categorize the 

ECG signals. The dataset includes 22 heart recordings from 

female subjects aged between 23 and 89 years, as well as 25 

recordings from male subjects aged 22 to 79 years [17]. 

From the MIT-BIH cardiac arrhythmia database [18], a total 

of 96 recordings were selected, featuring sampling rates of 

128 and 360 Hz. Additionally, the MIT-BIH Normal Sinus 

Rhythm database provides 30 recordings sampled at 128 Hz 

with 12-bit resolution. A typical normal heartbeat 

waveform, which consists of several distinct wave 

components, is illustrated in Figure 2. 

 

2.2. Pre-processing steps 

In the ECG signal preprocessing phase, various operations 

are applied to condition the data for subsequent training of 

statistical or deep learning models. Since ECG recordings 

often contain diverse types of noise and artifacts, such as 

interference from power lines, muscle activity, power-line 

interference (PLI), and electromyographic (EMG) signals, 

it is essential to eliminate these disturbances. Both low-

frequency and high-frequency noise components need to be 

suppressed before proceeding to feature extraction or model 

training. To achieve this, multiple denoising techniques 

have been proposed, including classical filter-based 

approaches, wavelet transform methods, and hybrid 

algorithms that integrate the outputs of multiple filters to 

enhance noise removal effectiveness [19–21]. In this study, 

noise removal is achieved by first centering the cardiac 

signals, which involves subtracting the mean value from the 

ECG data. Additionally, an adaptive median filter is applied 

to smooth the raw signals. To extract the relevant features, 

the detection of heartbeats is necessary. Deep learning 

techniques demand extensive training data, and in the 

Physionet arrhythmia database, each heartbeat is annotated 

with a specific arrhythmia label. For classification purposes, 

this work focuses on three types of ECG rhythms: cardiac 

arrhythmia (ARR), congestive heart failure (CHF), and 

normal sinus rhythm (NSR). Each ECG recording is 

segmented into 360 samples centered on the R-peak of each 

heartbeat, as described previously. 

 

2.3. Data conversion and mapping based on CWT 

The raw time ECG signal usually contains many types of 

noise and artifacts that can make the CNN-based 

classification more challenging and less reliable.   

 

Figure 1. Schematic overview of the ECG classification 

framework combining CNN and LSTM models. 

 

 
Figure 3. A normal heartbeat signal consists of several 

different wave components. 

One of the main reasons why a raw time ECG signal is not 

properly classified using a CNN is that CNNs are designed 

to process images, and a raw ECG signal is a time-series 

signal. In order to provide the CNN with appropriate input 

data, the ECG signals are converted into the time-frequency 

domain. This transformation enables the CNN to efficiently 

capture and learn features relevant to the distinct patterns 

within the ECG signals. The transformation helps to reduce 

the impact of noise and artifacts and also improves the 

performance of the CNN-based classifier. There are several 

ways to transform an ECG signal into a time-frequency 

domain suitable for 2D CNN classification. One popular 

way is by applying CWT, which splits the ECG signal into 

several subbands representing different frequencies and 

time scales as scalograms. A scalogram visually depicts how 

the frequency content of a signal evolves by representing it 

simultaneously in the time and frequency domains. The 

scalogram is created by applying a CWT to the signal, 

which analyzes the signal over different scales and 

frequencies. A CWT analysis of an ECG signal can provide 

valuable information about the rhythm of the heart and the 

underlying cardiac activity. The selection of wavelet type 

for a CWT analysis depends on the desired level of 

resolution in both the time and frequency domains. 

Different wavelet types can be used to highlight different 

features of the ECG signal. Common wavelet types used for 

ECG signal processing include the Haar, Daubechies, 
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Morlet, and Symmlet wavelets. In this paper, the 

Daubechies wavelet was employed to provide a good time-

frequency resolution and suppression of noise. Each 

subband contains a representation of the ECG signal that 

includes information about both its spatial (time) and 

spectral (frequency) aspects. The CNN operates on small 

windows of the time-frequency content, extracting 

important features and localizing them. Figure 3 

demonstrates the conversion of raw ECG recordings from 

various subjects, belonging to three categories, cardiac 

arrhythmia (ARR), congestive heart failure (CHF), and 

normal sinus rhythm (NSR), into scalograms that represent 

the signals in the time-frequency domain. This conversion 

is performed through the wavelet transform, an effective 

mathematical technique that breaks down the signal into 

frequency components across multiple time scales. This 

transformation provides a more visually appealing 

representation of the ECG signal, with each point in the 

scalogram representing the signal's power or frequency 

content in a specific time-scale region. The Figures show 

that the transformed signals and scalograms for each of the 

three classes are visually distinct, with different patterns and 

frequency content, which can be effectively utilized to train 

and classify the CNN model. 

 

2.4. Data augmentation 

In CNN-based ECG arrhythmia classification, data 

augmentation plays a crucial role by expanding the training 

dataset both in size and variety, thereby enhancing the 

model’s ability to generalize and improving overall 

classification accuracy. The limited amount of available 

ECG data is one of the main challenges in ECG-based 

classification, especially in cases of rare arrhythmias. Data 

augmentation techniques can generate new data by applying 

various transforms, such as translation, rotations, scaling, 

shearing, and centering, to the available ECG data [22-23]. 

By training on an expanded and varied dataset, these 

augmented samples help strengthen the CNN model’s 

resilience, reducing the risk of overfitting and enhancing its 

ability to perform well on previously unseen data. 

Additionally, some augmentation techniques can also help 

to simulate the effects of real-world ECG signals, such as 

noise and artifacts, which makes the model more robust to 

such challenges in real-world scenarios. Table 1 reports the 

number of ECG frames included in the dataset before and 

after data augmentation.  

 

Figure 3. Left panel: Samples of ECG waveforms 

representing three arrhythmia categories, ARR, CHF, 

and NSR. Right panel: Corresponding scalogram images 

of these ECG signals generated using the CWT. 

Table 1. Counts of ECG recordings obtained from the 

Physionet dataset, shown separately for original and 

augmented data during both training and testing phases. 

Classes of 

ECG signals 

Total After data 

augmentation 

# of 

Train  

# of 

Test  

ARR 15817 22512 15759 6753 

CHF 14312 21136 14795 6341 

NSR 12523 20322 14225 6097 

Total 42652 63970 44779 19191 

 

 
Figure 4. Illustrative examples of ECG data augmentation 

applied to the ARR, CHF, and NSR classes to enhance 

dataset variability. 

Also, Figure 4 shows augmented ARR, CHF, and NSR 

signals from Physionet arrhythmia datasets using a scaling 

factor. 

 

2.5. Architecture of the deep model 

In this Section, the proposed algorithm is described as an 

AI-powered system that employs CNN to classify 

arrhythmia types of CVDs, namely NSR, CHF, and ARR. 

CNN is a deep learning architecture that is commonly used 

in ECG classification because of its ability to learn 

hierarchical features from raw signal data. CNNs consist of 

stacked convolutional and pooling layers that progressively 

extract and integrate features from input signals. 

Meanwhile, LSTM networks, a specialized form of RNNs, 

are tailored to process sequential data like ECG signals or 

speech [24]. It was developed to address the problem of 

vanishing gradients in RNNs, which leads to poor 

performance on long-term dependencies in the data. A 

distinctive characteristic of LSTM networks is their internal 

structure, composed of three gates: the input gate, forget 

gate, and output gate. These gates regulate the flow of 

information by deciding what to retain, discard, or pass on 

at every time step. This allows LSTM to remember 

information for an extended period and learn temporal 

patterns in the data. Unlike traditional RNNs, LSTM 

networks excel at capturing long-range dependencies within 
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data, which is especially valuable for applications like ECG 

signal analysis, where understanding the temporal patterns 

is crucial for precise classification. In this paper, CNN and 

LSTM were employed to extract the best feature vectors and 

detect the label of the input ECG signal arrhythmia, 

respectively. Figure 5 demonstrates the detailed architecture 

of an LSTM network. 

 At each time step, the network processes the current input 

sequence 𝑋𝑡 along with the previous hidden state, ℎ𝑡 − 1. A 

sigmoid activation function, represented by σ, is applied. 

The forget gate vector ft decides how much information 

from earlier inputs should be retained, while Ct denotes the 

prior cell state connected to the current cell state Ct, which 

corresponds to the input at time t. The network processes 

sequential data, making it suitable for various tasks, such as 

video classification and sentiment analysis, that involve 

complex patterns [24]. Table 2 showcases a fine-tuned 

LSTM setup and highlights key parameters set for the 

optimal performance of the proposed method. This Table 

provides information to evaluate and adjust the parameters 

to achieve the desired performance outcomes. A stochastic 

gradient descent algorithm (SGD) known as an adaptive 

moment estimation (Adam) optimizer with an initial 

learning rate of 0.001 is employed to train our CNN model. 

At epochs 20 and 40, the optimizer is multiplied by 0.1, 

which is a strategy to adaptively adjust the learning rate 

during training [25]. To reduce the risk of overfitting, the 

learning rate is halved every 10 epochs. Training is 

conducted using mini-batch gradient descent with a batch 

size of 64 samples per iteration. The network undergoes 

training for up to 100 epochs or until the loss function 

reaches convergence. Table 3 summarizes the network 

hyperparameters for the described CNN model in each 

scenario. Transfer learning is a technique in machine 

learning that involves using knowledge gained from a pre-

trained model on a similar task to help a new model learn to 

perform a related task. In the context of ECG arrhythmia 

classification, transfer learning can be used to train a deep 

model using a pre-existing ECG dataset, which helps the 

new model to learn faster and improve its performance. 

 

3. Results and Discussion 

This study presents an intelligent framework for 
classifying ECG arrhythmias by transforming raw 
signals, employing a deep learning model, and 
benchmarking against advanced techniques. Initially, 
the denoised and segmented ECG time series were 
converted into two-dimensional scalogram images. 
These scalograms served as input to a CNN model, 
designed with an input layer dimension of 256×256×3. 
The classification result was derived from the output 
of a fully connected layer following batch 
normalization. 

 
Figure 5. The framework of a simple LSTM network. 

 

Table 2. The fine-tuned parameters of the employed LSTM 

deep model in the proposed ECG classifier algorithm. 

Parameter Description Range 

Number of LSTM 
layers 

Number of LSTM units 

stacked vertically to control long-

term memory capacity 

2 

Number of units 

per layer 

Number of LSTM cells in each 

layer to controls model 
complexity and expressiveness 

64 

Input 

dimensionality 

Size of the input vector for data 

representation 

3×256×25

6 
Activation 

function 

Non-linear transformation applied 

to activation 
Sigmoid 

Optimizer 
An algorithm for adjusting model 
weights to determine learning rate 

and convergence behavior 

Adam 

Loss function 
The metric used to evaluate 

model performance 

Mean 
squared 

error 

Regularization 

techniques 

Methods to prevent overfitting 
and control model complexity and 

generalization 

Dropout 

Learning rate 

Controls how much weights are 
updated and  

affect convergence speed and 

stability 

0.001 

Batch size 

Number of samples processed 

together to balances efficiency 

and optimization stability 

64 

 

Table 3. Optimal hyperparameters for the employed deep 

models. 

Hyperparameters CNN CNN-

LSTM 

Transferred 

CNN-LSTM 

Batch size 32 64 64 

Epochs 50 100 100 

Optimizer SGD ADAM ADAM 
Learning rate 0.01 0.001 0.001 

Interpolate method Linear N/A N/A 

Kernel size 3×3 3×3 3×3 
Activation function Sigmoid Sigmoid Sigmoid 

Weight decay 10-3 10-4 10-4 

Dropout 50% 25% 25% 

 

[27] proposed a technique that combines specific 

morphological features with coefficients obtained from 

various decomposition levels of the wavelet packet 

transform to achieve data dimensionality reduction. 

Subsequently, the reduced data were modeled using the 

Semi-Nonnegative Matrix Factorization (SNMF) 

algorithm. The study evaluated model performance using 

several metrics, including Accuracy (Acc), defined as the 

proportion of correctly classified instances relative to the 

total number of samples: 

Acc =  (TP + TN)/(TP + TN + FP + FN) (1) 
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In this context, TP, TN, FP, and FN represent true positives, 

true negatives, false positives, and false negatives, 

respectively. True positives correspond to correctly 

identified arrhythmia instances, while true negatives are 

non-arrhythmia cases accurately recognized as such. False 

positives occur when normal instances are mistakenly 

classified as arrhythmias, and false negatives refer to 

arrhythmia cases that the model fails to detect, labeling 

them as normal instead. 2) Specificity (Spe) stands for the 

percentage of true negatives in all negatives. 3) Precision 

(Ppr) for the percentage of true positives in all positive 

classifications. 4) Sensitivity (Sen or R) calculates the 

percentage of true positives in all cases. Also, the F-measure 

that measures combines accuracy, sensitivity, and precision 

to give a single performance metric as 

Spe =  TN/(TN + FP) (2) 

Ppr =  TP/(TP + FP) (3) 

Sen (R)  =  TP/(TP + FN) (4) 

F − measure =  2 × (Ppr Sen)/(Ppr + Sen) (5) 

 

The F-measure represents a harmonic mean of precision 

and sensitivity, metrics that hold particular significance in 

medical contexts where minimizing false positives is often 

more critical than false negatives. Higher values of these 

indicators correspond to improved classification 

performance. 

The proposed algorithm for learning the deep model is 

trained using 5-fold cross-validation, and overall accuracy, 

positive prediction rate, sensitivity, and F-measure, 

confusion matrix are referenced in Table 6. Also, a 

confusion matrix is a useful statistical tool that gives an 

overview of the performance of a classifier model based on 

its ability to classify datasets into different classes. This 

matrix can help to identify the strengths and weaknesses of 

a classifier model and to make improvements where 

necessary. The confusion matrix of the proposed classifier 

with a deep model designed in Scenario III is reported in 

Table 5. Also, to accurately evaluate the performance of the 

proposed algorithm, Friedman's statistics are used to 

compare the efficiency of different methods. The null 

hypothesis assumes that all the compared methods perform 

equally effectively. A significance level (p-value) of 0.05 

was chosen to assess whether observed differences among 

the methods are statistically meaningful. The ρ-value 

represents the probability of obtaining results as extreme as 

those observed, assuming the null hypothesis of no 

difference holds. As shown in Table 7, all reported ρ-values 

fall below the 0.05 threshold, providing strong evidence to 

reject the null hypothesis. This indicates that the proposed 

algorithm outperforms the other approaches listed in Table 

7 in classifying ECG arrhythmias. Moreover, the CNN-

LSTM-based model demonstrated not only high accuracy 

but also consistent performance across metrics such as 

specificity, positive predictive value, sensitivity, and F-

measure on the evaluated datasets. Testing on the Physionet 

ECG database confirmed state-of-the-art results, with the 

model achieving an accuracy of 98.71%, sensitivity of 

98.93%, and a positive prediction rate of 98.99%. The 

results show that the proposed approach is effective in 

accurately detecting ECG heart abnormalities. Furthermore, 

the proposed method is highly efficient and can process 

large ECG data in real time with high accuracy. The main 

advantage of the proposed approach is that it combines 

multiple deep learning techniques such as CNN, LSTM, and 

TL to achieve better results in ECG classification. Also, the 

ability to use TL helps to improve the model's performance 

and generalize it to new environments without losing 

accuracy. The proposed approach can be further improved 

by exploring new algorithms, increasing the size of the 

datasets, and fine-tuning the network parameters. 

Table 4.  Comparison of classification accuracy (Acc) for 

ECG arrhythmia across various scenarios using the proposed 

approach versus alternative techniques. 

 ARR CHF NSR Mean 

RNN-based [13] 96.70 97.82 97.39 97.30 

MLP-based [26] 97.33 97.21 97.72 97.42 

SNMF-based [27] 95.51 95.38 96.41 95.77 

CNN (Scenario I) 97.99 98.05 97.93 97.99 

CNN-LSTM (Scenario II) 98.56 98.49 98.62 98.56 

CNN-LSTM-TL(Scenario III) 98.81 98.60 98.86 98.76 

 

Table 5.  Summary of ECG arrhythmia classification 

performance metrics, including Accuracy (Acc), Positive 

Prediction Rate (Ppr), Sensitivity (Sen), and F-measure, 

achieved by the proposed RenNet34-based method. 

 Acc 

(%) 

Ppr 

(%) 

Sen 

(%) 

F-Measure 

(%) 

RNN-based [13] ARR 96.70 97.10    97.32    97.20 

CHF 97.82 97.67    96.77    97.21 

NSR 97.39 96.75 97.65    97.20 

MLP-based [26] ARR 97.33 97.29    97.04   97.16 

CHF 97.21 97.50    97.97    97.73 

NSR 97.72 96.71    97.15    96.93 

SNMF-based [27] ARR 95.51 96.61    96.89    96.74 

CHF 95.38 96.37   96.44    96.40 

NSR 96.41 96.58    96.51    96.54 

CNN (Scenario I) ARR 97.99 98.13    98.08    98.10 

CHF 98.05 98.10    98.79   98.44 

NSR 98.93 96.57   98.27    97.41 

CNN-LSTM 

(Scenario II) 

ARR 98.56 97.53    98.97 98.24 

CHF 98.49 98.48 98.69 98.58 

NSR 98.62 98.59 98.56 98.57 

CNN-LSTM-TL 

(Scenario III) 

ARR 98.67 98.89 98.72    98.80 

CHF 98.60 98.96 99.00 98.98 

NSR 98.86 99.11 99.06 99.08 
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Table 6.  Confusion matrices illustrating the classification 

results for ECG arrhythmia across various CNN-based 

scenarios. 

ARR(class 1) 98.67% 0.53% 0.80% 

CHF(class 2) 0.69% 98.60% 0.71% 

NSR(class 3) 0.31% 0.83% 98.86% 

 ARR(class 1) CHF(class 2) NSR(class 3) 

Table 7.  Results of statistical analyses comparing different 

methods alongside the CNN-based scenarios. 

 𝝆-value Mean 𝝆-

value  

Mean Acc 

(%) 

RNN-based [13] ARR 0.004  
0.0046 

 
97.30 CHF 0.005 

NSR 0.005 

MLP-based [26] ARR 0.007  

0.0060 

 

97.42 CHF 0.006 

NSR 0.005 

SNMF-based 
[27] 

ARR 0.011  
0.0096 

 
95.77 CHF 0.008 

NSR 0.010 

CNN (Scenario 
I) 

ARR 0.004  
0.0036 

 
98.32 CHF 0.003 

NSR 0.004 

CNN-LSTM 
(Scenario II) 

ARR 0.002  
0.0023 

 
98.56 CHF 0.003 

NSR 0.002 

CNN-LSTM-TL 
(Scenario III) 

ARR 0.002  

0.0013 

 

98.71 CHF 0.001 

NSR 0.001 

 

 
(a) 

 
(b) 

Figure 6. Training curves for the proposed CNN-LSTM 

model in Scenario III: a) Accuracy progression during 

training, b) Loss function trend illustrating model fitting 

improvement. Dashed lines correspond to validation 

dataset metrics. 

In summary, the proposed method is an effective 

combination of CNN, LSTM, and TL that achieves high 

accuracy in detecting ECG heart abnormalities. The 

proposed approach is highly efficient and real-time, and can 

process large ECG data accurately. Furthermore, its ability 

to generalize to new environments without sacrificing 

accuracy makes it an attractive option for healthcare 

applications. Figure 6 illustrates the training progress of the 

proposed CNN-LSTM model integrated with transfer 

learning in the third scenario. These plots provide insight 

into the model’s learning dynamics and assist in tuning 

hyperparameters for improved classification performance. 

The results indicate that the model achieves high accuracy 

in distinguishing various arrhythmia types, underscoring its 

potential utility in medical diagnostics. 

 

4. Conclusion 

This research introduces a reliable deep learning-based 

approach for detecting cardiac arrhythmias aimed at 

facilitating early diagnosis of heart conditions. Given the 

rising prevalence and serious consequences of 

cardiovascular diseases, timely identification is essential for 

effective treatment and prevention. The proposed 

framework integrates CNN and LSTM networks to analyze 

ECG signals in the time-frequency domain, utilizing CWT. 

Initially, the ECG signals are converted into scalogram 

images via CWT, providing a two-dimensional 

representation that captures both temporal and spectral 

information. These scalograms serve as inputs to the CNN, 

which extracts spatial features, while the LSTM component 

models the sequential dependencies inherent in heartbeat 

patterns. The method achieved impressive accuracy levels, 

reaching 98.76%, indicating its promise as a diagnostic tool. 

By enhancing early detection capabilities, this approach can 

support clinicians in improving patient outcomes and 

potentially lowering healthcare costs related to heart disease 

management. This technique marks a notable advancement 

over conventional signal processing methods for arrhythmia 

detection, combining effective feature extraction with 

temporal modeling to boost both accuracy and efficiency. 
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