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 Abstract: 

In this study, we employ an enhanced neural network architecture to develop a novel approach 

for solving differential equations involving Z-number-based initial value estimation. The 

proposed methodology operates by evaluating Z-numbers through the function [𝑥𝑇(𝑡)]𝑍 =

(𝐴𝑇(𝑡), 𝐵𝑇(𝑡)), which 𝐴𝑇(𝑡) serves as a constraint function, while 𝐵𝑇(𝑡) quantifying the 

reliability measure of 𝐴𝑇(𝑡). To formulate the differential equation within the Z-number 

framework (ZDE), the function [𝑥𝑇(𝑡)]𝑍  is expressed in the decomposed form [𝑥𝑇(𝑡)]𝑍 =

((𝐴𝑇(𝑡), 𝐴𝑇(𝑡)), 𝐵𝑇(𝑡)). The generalized neural network structure comprises three distinct 

layers. Input Layer: Consisting of input variables, first-layer weights, and network biases. The 

number of weights is determined by the number of governing equations in the primary problem, 

ensuring alignment with the input dimensionality. Hidden Layer: Composed of neurons equipped 

with nonlinear activation functions. Output Layer: Producing the final output via linear activation 

functions and associated weights. Notably, the enhanced neural network processes real-valued 

inputs, whereas its weights and outputs adhere to Z-valuation. To train this modified neural 

network, we define the objective function as the sum of squared errors (SSE), which is 

subsequently minimized using an optimization algorithm to determine the optimal network 

weights. The resulting solution generated by this method exhibits convergence to the true 

analytical solution. To validate the efficacy and applicability of the proposed approach in 

approximating exact solutions, we provide two illustrative numerical examples. 
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1. Introduction 

The solution of fuzzy differential equations with fuzzy 

initial values represents an important research area in fuzzy 

mathematics and engineering sciences, as evidenced by 

numerous studies [1,3,4,9,10,15]. A persistent challenge in 

this field has been the inherent uncertainty in information 

reliability, necessitating new analytical approaches. Zadeh's 

Z-number concept [17] offers a promising solution, 

demonstrating superior capability in representing human 

knowledge compared to conventional fuzzy numbers [14]. 

While significant research exists on fuzzy numbers 

[2,5,6,7,12,13,16,18], applications to differential equations 

using Z-numbers remain limited [14]. This paper presents a 

novel numerical approach for solving Z-number-based 

differential equations employing Multi-layer Perceptron 

(MLP) networks. The MLP-based method offers distinct 

computational advantages due to its network architecture. 

The structure of this paper is as follows:  

  In Section 2, the fundamental and essential concepts have 

been stated. In Section 3, the estimate of ZDE has been 
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stated using a Z-number neural network. In Section 4, a 

numerical example is presented. In Section 5, the 

conclusion is provided. 

 

2. The fundamental and essential concepts 

This section introduces the essential definitions and 

fundamental theorems needed to formulate the proposed 

model. 

Definition 2.1. Z-number  

A Z-number [17] is an ordered pair 𝑍 = (𝐴, 𝐵)  

characterizing uncertain information about a random 

variable 𝑋, where: 

1. Constraint Component (𝐴): 

-A fuzzy set defining a possibilistic restriction on 𝑋 

- Membership function 𝜇𝐴: 𝑅 → [0,1] quantifies allowable 

values 

2. Reliability Component (𝐵): 

-A fuzzy set representing confidence in 𝐴 

- Membership function 𝜇𝐵: [0,1] → [0,1] grades probability 

measures 

Mathematical Representation: 

For a Z-valuation " (𝑋, 𝐴, 𝐵)", the semantics follow: 

𝑃(X  𝑖𝑠  𝐴 ) = ∫ 𝜇𝐴

 

𝑅

(𝑢)𝑃𝑋(𝑢) 𝑑𝑢  𝑖𝑠 𝐵 

Where 𝑃𝑋(𝑢) is the (generally unknown) probability 

density of 𝑋. The integral computes the probability of the 

fuzzy event { 𝑋 is 𝐴 }.𝐵 fuzzifies this probability measure. 

Definition 2.2. (See [13]).  

Let 𝑍∗ denote the space of all Z-numbers. For an arbitrary 

Z-number 𝑍 = (𝐴, 𝐵) ∈ 𝑍∗, its parametric form is 

expressed as an ordered pair of characteristic functions:  

𝑍 = ((𝐴(𝑟), 𝐴(𝑟)), 𝐵) , 𝑟𝜖[0,1], 

Its components satisfy the following requirements: 

1.  𝐴(𝑟) ≤ 𝐴(𝑟)   𝑓𝑜𝑟  𝑟𝜖[0,1], 

2. 𝐴(𝑟) and 𝐵(𝑟) are bounded, left-continuous functions, 

and monotonically non-decreasing on the interval [0,1]. 

3. .  𝐴(𝑟) and 𝐵(𝑟) are bounded, left-continuous functions, 

and monotonically non-increasing on [0,1]. 

4. 𝐵 = 𝑓(𝐴(𝑟), 𝐴(𝑟)). 

Definition 2.3. (See [13]). Let 𝑍 =  (𝐴, 𝐵) be a Z-

number. The 𝑍 − 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 is said to be normal if 

the height of its reliability component 𝐵 is exactly 1 

(i.e., ℎ(𝐵) = 1). 

 

2.4. MLP Network and it training 

     An MLP represents a type of feedforward artificial neural 

network architecture. This network structure contains a 

minimum of three node layers, where all nodes except the 

input layer employ nonlinear activation functions. Unlike 

simple linear perceptrons, MLPs can handle non-linearly 

separable data due to their layered structure and nonlinear 

activation capabilities. For training, MLPs typically employ 

supervised learning through the backpropagation algorithm. 

Among various learning methods available for multi-layer 

networks, backpropagation has become the most widely 

adopted approach, operating on the principle of error 

correction learning. 

The backpropagation process requires computation of 

sensitivity gradients across different network layers, which 

necessitates calculating derivatives of the neurons' 

activation functions. Consequently, only differentiable 

activation functions can be utilized in this framework. A 

commonly used example is the sigmoid function, expressed 

mathematically as 𝑆(𝑛) =
1

1+𝑒−𝑛 , which produces outputs 

constrained to the interval [0, 1]. 

 

Theorem 2.5. An MLP network featuring a single hidden 

layer with sigmoid activation (specifically the hyperbolic 

tangent function) and linear transformations in the output 

layer possesses universal approximation capabilities. This 

architecture can approximate any square-integrable 

function to arbitrary precision (as demonstrated in [8]). 

 

2.6. BFGs Technique 

The neural network training process involves computing a 

predefined error function by comparing the network's 

output values with the correct targets, then propagating this 

error back through the network. Through iterative 

adjustments using this error information, the algorithm 

modifies each connection's weight to gradually reduce the 

error value. After sufficient training cycles, the network 

typically converges to a state with minimal computational 

error. This weight adjustment process essentially solves an 

unconstrained optimization problem that can be addressed 

through various minimization techniques including, the 

steepest descent method, conjugate gradient method, or 

Quasi-Newton methods. While the Newton method is an 

important nonlinear optimization algorithm, its main 

limitation lies in requiring the computation of the second 

derivative matrix (Hessian matrix). Quasi-Newton methods, 

developed through the seminal work of Davidon (1959) and 

Fletcher-Powell (1963), address this limitation by 

constructing successive approximations to the Hessian 

matrix, thereby avoiding its direct computation. In this 

implementation, we specifically utilize the Quasi-Newton 

BFGS method as referenced in [11], which provides an 

efficient approach to estimating the Hessian matrix for 

optimization purposes. 

 

3. The definition of a derivative-based 𝒁 −
𝒏𝒖𝒎𝒃𝒆𝒓𝒔. 

Let 𝑍∗ be the set of all 𝑍 − 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. The general initial 

value problem for 𝑍 − 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 differential equations 

takes the form: 
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{
[𝑥′(𝑡)]𝑍 = 𝑓(𝑡, [𝑥(𝑡)]𝑍)                 

[𝑥(𝑡0)]𝑍 = 𝑥0 ∈ 𝑍∗                        
                                    (3.1) 

With the temporal variable 𝑡  belonging to the closed 

interval [𝑡0, 𝑇]   (a subset of positive reals), with 

𝑓: [𝑡0;  𝑇]  ×  𝑍∗  →  𝑍∗  being a continuous mapping, and 

𝑥0 denotes a Z-number in 𝑍∗, and 𝑥(t) = (𝐴𝑥, 𝐵𝑥). 

Suppose, 𝑥′ is a function with Z-valuation, and we define 

it as follows 

 

[𝑥′(𝑡)]𝑍 = (𝐴𝑥′ , 𝐵𝑥′)                                                     (3.2) 

In this formulation, 𝐴𝑥′ represents the constraint 

component while 𝐴𝑥(𝑡) characterizes the reliability 

measure of these constraints. For the ordered pair 
(𝐴𝑥′ , 𝐵𝑥′), under the assumption that the Hukuhara 

difference exists between 𝐴𝑥(𝑡 + ℎ) and 𝐴𝑥(𝑡), we define: 

𝐴𝑥′ = lim
ℎ→0

𝐴𝑥(𝑡 + ℎ)−ℎ𝐴𝑥(𝑡)

ℎ
, 𝐵𝑥′ = 𝑝(𝑥′(t) 𝑖𝑠 𝐴𝑥′)   

(3.3) 

Where 𝑝(𝑥′(t) 𝑖𝑠 𝐴𝑥′)  represents the probability 

distribution function associated with the derivative process. 

Equation (3.1) can be rewritten in the form of the parameter 

defined in [17] : 

{
[𝑥′(𝑡)]𝑍 = (𝐴𝑥′ , 𝐵𝑥′)         

[𝑥(𝑡0)]𝑍 = (𝐴𝑥0
, 𝐵𝑥0

),       
                                            (3.4) 

In equation (3.2), 𝐴𝑥′ represents a fuzzy-valued function 

while 𝐵𝑥′ is a real-valued function. Here, 𝐴𝑥0
 possesses a 

specific fuzzy quantity and Bx0Bx0 a real quantity. The 

functions 𝐴𝑥′ and 𝐴𝑥0
 serve as constraint operators, 

whereas 𝐵𝑥′ and 𝐵𝑥0
 quantify the reliability measures for 

[𝑥′(𝑡)] and [𝑥(𝑡0)]𝑍 respectively. The fuzzy constraint 

function 𝐴𝑥′ is formally defined as: 

𝐴𝑥′ = 𝑓(𝑡, �̃�(𝑡))                                                                   (3.5) 

With the following parametric form 

[𝐴𝑥′]𝑟 = 

{
𝐴𝑥′(𝑡) = 𝑓(𝑡, 𝑥) = 𝐺(𝑡, 𝑥, 𝑥),     𝑥(𝑡0) = 𝑥0

𝐴𝑥′
′(𝑡) = 𝑓(𝑡, 𝑥) = 𝐹(𝑡, 𝑥, 𝑥),     𝑥(𝑡0) = 𝑥0

   (3.6) 

Where [. ]𝛼 is the symbol of 𝑟-cut, and  

{
𝐺(𝑡, 𝑥, 𝑥) = 𝑚𝑎𝑥{𝑓(𝑡, 𝑢)|𝑢 ∈ [ 𝑥, 𝑥]},

𝐹(𝑡, 𝑥, 𝑥) = 𝑚𝑖𝑛{𝑓(𝑡, 𝑢)|𝑢 ∈ [ 𝑥, 𝑥]},
            (3.7) 

Theorem 3.1. The Z-numbers initial value problem 

(ZIVP) in relation (3.1) has a unique Z-process solution. 

Proof. According to [17], relations (3.1) and (3.4) are 

mathematically equivalent. In (3.4), 𝐴𝑥′ represents a fuzzy 

function defined in (3.5). For each 𝛼 -cut, the relation (3.5) 

and relation (3.6) are equivalent. Furthermore, Theorem 3.2 

in [15] guarantees the existence of a unique solution to the 

fuzzy initial value problem in (3.6). An analogous argument 

applies to 𝐵𝑥′ . Consequently, the uniqueness of the solution 

to ZIVP (3.1) follows directly. 

Assumption, 𝑥𝑇(𝑡) is an approximate solution for 𝑍 (𝑡) of 

Relation (3.5). It is defined as follows: 

𝑥𝑇(𝑡) = (𝐴𝑇(𝑡), 𝐵𝑇(𝑡))                                          (3.8) 

Where  

𝐴𝑇(𝑡) = (𝐴𝑇(𝑡), 𝐴𝑇(𝑡)),                                               (3.9) 

𝐵𝑇(𝑡) 

= {
1                            𝑖𝑓    𝐴𝑇(𝑡0) = 𝐴(𝑡0)                  

1 − (𝑒−𝜆𝑍)|𝐴𝑇
  𝑖𝑓   𝐴𝑇(𝑡0) ≠ 𝐴(𝑡0),   𝜆 ∈ [0,1].

 (3.10) 

And 

{
𝐴𝑇(𝑡) = 𝑓1(𝐴𝑇(𝑡0), 𝑁𝐴 

(𝑡, 𝑝) ) 

𝐴𝑇(𝑡) = 𝑓2(𝐴
𝑇

(𝑡0), 𝑁𝐴 
(𝑡, 𝑝) )

                                    (3.11) 

 

Where 𝑓𝑖 , ∀𝑖 = 1,2 is an arbitrary function based on the 

neural network. In this work, we define 𝑓 as follows 

𝑓(𝐴𝑇(𝑡0), 𝑁𝐴 
(𝑡, 𝑝) ) = 𝐴𝑇(𝑡0) − 𝑡𝑁𝐴 

(𝑡, 𝑝), 

Where 𝑁𝐴 
is the artificial neural network and its formula is 

shown in relation (3.17). 

𝐵𝑇(𝑡) = 𝑝(𝑋𝑇(𝑡)  𝑖𝑠  𝐴𝑇(𝑡))                                         (3.12) 

𝐵𝑇  is a probability distribution function based on 𝐴𝑇, which 

can vary depending on the type of problem and the initial 

and boundary conditions. The criterion is determined 

according to the type of problem and the initial condition. 

Now we have to be derived 

𝑥′𝑇(𝑡) = (𝐴′𝑇(𝑡), �̂�𝑇(𝑡))                                              (3.13) 

Where 

𝐴′𝑇(𝑡) = (𝐴′𝑇(𝑡), 𝐴′𝑇(𝑡)),                                  

So that: 

: {
𝐴′𝑇(𝑡) = 𝑡

𝜕𝑓1

𝜕𝑡
(𝐴𝑇(𝑡0), 𝑡𝑁𝐴 

(𝑡, 𝑝) )  

𝐴′𝑇(𝑡) = 𝑡
𝜕𝑓2

𝜕𝑡
(𝐴

𝑇
(𝑡0), 𝑡𝑁𝐴 

(𝑡, 𝑝) ) 

                               (3.14) 

and 

�̂�𝑇(𝑡) = 𝑝(𝑋′𝑇(𝑡)  𝑖𝑠  𝐴′𝑇(𝑡))                                      (3.15) 

�̂�𝑇(𝑡) = {
1                                𝑖𝑓    𝐴′𝑇(𝑡0) = 𝐴′(𝑡0) 

1 − (𝑒−𝜆𝑦)|𝐴′
𝑇

      𝑖𝑓  𝐴′
𝑇(𝑡0) ≠ 𝐴′(𝑡0) 

  (3.16) 

Consider a MLP architecture consisting of: 

 - A single hidden layer containing H neurons with 

hyperbolic tangent activation functions 

- A linear output unit 

    Under this configuration, we establish the following: 

 



Ezadi et al/ Future Research in AI & IoT, 2025, 1(2) 

4 
 

𝑁𝐴 = ∑ 𝑉𝑖

𝐻

𝑖=1

𝑆(𝑄𝑖),       𝑄𝑖 = 𝑤𝑖𝑡 + 𝑏𝑖                       (3.17) 

Where 𝑤𝑖  is a weight parameter from input layer to the ith 

hidden layer, 𝑉𝑖 is an ith weight parameter from hidden 

layer and 𝑄𝑖  signify the bias term associated with the ii-th 

hidden unit. The output of the ii-th hidden unit is processed 

through an arbitrary hyperbolic tangent activation function, 

denoted as SS. In neural networks, activation functions are 

employed to constrain the output of neurons, typically 

confining their values to intervals such as [0,1] or [-1.1]. In 

this framework, we utilize both a linear activation function 

and a hyperbolic tangent activation function, though, in 

principle, alternatives such as a sigmoid function (or 

hyperbolic tangent) may also be applied. The hyperbolic 

tangent function maps its output to the interval [-1.1] and is 

differentiable, making it particularly suitable for training 

multi-layer networks via error backpropagation algorithms. 

We now consider a MLP architecture comprising a single 

hidden layer with sigmoidal activation units and a linear 

output unit. To facilitate subsequent analysis, we derive the 

first-order derivatives as follows: 

𝑆(𝑄𝑖) =
1

1 + 𝑒−𝑄𝑖
                                         (3.18) 

𝑆′(𝑄𝑖) = (1 − 𝑆(𝑄𝑖)) 𝑆(𝑄𝑖)                                   (3.19) 

The derivatives of 𝑁 with respect to input 𝑥𝑖 is: 

𝜕𝑁𝐴

𝜕𝑡
= ∑ 𝑉𝑖

𝐻

𝑖=1

𝑤𝑖𝑆′(𝑄𝑖)                             (3.20) 

Consequently, the total error function to be minimized with 

respect to all trainable parameters of the neural network is 

given by: 

𝐸(𝑝) = ∑([𝑥′(𝑡)]𝑍 − 𝑥′𝑇(𝑡))
2

𝑚

𝑖=1

                             (3.21) 

For relation (3.21), we have 

 ∑ 𝑒
(𝑥′

𝐴1
(𝑡𝑖,𝑝)−𝑥′

𝑇𝐴1
(𝑡𝑖,𝑝))

2 

− 𝑒
(𝑥′

𝐴2
(𝑡𝑖,𝑝)−𝑥′

𝑇𝐴2
(𝑡𝑖,𝑝))

2 
𝑚

𝑖=1

𝑝
𝑚𝑖𝑛  

(3.22) 

The objective function in (3.22) can be optimized via the 

BFGS quasi-Newton technique [12]. 

 

4. Numerical Examples 

In this section, we present two numerical examples to 

demonstrate the behavior and key characteristics of the 

proposed method. The computational experiments were 

performed in MATLAB R2012a, utilizing the unconstrained 

optimization solver fminunc to minimize the objective 

function defined in Equation (3.15). The initial weight 

parameters were initialized using a random sampling 

scheme. 

Example 1. We examine a first-order differential equation 

with Z-number initial conditions (ZIVP) of the form:                                                 

{
𝑋′ = 𝑋(𝑡),                𝑡 ∈ [0,1]                                          

𝑋(0) = ((0.75 + 0.25𝑟, 1.125 − 0.125𝑟), (1))        
(4.1) 

The exact solution (for 𝑡 = 1) of the ZIVP is: 

𝑋(1, 𝑟) = (((0.75 + 0.25𝑟)𝑒, (1.125 − 0.125𝑟)𝑒), 1

− (𝑒−𝜆𝑍)|𝐴) , 𝑟 ∈ [0,1]  (4.2) 

The trial solution is given as 

𝑋𝑇(𝑡) = ((𝐴𝑇(𝑡), 𝐴𝑇(𝑡)) , 𝐵𝑇(𝑡))                            (4.3) 

Where 

{
𝐴𝑇(𝑡) = 0.75 + 0.25𝑟 + 𝑡𝑁𝐴1

(𝑡, 𝑝)    

𝐴𝑇(𝑡) = 1.125 − 0.125𝑟 + 𝑡𝑁𝐴2
(𝑡, 𝑝)

                    (4.4) 

𝐵𝑇 = {
1                                𝑖𝑓    𝐴𝑇(𝑡0) = 𝐴(𝑡0)

1 − (𝑒−𝜆𝑦)|𝐴𝑇
      𝑖𝑓   𝐴𝑇(𝑡0) ≠ 𝐴(𝑡0)

       (4.5) 

Where 𝑡 ∈ [0,1]. The error function was trained using a 

network architecture comprising 𝐻 =  5 sigmoidal 

activation units in the hidden layer, evaluated across 𝑚 =

 50 uniformly distributed discretization points within the 

interval [0, 1]. The exact solutions for 𝑋 are presented in 

Table 4.1, while the optimized weight and bias parameters 

are tabulated in Table 4.2. A comparative analysis between 

the radial basis function (RBF) approach [18] and our 

proposed methodology is provided in Table 3. Figure 1 

illustrates both the analytical solution and the trial function 

at the specific temporal value 𝑡 = 1. 

Table 4.1. The exact 𝑿  solutions for Example 1 (𝝀 = 𝟏). 

𝑩 (𝒕) 𝑨 (𝒕) 𝑨 (𝒕) 𝒓 

0.916781991 3.058067 2.038711 0 

0.926959521 3.024088 2.106668 0.1 

0.936631141 2.990110 2.174625 0.2 

0.945835810 2.956131 2.242582 0.3 

0.954609983 2.922152 2.310539 0.4 

0.962987909 2.888174 2.378496 0.5 

0.971001959 2.854195 2.446453 0.6 

0.978682374 2.820217 2.514410 0.7 

0.986057857 2.786238 2.582367 0.8 

0.993155222 2.752260 2.650324 0.9 

1.000000000 2.718281 2.718281 1 

 

Table 4.2. The numerically determined optimal weights 𝒘, 𝒗 

and biases 𝒃 that minimize the objective function for  

example 1. 

𝒊 1 2 3 4 5 
𝒗𝒊𝑨 -0.15411 2.860106 0.423156 0.72548 0.934447 

𝒘𝟏𝒊𝑨 1.62064 2.069084 0.410291 0.887180 1.591845 

𝒘𝟐𝒊𝑨 0.329611 -1.790976 0.482489 0.245760 -0.763779 

𝒃𝒊𝑨 0.202012 -2.395825 0.606070 0.496051 -0.258443 

𝒗𝒊𝑨 1.340129 0.067314 0.352386 1.548856 1.1187202 

𝒘𝟏𝒊𝑨 2.026426 0.534770 0.974960 1.161197 0.6929401 
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𝒘𝟐𝒊𝑨 -1.769286 0.244643 -0.062266 -1.41148 0.3465096 

𝒃𝒊𝑨 -1.59365 0.331701 0.363209 -0.97593 -0.280726 

 

Table 4.3. Comparison of the exact 𝑿  and  𝑿𝑻 approximated 

solutions for 𝝀 = 𝟏. 

Proposed method RBF method [18]  

𝑩𝑻(𝒕) 𝑨𝑻(𝒕) 𝑨𝑻(𝒕) 𝑩𝑻(𝒕) 𝑨𝑻(𝒕) 𝑨𝑻(𝒕) 𝒓 

0.916790338 3.058075 2.038778 0.874 3.04 2.00 0 

0.926960518 3.024085 2.106675 0.885 3.02 2.07 0.1 

0.936635951 2.990107 2.174666 0.899 2.99 2.14 0.2 

0.945835846 2.956165 2.242599 0.911 2.95 2.21 0.3 

0.954597251 2.922136 2.310402 0.925 2.92 2.28 0.4 

0.962989633 2.888173 2.378514 0.937 2.88 2.35 0.5 

0.971001155 2.854227 2.446465 0.950 2.84 2.42 0.6 

0.978683106 2.820183 2.514394 0.962 2.81 2.50 0.7 

0.986058567 2.786251 2.582387 0.975 2.78 2.57 0.8 

0.993156217 2.752261 2.650339 0.987 2.75 2.64 0.9 

0.999997888 2.718263 2.718295 1 2.71 2.71 1 

 

symbol real data and ■ symbol approximate data. 

 

Fig. 1. The graphical representation of Example 1's solution 

shows the exact solution superimposed with the numerical 

approximation, with evaluation points selected both within 

the interval [0, 1] and in its exterior region. 

 

 
Fig. 2. The convergence of the neural network weights for 

each 𝒓-cut. 

 

Example 2. Consider the following first-order ZIVP:                                                 

{
𝑋′ = 3𝑡2𝑋(𝑡),                𝑡 ∈ [0,1]                            

𝑋(0) = ((0.5√𝑟, 0.2√1 − 𝑟 + 0.5), (1))            
(4.6) 

The exact solution (for 𝑡 = 1) of the ZIVP is: 

𝑋(1, 𝑟) = ((0.5√𝑟𝑒, (0.2√1 − 𝑟 + 0.5)𝑒), 1

− (𝑒−𝜆𝑍)|𝐴) , 𝑟 ∈ [0,1]  (4.7) 

The trial solution is given as 

𝑋𝑇(𝑡) = ((𝐴𝑇(𝑡), 𝐴𝑇(𝑡)) , 𝐵𝑇(𝑡)) 

{
𝐴𝑇(𝑡) = 0.5√𝑟 + 𝑡𝑁𝐴1

(𝑡, 𝑝)                   

𝐴𝑇(𝑡) = 0.2√1 − 𝑟 + 0.5 + 𝑡𝑁𝐴2
(𝑡, 𝑝)

                (4.8) 

𝐵𝑇 = {
1                                𝑖𝑓    𝐴𝑇(𝑡0) = 𝐴(𝑡0)

1 − (𝑒−𝜆𝑍)|𝐴𝑇
     𝑖𝑓   𝐴𝑇(𝑡0) ≠ 𝐴(𝑡0)

   (4.9) 

Where 𝑡 ∈ [0,1]. This error function for the H = 5 Sigmoid 

function units in the hidden layer and for m = 50 equally 

spaced points inside the interval [0, 1] is trained. The exact 

𝑋  solutions can be seen in Table 4.4. The optimal value of 

the weights and biases are shown in Table 4.5. Table 6 

provides a quantitative comparison of the results obtained 

from the RBF method [18] and our proposed approach. The 

analytical solution alongside the trial function are 

graphically depicted in Figure 3 for the specific case when 

𝑡 =  1. 

Table 4.4. The exact 𝑿  solutions for Example 2 (𝝀 = 𝟏). 

𝑩 (𝒕) 𝑨 (𝒕) 𝑨 (𝒕) 𝒓 

0.149151904 1.90279 0.00000 0 

0.502726121 1.87489 0.42979 0.1 

0.613425457 1.84540 0.60782 0.2 

0.687997482 1.81399 0.74443 0.3 

0.745260379 1.78025 0.85959 0.4 

0.792405599 1.74356 0.96105 0.5 

0.833175486 1.70297 1.05278 0.6 

0.869989197 1.65691 1.13713 0.7 

0.904921316 1.60227 1.21565 0.8 

0.940867512 1.53106 1.28939 0.9 

1 1.35914 1.35914 1 

 

Table 4.5. The numerically determined optimal weights 𝒘, 𝒗 

and biases 𝒃 that minimize the objective function for  

Example 1. 

 

 

 

 

 

 

 

 

 

Table 4.6. The exact solution 𝑿 and its approximate 

counterpart 𝑿𝑻 are systematically compared for the specific 

case when 𝝀 takes unit value. 

𝒊 1 2 3 4 5 

𝒗𝒊𝑨 1.4862 -0.1474 -0.7942 0.9962 0.1256 

𝒘𝟏𝒊𝑨 1.6433 1.53310 0.7359 0.4520 0.7035 

𝒘𝟐𝒊𝑨 -1.0322 -0.0688 0.4702 0.5763 0.6266 

𝒃𝒊𝑨 -1.0013 -0.1832 0.0519 1.0962 0.1924 

𝒗𝒊𝑨 0.7624 -1.0011 1.3368 -0.3780 0.7421 

𝒘𝟏𝒊𝑨 0.0390 1.2951 1.3953 1.1182 1.1241 

𝒘𝟐𝒊𝑨 1.3646 0.4911 -0.4115 0.2215 -0.2635 

𝒃𝒊𝑨 1.6567 0.3276 -0.5685 0.4276 0.1246 

 



Ezadi et al/ Future Research in AI & IoT, 2025, 1(2) 

6 
 

Proposed method RBF method [18]  

𝑩𝑻(𝒕) 𝑨𝑻(𝒕) 𝑨𝑻(𝒕) 𝑩𝑻(𝒕) 𝑨𝑻(𝒕) 𝑨𝑻(𝒕) 𝒓 

0.14919892 1.90279 0.00000 0.687 1.87 -0.000000002 0 

0.502631957 1.87489 0.42979 0.769 1.85 0.41 0.1 

0.613424751 1.84540 0.60782 0.804 1.82 0.58 0.2 

0.687994362 1.81399 0.74443 0.833 1.79 0.72 0.3 

0.745258693 1.78025 0.85959 0.856 1.76 0.83 0.4 

0.792463446 1.74356 0.96105 0.878 1.72 0.93 0.5 

0.833178975 1.70297 1.05278 0.899 1.68 1.02 0.6 

0.869996219 1.65691 1.13713 0.919 1.64 1.11 0.7 

0.904923532 1.60227 1.21565 0.940 1.58 1.19 0.8 

0.940756364 1.53106 1.28939 0.963 1.51 1.27 0.9 

0.999660675 1.35914 1.35914 1 1.34 1.34 1 

 

 

symbol real data and ■ symbol approximate data. 

 

Fig. 3. The graphical representation of Example 2's solution 

shows the exact solution superimposed with the numerical 

approximation, with evaluation points selected both within 

the interval [0, 1] and in its exterior region. 

 

 

 
Fig. 4. The convergence of the neural network weights for 

each 𝜶-cut. 

 

The results of the proposed method in both of the above 

examples show that the approximate value obtained by the 

MLP method has much better accuracy compared to the 

RBF method [18]. 

 

5. Conclusion 

Many physical phenomena across mathematical sciences, 

physics, mechanics, and scientific computations are 

typically modeled using differential equations, with a 

significant portion operating in uncertain environments. 

Solving these equations analytically within finite or semi-

infinite domains proves challenging, often lacking both 

sufficient accuracy and computational efficiency. 

Consequently, numerical approaches become valuable for 

addressing such problems. This paper presents a novel 

approach using Z-number-based initial value differential 

equations (ZDEs) and develops a corresponding solution 

model employing MLP neural networks within a nonlinear 

optimization framework. We pioneer the application of 

neural networks for approximating solutions to ZDEs, 

specifically implementing sigmoid or hyperbolic tangent 

activation functions in the MLP's hidden layer to achieve 

high-precision results. A key benefit of our method lies in 

its flexibility to adjust both the number of hidden layers and 

training points according to problem-specific requirements, 

enabling enhanced solution accuracy. The fundamental 

motivation for employing neural networks stems from their 

well-established capability in function approximation tasks. 
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