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ABSTRACT. This paper discusses the optical soliton solutions of the stochastic resonant nonlin-
ear Schrodinger equation (SRNLSE). The equation has spatio-temporal dispersion, inter-modal
dispersion, multiplicative white noise, and nonlinearity under generalized Kudryashov’s law.
Optical soliton solutions in terms of bright, dark, periodic, and singular solitons are obtained
from this equation by using the % -expansion method and a new Kudryashov method. This
work provides insight into soliton dynamics in nonlinear optical systems with stochastic effects,
where complex dispersion interactions play a dominant role. Specifically, it shows how the
interplay of spatio-temporal dispersion (SPD) and inter-modal dispersion (IMD), in the pres-
ence of multiplicative noise, determines the behavior of solitons. We also discuss the effects
of multiplicative noise on the exact solutions of the nonlinear Schrédinger equation using the
Maple software. The stability of critical points is discussed by linearizing the system around
equilibrium solutions and graphically indicating the behavior of these solutions as well.

Keywords: White noise, Kudryashov’s law non-linearity, (%)-expansion method, New Kudryashov’s
method, Optical Solitons.

1. INTRODUCTION

The study of nonlinear stochastic partial differential equations (NSPDEs) is one of the signifi-
cant research areas with applications across various fields: modern physics, biology, superfluid
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dynamics, image processing, optical fiber communications, plasma physics, and finance [1-5].
That makes NSPDEs a very interesting and highly relevant subject in research.The most widely
studied stochastic process that is both a martingale and a Markov process is the Wiener process,
or Brownian motion [6]. The Wiener process is at the main concept of stochastic calculus and
is essential for modeling stochastic processes. It is a continuous process with increments that
follow a normal distribution over any time scale. This process is very extensively used in disper-
sive systems [7, 8]. There is also an intimate relationship between partial differential equations
(PDEs) and stochastic processes. Nonlinear Schrodinger equations (NLSEs) are among the most
widely used models in applied science due to their broad range of applications [9-12]. The study
of soliton solutions of these equations is very important in nonlinear science, as it explains the
underlying physical mechanisms behind complex natural phenomena. This area has evolved into
one of the most compelling and dynamic fields of research [13-15]. Recently, several new solitary
solutions have been introduced through innovative

Approaches to nonlinear equation models [16, 17]. Investigations of N-soliton solutions, from
which one can recover lump and rogue wave solutions, have been performed for both modified
Korteweg — De-Vries-type integrable equations and reduced integrable nonlinear Schrédinger-
type equations.

The study of NLSEs in optical solitons with nonlinearities has become a growing focus in non-
linear photonics [18, 19]. In recent years, various types of nonlinearities, including parabolic,
Kerr, power, polynomial, and saturable laws, have been explored [20].

Islam et al. examined the influence of wave dispersion and nonlinearity parameters on the
solitonic KMNE properties, noting that optical wave propagation takes forms such as bell-
shaped, bright, dark, periodic, kink, and singular, with dynamic features dependent on dispersion
parameters [21]. The significant solitonic applications of the Gross-Pitaevskii (GP) equation in
water waves and plasma physics, as a model for nonlinear unidirectional wave propagation, have
also been theoretically explored [22]. It was found that soliton characteristics are influenced by
free parameters and dispersion coefficients.

This paper will review recent advancements in statistical models based on NSPDEs. We will
focus on the Wiener process, discussing the extension of NLSEs and highlighting their relevance
in various contexts. Motivating applications will be considered, particularly the impact of the
noise term on the behavior of the solution, other methods for obtaining exact soliton solutions
[30-37].

1.1. Principal Model. This study introduces, for the first time, the stochastic resonant NLSE
incorporating both STD and IMD multiplicative noise in the Ito sense, along with generalized
Kudryashov’s law nonlinearity [23, 24].

iQi + aQus + BQut +7 ('?ﬁ) Q - i5Q.
d
+x(Q - 180 T L QP +hal@P" + QP
+03|QP" + b4 Q|M + c1]Q] " +e2| Q] + 65|Q P +es|QITMQ = 0, (1.1)

The wave profile is represented by the complex-valued function Q = Q(x,t) in this case. With
i? = —1, the parameters a, 3, 7, §, and are real-valued constants. In Eq.([L.1), the linear
temporal evolution is represented by the first term, while the chromatic dispersion (CD) and
STD terms are denoted by « and , respectively. The parameter denotes the coefficient of IMD, §,

and the coefficient of resonant nonlinearity, v .Then, bs and cg, (s = 1 — 4) are the coefficients
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of self-phase modulation, n is power nonlinearity parameter. Lastly, W(t) is the normal Wiener
process, and y is the coefficient of noise strength. The white noise is represented by dW(t)/dt .
This research investigates various aspects of noise’s impact on the new extension of the nonlinear
Schrodinger equation (NLSE) in the It o sense through the Wiener process. This is a broad
and captivating field with ongoing active research across various methodologies. We apply the
(%)—expansion method and the new Kudryashov method to derive new stochastic solutions for
the extended NLSE. Compared to most existing methods, the proposed approach offers several
advantages, including avoiding tedious calculations and producing essential solution families. It
is simple, reliable, and efficient. This method can serve as a universal solver for various natural
science systems. Additionally, it includes rational solutions, which are crucial for describing
wave behavior at critical points.

The stochastic solutions presented for Equation (EI) highlight a range of significant physical
phenomena, such as the behavior of erbium atoms, fiber-optic communications, oceanic rogue
waves,and the bending of light beams.

This article is organized as follows: Section 2 covers the mathematical analysis for Eq.(@).Section
3 introduces the extended ( %) -expansion method. Section 4 discusses the new Kudryashov’s
method with application. Section 5 gives stability analysis and finally, Section 6 presents the
conclusions.

2. MATHEMATICAL MODEL

Using a wave transformation including the Wiener process W (t) and the noise coefficient x, we
can solve the stochastic Eq.(|L.1), as follows:

Q (l‘, t) - B (y) ei(fnw+wt+XW(t)7X2t), (21)
and
y=x—ct, (2.2)

Here real constants x,w and ¢ are employed. The pulse shape can be represented by the real
function F = E(y), where k,w and _c stand for the wave number, soliton frequency, and soliton
velocity, respectively. By putting (@) and (@) into Eq.(@), we can conclude:

R:(y—cB+a)E"+ [(Br—1) (w—x*) — 6k — ar?| E+ b E"!
+ b2E2n+1 + 3E3n+1 4 b4E4n+1 4 ClElfn
+ B p BT 4 o BV = 0, (2.3)

and

’3:[(ﬁﬁ—l)c—Qom—é—l—B(w—)f)}E/(T):O (2.4)
From Eq.(@),
2 6 — -x?
c= ot b (w X ), provided [k # 1 (2.5)
Ok —1
By balancing E” and E4"*! in Eq. (@), we derive the balance M = % . Since M is not
an integer, we proceed by taking:

E(y) =[® ()2, provided ®(y)> 0. (2.6)
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Inserting (@) into Eq(@) yields:

2nme®d” + (1 — 2n)me®"? + 4n’cy + 4n’co®

+ 4n*m 02 + 4n?by®® + 4n’byd?

+ 40?37 + 4nci B3 + 4nby B3 + 4nbyd3 = 0.
Where

mo=y—cB+a, m=(Br-1) (W—X2) — ok — aK’.
For zintegr ability, one must choose:
by =b3=c1 =c3=0.

Consequently, Eq(@) can be rewritten as:

iQt + O‘wa + Bth + v <‘?C|;Im> Q

—i0Qu 1 x (@~ i5Qs) T

+ (B21QP" + ba QI + 2 1Q1 " + 4 Q@ = 0.
As a result, Eq(@) is replaced by:
2nme®P” + (1 — 2n)me®"? 4 4n’cy
+4n2cr® + 4n?m @ + An?by®® + An?by @t = 0.

In the following sections, we will solve Eq() using the following method.

We suppose that the Eq.([L.1)) has a form of solution as mention below:
G/

G/

3. THE EXTENDED (?> - EXPANSION METHOD

Assume that the solution of Eq(@) takes the following form [25]:

QW) =1y *é wGri(S)

ar\’ G\ ?
) e )

)

Where

While z and s are real constants.

The general solutions of Eq.(B.2) With respect to parameters z and s are given below.

Hzs>0 ‘
o (&) =/ [ m s =]

G? s risinh (2 |zs] y) + rcosh

<G/> B _\/@ risinh (2 |zs] y) + r1cosh (2 |zs] y) + 79
= (2 |

|25 y) — T2

213

(2.10)

(2.11)

(2.12)
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<CG¥;> - [M} ' (3.5)

By plugging Eq. () in Eq() and take sum all of terms with same W' equalize where
i = 0,1,2 and correlate the coefficient of distinct term of W* later a collection of total algebraic
equation is available as:

B:=0s5#0

ar\°
<G2> cAn’eq + Aneoly + 4n2771l(2) + Wol%22 + 4n2b2lg — 2mr0l%z2 + 4n2b4l§ =0,

) s An2eoly + 8nPmily g + 12n2bol2ly + dmgnszlgly + 16n2by0413 = 0,

) DAnPmyl3 4 2mgl3zs 4 12n%bolol3 4 2402041312 = 0,

%\@ %\@

( ) S An2bol? + dmons?loly + 16n2bylily = 0,
<G2> ﬂ'oszl% + 27707132[% + 4n?bylt = 0.

To solve the above equations with the support of Maple to get the successive solutions:
Result 1:

3mo
lh=+4/—
! \/ szmo + 2n2m 540,

lo = lo,
2ag (sznmg — nimy — szmg 4+ n’n
= o 0 12 0 1)7 (3.6)
3n
a(s22%m3 — 2s2n?momy + nin?)(2n — 1)
cp=—
4 3 (szmo + 2n?m) n? ’
(n+ 1) (szmo + 2n’m)
b2 = - )
3aogn?
(2n + 1) (szmo + 2n?m)
by = 55 . (3.7)
12agn
Where
T =7 — Cﬁ + «,
m = (Br — 1) (w - X2) — 6k — ak?,
B 204/@4-5—,8(@)—)(2)
N Br —1 ’
y=x — ct.
3.1. Case 1
Wzs>0

Enter the Eq(@) in the Eq() and find the following solution
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Ql(:c,t) =

oo e (Bt |

i(—Ratwt+x W (1) —x3t) (3-8)

X e

(a)

FI1GURE 1. Periodic and solitary wave behavior of the 2D and 3D structure under
the solution of Biswas Eq(@) with the parameters (z , t) .The 2D graph along
x = 01, 03, 09 where, z=1, s =2, n =3/2 ,a=02, =
03, 0=05, w=0.35, vy=05, W{t)=3t, x=1 ,rk=2,a =
1.22 , 1= 0.1, ro = 0.5.

Solution of Eq(@) is a soliton with a dark and bright structure with parameters n = %, z =1,
s = 2,;1 = 0.1 and ro = 0.5 of unlimited wings and conspiracy within Fig.1. The 3D plot
reported along with gap. 2 < z < 2 and —2 < t < 2 The 2D plot reported along with gap
—2 <t < 2 as variation is about x = 0.1,0.3,0.9.



216 First Author , First Author

60000~

50000—

40000~

30000—

i T T

20000~

10000—

ke e o, 2,
i e e e, T T

—

FET P PO ——
; - —— -

TNl
-

¥

FI1GURE 2. Periodic and solitary wave behavior of the 2D and 3D structure under
the solution of Biswas Eq(@) with the parameters (z , t) .The 2D graph along
x = 01, 03, 09 where, z=1, s =2, n =3/7 ,a=02, =
03, 0=05, w=0.35, vy=05, W({t)=3t, x=1 ,rk=2,a =
1.22 , 1= 0.1, ro = 0.5.

3

Solution of Eq(@) is a soliton with a dark and bright structure with parameters n =z, 2 =
l,s = 2,r1= 0.1 and ro = 0.5 of unlimited wings and conspiracy within Fig. 2. The 3D
plot reported along with gap. —2 <z < 2and —2 <t < 2The 2D plot reported along with
gap —2 <t < 2 as variation is about z = 0.1,b 0.3, 0.9.

By preceding the same path as previously, we also arrive at the subsequent solutions.

Hzs <0

Qﬂxj):
1
- \/3—71'0 VIzs| risinh (2\/ |zs|(x — ct)) + ricosh (2\/|zs|(x — ct)) + 72 .
0 - sao | —
s2mo + 2n?m § risinh (2\/|zs| (z — ct)) + r1cosh (2\/ |zs|(x — ct)) — 1o
% ei(fnerwH»xw(t)fXQt)’ (3.9)

Solution of Eq(@) is a soliton with a dark and bright structure with parameters n = 3, z =
0.6,s = —0.2,r 1= 0.1 and ro = 0.5 of unlimited wings and conspiracy within Fig E The 3D
plot reported along with gap —2 <z < 2and —2 <t < 2. The 2D plot reported along with
gap —2 < t < 2 as variation is about z = 0.1,0.3,0.9.

H:=0,5#0

1

Qs(z,t) = {lo + \/—‘mo?f;nzmsao <_ (S (r1(z —Tlct) + 7“2)))] )

% ei(—naz-&-wt—l—xw(t)—x%) (310)

Where
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FI1GURE 3. Periodic and solitary wave behavior of 2D and 3D structure under
the solution of Biswas Eq. (21) with the parameters (z , t) .The 2D graph along
x = 0.1, 0.3, 0.9, where,z=06, s =-02, n =3, a=02, g=
03, =05, w=035, vy=05 , W{)=3, x=1 , k=
2, apg = 1.22 , 'l = 0.1, ro = 0.5.

mo=7—-cB+a, le(ﬁﬁ—l)(w_x2)_5ﬁ_aﬁ2’
_2an+(5—ﬂ(w—x2)
°= Br —1 '

4. DESCRIPTION OF THE NEW KUDRYASHOV APPROACH

The Kudryashov approach employs a distinctive method, characterized by its reliance on the
following function [26]:

2cH
= 4.1
W) = Fz 1) cosh (09) + (HZF D sinh(oy)’ (41)
And the exponential form is given as,
2<H
= . 4.2
W (y) (H2€<0y :F l e_go—y) ( )
Where o, H, | are real numbers, ¢ = F1, and , W(y) adheres to this relation:
aw (y)\?
(dy(y)> —?W? (y) (1 +£1W (y)) = 0. (4.3)
Let us assume the solution as:
O (y) =D h(W W)Y, hn#0 (4.4)
j=0

Where, the unknown constants are hg, hy, ho, - - -
Additionally, Let us take the following solution for the Bernoulli’s equation approach:

P (y) = Z bj(W (y))ja bn 7é 0, (4'5)
=0
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Where, the unknown constants are by, b1, bs,- -+ and n is homogeneous balancing constants.
The function W (y) satisfies the following Bernoulli’s equation,
W' (y) =W (y) = W?(y). (4.6)

The solution of Bernoulli’s equation is given as,

W(y) = % + gtanh (gy> . (4.7)

Here, the homogeneous balance principle between ®®” and ®* gives M = 1. Thus, the
solution (4.4) is reduced as follows:

P (y)=ho+h 1W(y). (4.8)

Now, inserting the above solution into () and by evaluating the coefficients of different
powers of W(y), we obtain the following system of algebraic equations.

(W ())° : 4ncq + An?eaho + 4n’mih2 + An2bohd + An2byhy = 0,

(W (y))* : 4n%cahy + 8n%mihiho 4 2nmoo2hohy + 12n2boh2hy + 16
nbyhihd =0,

(W (9))? : moh20? + 4n’m1h? 4+ 12n2byhoh? + 24n2byh3h3 = 0,

(W () : 4n2bah? + 16n2byh3ho + dnmolhohio® = 0,

(W (9)* : moo? B2l + 4n2byh? + 2monoh?l = 0.

Solving the system using Mathematica or Maple yields these results:

Result 1:
_4n27r1 +o2mg h
\/ 1 1
ho ==+ o , hi=Mh
o
25 42
b ilo’«/—izm él';g 0 79 (n+ 1)
2 h1n2 )
by — _l027ro (2n+1)
4 4n2h?
N (2n3 T — nolmy — 2n’m + 027r0) \/—% h1 o
2= 3on? (4.9)
1
4 (R3(32n°73 — 32n30?momy — 10no*nE — 16n*7? + 16n%c mem; + 50'nd ),

~ 14410% mon?
Where
mo=v—cB+a, m=(Brk—1) (cu—x2) — 0k — aK?,
. 2a/£+5—,8(w—x2)
Br —1 '
Utilizing equations (@), (@), (@), and (@), the following solutions are acquired:

1
_4n271'1+0'27r0 h 2n
—eir, M )
Q4 (z,t) = | v 6lmo + h (( 2cH ))] o et(mrEtwttxW () —x>t) (4.10)

o H2esou £ e 59
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Where
mo=v—cB+a, m=(Br—1)(w-x?) —dk—ar? (4.11)
2 5 — —x?
c= aﬁ—i_ﬁ/{é(lw X), y=ux—ct. (4.12)

Where [ < 0.Utilizing equations (@), (@), (@), and (@), the acquisition of the subsequent

hyperbolic solutions:
_ 4n2mi+o3mg
i \V bimy 1

g

QS(xv t) =

1

2cH 2n
hn <(H2 — 1) cosh (o (z — ct)) + (H? 4+ 1) sinh (o (z — ct)))]

w i(—RaHWERXW (£)—x1) (4.13)

In case, we insert | = —H? into Eq(), the following bright solitary wave solitons are

acquired:
1
An2 2 2n
N [ n‘%ll:—g Oy h (gsech (o (x— ct)))
o

Qﬁ (CC,t) = H

« t(—RaHwiHXW (8)—x?t) (4.14)
In case, we insert [ = H? into Eq.(), the following singular solutions are acquired:

1
Y — 61l7to ! cesch(o(x — e)t))
+ + hy T

g

Q7 (x7 t) =

w l(—Ra+WiHXW (£)=xt) (4.15)

Result 2:

\/_ —8n3m —2nmgo?—4n2m —mgo?
24by
ho ==+

n
2nmol+lmg
Vo oy 9
o=t 7
n
4\/_ —8n37r1—2m72221rg4—4n27r1 —mgo? by (n + 1)
b2 = F )
n(2n +1)
1

(641572 — 64nto’mom; — 20n%0ing — 16nt7?

A TS T6ban?

+ 16n%0%mom + 504778),

1 —8n3m; — 2nmoo? — dn’my — moo?
g =1t5—5 —
3n 24b4

1
2
) (2n3 —nmy + o2 — 2n’%m + 7r002)> .

(4.16)
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Utilizing equations (@), (@), (@) and (), the following solutions are acquired:

\/_ —8n3m —2nmgo2—4n2m —mgo?
24by
+

n

2nmol+lmg 2n
VT a9 2¢H
— : )

n (H2e§a'( z—ct) F e—so( x—ct))

Qg (.’L‘, t) =

w i(—RaHwtXW (8)—xt) (4.17)

FIGURE 4. The comparison of Qg(x,t) where [ = -1, H =1, n = %, a =
03, =09, w=035 ~7=055Wt=3, x=1 oc=-1, &
3. b, =033, ¢=1.

Utilizing equations (@), (@), (@),and (), the acquisition of the subsequent hyperbolic
solutions:

\/_ —8n3m —2nmgo2—4n2m —mgo?
24by
+

n

2nmol+lmg 2n
i\/_ m4b4 "o ( 2cH )

n (H? —l)cosh (o (x — ct)) + (H? + 1) sinh (o(z — ct)

Qo (l‘, t) =

x ei(—nz—i-wt—l-)(W(t)—xzt)‘ (418)
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FIGURE 5. The dark and bell-shaped plots of Qg (z, t) and Q13 (x,t) where
l=-1, H =02 , n =3 |, a=03, =04 , 0=
05 , w=035, ~=05 ., WH =3 , y=1, 0=-02, k=

-3, by=033 ,c=1, hp=0.2.

In case, we insert | = —H? into Eq.(), the following bright solitary wave solitons are acquired:

—8n3m —2nmpo2—4n2m —moo? 2nmol+lm 2n
\/_ ; 25 = \/_ i O (gsech (o (z —ct))
Qlo(lﬁ, t) = |+ + s
n n H

x iRt W (H)—x*t) (4.19)
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FIGURE 6. The bright soliton graphs of Qio(x,t) where [ = —1, H
02, n =3 , a=03 =04 ,0=1 w=035 v=05, W(t
3t, y=1, 0=-25, k=-3, by=033¢=1.

10
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In case, we insert [ = H? into Eq.(), the following singular solutions are acquired:

o —8n3m —2nmpo2—4n2m —moo? __ 2nmol+lmg 2n
n \/ 2455 n by 9 <ccsch (o (x— ct))>

Qi (z,t) = o o I%

x ei(—nx—i—wt-l—xW(t)—th), (4.20)

Result 3:

6l7T0
hy= 4y —— 20y
! \/ An?my + moo? 07

(2n + 1) (4n?my + moo?)

41 =

24h2n?
ho(2n3m — nmoo? — 2n%my + meo?)
Cy) = 3 3
n
o _h% (8n37r1 — 10nmyo? — 4n’m + 5%002)
4 24n2 ’
1) (4 2 2
2:_(n+ )(n7r1—|-7r00). (4.21)
6h0n2
Utilizing equations (@), (@), (@), and (), the following solutions are acquired:
1
6lmo 2cH o
Quz (@) = | ho + \/_ 4dn2my + moo2 oo <(H26<U( z—ct)  Je=so( xct)))]
« ei(fnx+wt+xw(t)fx2t). (422)

Utilizing equations (@), (@), (@), and (),the acquisition of the subsequent hyperbolic
solutions:

1

g Glmo 2cH o
0 An2my + w02 0 \(H2 — 1) cosh (o (z — ct)) + (H? + 1) sinh (o(z — ct) ’

% ei(fmz+wt+xw(t)fx2t)‘ (423)

Qus(z,t) =

In case, we insert | = —H? into Eq.(), the following bright solitary wave solitons are acquired:

1

B 6lmo ssech (o (z —ct))\ | >
Qua(@1) = | ho £ \/_ 4n?my 4 moo? o x < H
« pi(—RatwtHxW () —xt) (4.24)

In case, we insert [ = H? into Eq.(), the following singular solutions are acquired:

1

6lmo sesch (o (z —ct))\ | >
ho+ 4/ ———=h
0 \/ An2m + moo? 07 % < H

x ei(—n:p+wt+xW(t)—X2t) (425)

Q15 (z,t) =
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FIGURE 7. The dark plot of Qg (x,t) and the bright plot of Q13 (x,t) where
l=-1,H =1, n =4,

3t
Result 4:

ho =

Cq4 = —

by = —
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FIGURE 8. The singular solution’s plots of Q14(z,t), where | = —1,H = 1,n =
0 =028=-01lw=0356=1,v=075 W(t)=3tx=10=—-02k =
“3ho =026 =1

Utilizing equations (@), (@), (@), and (),the following solutions are acquired:

1
_ 3lmg 2 2n
3n2cy 6\/ 8nZrit2mgo? v 9C2 " ( 2cH )

(n —1)(2n2m1 — moo2) (n —1)(2n2m — moo2) H2eso(z—ct) ] e—so(e—ct))

Q16 (2,t) =

iRt W () =x7t) (4.27)
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Utilizing equations (@), (@), (@) and () the acquisition of the subsequent hyperbolic

solutions:
/_ 3lmg 2
3’/2262 6 8n2m+2moo? ntoce

(n—1)(2n%m; — moo2) ~ (n — 1)(2n2m — meo?)

Qi7(z,t) = [

1

2§H 2n
(H? — l)cosh(o(x — ct)) + (H? 4 1)sinh(o(z — ct)
o t(—RaHwiXW (8)—x1) (4.28)

In case, we insert [ = —H? into Eq.(), the following bright solitary wave solitons are acquired:

/ 3l 2
Q (.’E t) o 3n262 n 6 _8n27r1—&7—l-87r002n oc2
A T (= 1)(2n2m — mo02) — (n— 1)(2n2m — mo?)

1

2n
y (csech (Uh([x - Ct)))] o pi(—REtEx W () —xt) (4.29)

In case, we insert | = H? into Eq.(), the following singular solutions are acquired:

3l 2
Q ( t) 3n262 n 6 V _8n27r1—:g7roa2n gC2
X =
A (n —1)(2n?m; — moo2) = (n —1)(2n2my — moo?)

1

2n
y <§686h(0}([x - Ct)))] % pi(—RaFwt+xW (£)=x3t) (4.30)

Result 5:

4 —4 —
h1::|:\/ l’nﬂ'lho lﬂ'lho 6lC2h0,

2n771h0 — 27T1h0 — C2
(n+1)(2nm hy — 2m1hy — c2)

by = —
2 2(n — 1)h2 ’
(271, + 1) ( 2nmihg — 2w hy — 02)
b4 =+ 3 ’
8hy (n — 1)

\/ —2nmi1hg + 2w ho + 3co
o=244/—- n
nmohg — moho
h0(4n27r1h0 — 6nmihy — 10nce 4+ 2w hg + des

8(n —1) ’

Utilizing equations (@), (@), (@) and (), the following solutions are acquired:

4inmihg — Alwiho — 6les 2GH n
hg+4/— ho
2nmirhg — 2w hg — ¢a (H26§U( x—ct) F1 e—so( x—ct))

—nz—&-wt—l—xW(t)—x%)’ (4.32)

)

cy = (4.31)

Q2 (z,1) =

x il
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Utilizing equations (@), (@), (@) and () the acquisition of the subsequent hyperbolic

solutions:

Q21 (z,1) =

4 —4 —
hO:l:\/ Inmihg Im1ho 6l62h0,

2’/L7T1h0 — 27T1h0 — C2

1

9cH 2n
. <(H2 — 1) cosh (o (x — ct)) + (H? + 1) sinh (o(x — ct))

« ei(—ﬁx+ut+xW(t)—x2t). (433)
In case, we insert | = —H? into Eq.(.33), the following bright solitary wave solitons are acquired:
3
dinmihg — 4lm hg — 6ley gsech(o(x — c)t)) "
t)= |ho£4/— h
Q22 (33, ) 0 \/ 2n771h0 — 27T1h0 — C2 0 X < H
x el(—RatwtaxW (O =x*t) (4.34)

In case, we insert [ = H? into Eq.(), the following singular solutions are acquired:

1

4inmihg — 4lmyhg — 6leg cesch(o(z — o))\ | >
t)= |hot4/— h
Q23 (:E? ) 0 \/ 27’L7T1h0 — 27T1h0 — C2 0% ( H
% ei(—mx+wt+xW(t)—x2t)7 (4.35)

Where

mo=7—cf+a, m=(fr-1)(w-x*) 0k —ar?,

20k + 6 — B(w — x?)
C =
OBk —1
Now, in order to explore numerous solitary wave solutions for the present model using the

Bernoulli’s equation method,we employ Eq.(#.5).This equation is transformed into the subse-
quent form by applying the homogeneous balance principle, resulting in M = 1:

P (y) =bo+ 01 W (y), (4.36)

Here, by incorporating the aforementioned solution into Eq() and employing both Eq(@)
and its derivative, we derive a polynomial representing the function W (y). The determination
of the coefficients corresponding to various powers of W(y) leads to the following system of
algebraic equations:

(W (y)° : 4n’ey + 4n2eobg + 4n2mi b3 + 4n2bobl + 4n2bybi = 0,
(W(y))l : 4n202b1 + 8n27T1b0b1 + 27r0nb0b17“2 + 12n2b2b(2)b1 + 16
n2bybby = 0,

(W (y))? : mob2r? — 6nmobobir + 4n’m1b? 4 12n%bebob? + 240>

byb?b2 = 0,
(W (y))? : —2mob?r + dnmoboby — 2nmob?r + 4n2byb3 + 1602,
bybiby = 0,

(W (y)* : mob? + 2nmob? + 4n2byb? = 0.



228 First Author , First Author

Solving the system using Mathematica or Maple yields these results:
Result 1:
Casel.1

by — (=3rmo + v/ —24n2momy + 3r272 )by
67 ’

by — 0 ((—37"71'0 + v/ —24n2mom + 3r2md)n o
2b1n2 37T0
—3rmo + \/—24n27707r1 + 3r273)

37‘(‘0

+7),

1
144mgn?
— 8n2r?mymy — rind)),
by = by,

cy = (b3(32n57% + 16n°r’momy + 2nrtnd — 16nin?

71'0(271 + 1)
4n2p?
1 0 <4(—3r7ro +v/—24n2mmy + 3r272)ndmy
T 12t 370
n (=3rmo + /—24n2mom; + 3r2md)nr?
3
4(—3rmy + \/—24n27ro771 + 3r27rg)n27rl
37‘1’0
(=3rmo + /—24n2momy + 3r272)r?

— 3 — 4An’rm — T37TO)).

r=r, by=

C9 3

+ 4n3rmy + nr37ro
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Case 1.2

(3rmy + \/—24n27rg771 + 3r2m3 )by

bo = —
0 67T0 ’
b, — ™ - (3rmo + /—24n?myms + 3r¥ag)n + nr
2= 2b1n2 371'0
3rmo + /—24n2momy + 3r27d)
+ 3o )
1
C4 = m(b%(?ﬂn%% +16n°r*momy + 2nr'ng — 1607}
TN
— 8n2?”27T07Tl - 7"47T8))’
bl = by, (4.37)
7'['0(271 + 1)
—r, b=
r=nh 4n2b? 7
1 (b ( 4(3rmo + \/—247127707“ + 37“2773)n3771
cy = -
27 o2\t 3mo
 (3rmo+ \/—24712;707T1 + 3r2mg)nr? + 4n3rmy 4 nrdmg
+ 4(3rmo + \/—24n2momy + 3r272)n’m
3mo
3 —24n? 3r2mg)r
L Brmo+ Vv n37ro7T1 AL L S r310)). (4.38)

Utilizing (@), (@), (), and (), the following hyperbolic function solutions are achieved:

(—37‘7r0 + /—24n2mom + 37“271'8) b1

67T0

+ b1 (g + Ztanh (g(ac - ct))>

(24 (:Ea t) = 9

% ei(—nx+wt+xW(t)—X2t)_ (4.39)

Result 2:
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FIGURE 9. The kink-type plots of Qa4(x,t)) and
1, H=-02
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Case 2.1

by =

by

Q26 (X7 t)7 Where7
a=02 f=-04 w=035,y=0.75,W (£

(legbl + \/3n2b%b% + 2n27r07r1 + dnmom + 27T07T1) bln

72 (n+1)3

— NI — TTL)),

m3(n+1)*

momib? b3 + 2n°min? + Tnindn? — 2n2mom b3 b3 4 8n3miw

_7['[) (2n+ 1)

)

(n + 1)71'0

(2n%bob? (n®b? b3 — n?b? b3 4 nimemy + nlmem

(n?b2(2n°01 b3 — n*b} b3 + An’mom b3b3 + 60

2_2 2 2 2 22
+2n’mgml — 2wy — mom)),

T =

2/3n2b2 b3 + 2n2mom + dnmomy + 2mem N

™0 (n+ 1)

r

(4.40)
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Case 2.2
by — (nboby — /3n2b3b3 + 2n2mgm + dnmomy + 2mem) byn
(n+1)mo ’
by — 0 (2n+1)
‘T 4n2b3
1
co = ﬁ(Zanzb% (n 3b2 b2 — n262 b2 + ndmom1 + nlmem
g5 (n+1)
—nmom, — 7T07T1)),
1

= ———— (b7 (2n°b} b3 — n*b} b3 + An’mom b} b3 + 6n*
my(n+1)
mom1b? b3 + 2n’mint + Tnindnd — 2nmom b3 b3 4 Sn3miTi

2 2 2 2 2 2 2
+2n°mgmi — 2nmgmy — mEmY)),

_ 2\/3n2b%b% + 2n2momy + dnmomy + 2memn
mo (n+1)
Utilizing (@), (@), (), and (), the following hyperbolic function solutions are

achieved:

: (4.41)

0 (LL‘ t) _ (nbgbl + \/37126%17% + 271271'071'1 + dnmom + 27['()71'1) bln
25 ) (’I’l T 1)7T0
1
+b; ( + 2tcmh( (x — ct)) )} on
% ei(—nm+wt+xW(t)—X t) (4.42)
Result 3:
Case 3.1
8n3my — nrimy + 31“\/—%712%0771 + %rzﬂgn
bo = —
0 12n2b,
8n?my — r2m + 37“\/—%712%0771 + r2md
+ 1271262
, —Sn2mym + ir2md(n+1)
1= 262712
by — 3(2n + 1) n2b3
L7 Sndm — nZr2m + 16031 — 2nr2mg + 8n2m — r2m
2= —rop 4(32n 2 L antr?momy — n?rind — 32nin? — an2r?momy + rind),
21
1
T —m(%ﬁn 3 4960 r?moms — 2nr 773 + 384n°7}

+ 144nSr2mon? — 3n?rS7d — 1280078 — 48n*r2mon? + rOnd). (4.43)
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Case 3.2
8nd3my — nrimy — 3r\/—§n27707r1 + %7‘271'(2) n
bo = —
].2()2?12
8n2my — rimy — 37“\/—%%271'07'('1 + %7271'(2)
12b2n2 ’
) —Sn2mym + Lr2nd (n+1)
1= 2b2n2 ’
- 3(2n + 1) n2b;
Y7 Sndm — n2r2mg + 16n3m — 2nr2my + 8n2m — r2m
1
e T (320572 + dntrPmomy — n?rind — 32nt7? — 4n? 4 rPimgmy 4 i)
2
1
4 = —W(%ﬁn 3 1 96nTr2mom? — 20317y + 384nSr3
+ 144n°r%mor? — 302573 — 1280573 — 48n'rmon} + rO7d). (4.44)

Utilizing (@), (@), (), and ()7 the following hyperbolic function solutions are achieved:
8ndm — nrimy + 37‘\/—§n27r07n +ir2n¢n
12b2n2

Qo6 (2,t) =

2 2 8 1
8n’my — r’m + 3r\/—§n27ro7r1 + 3727d

- 12byn2
1
2n
——n ToT1+3 Ly272 (n+1)
A A O (0t (50— 1)) |
w ei(—ratwtHxW(t)—x>t) (4.45)
Result 4:
\/M
b=V A
n
16 (3T p,
1 2
2n+1 7o (2n + 1)

\/—67T(]b4b(2) n — 4n27T07T1 — 37T0b4b(2) — 4’!27T07T1 — o7, ) nb4bg

* ot
mo(2n+1)

. /_2”10% 8 <3\/ —OT boby
o (2n + 1) mo (2n + 1)

\/—67rob4bg n — 4dn?momy — 3mobab3 — dnmom — T )
0 (2n + 1)

+
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_ 2n7£%+7r0 b4bo
4 2 2 2
10nbsb; —4 — Bbyb
o 2n+1) + 10n040q n-m 40 +7T1) )
. 6 (3 /_%ZH) bobs
= — 2b
2T | 0 (2n + 1)

\/—671'0()41)3 n — 47127['071'1 — 37T0b4b% - 477,71'07['1 - 7'('()71'1) nb4bo

+

0 (2n —+ 1)
o (2n+1)
. /_2"”;10% 6 <3 S TR boby
o (2n + 1) mo (2n + 1)
\/—6mobsb? n — dn2momy — 3mobab  — dnmom — 7r071'1>
* mo (2n + 1)
_2n7r0+7r0b b
4by 400
X o ) + dnbybd  — 202w — AbgbE 4+ nm + T
(3,/—7’70(?*1) boba
4
4by (n + 1) To@nFT) +
by = —
2 2n + 1
\/—67r0b4bg 'n,—4n27r07r1—371'017417(2J —4n7r07r1—7r07r1)
7r0(2n+1)
2n+1
\/W
mo@nr T+ 0o
2n +1 ’
2 (3 — oGt pob,
=+
" wentyl)

\/—6770b4b3 n — 477,271'077'1 — 371'0()41)% - 47‘&71'071’1 - 7T07T1> n

o (2n + 1)

Case 4.2

_ 2nmo+mg
V 4by
bh=t"+———

n

)

wo(2n+1)
1 ) ].6 <3 —OT b0b4

b
on+11|"° 7o (2n 4 1)

Cq4 =

\/—67'&'01)4()% n — 4n27T07T1 — 37T()b4b(2) — 4n71'07r1 — M7 ) nb4b0

0 (2n + 1)

233

(4.46)
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[“omgtm 8 (3 — TGt poby

o (2n + 1) o (2n + 1)
\/—67['()1)41)% n — 4n271'071’1 - 37T0b4b3 — 4n7r071'1 — T )
B 7o (2n + 1)
_2n770+770b b
aby 7470 2 2 2
10nbgb; —4 — Bbyb
X o D) + 10nbabg n’m —5baby +m) | |,
70 (2n+1)
1 ” 6 (3 —% boby
2T T |7 70 (2n+ 1)

\/767r0b4b3 n — 4dn?mom — 3mobab3 — dnmomy — mom1)nbabo
T (2n + 1)

[~ Znmpng 6@ — TGl poby
X

0 (2n+1) o (2n—|—1)
\/—67r0b4b(2) n — 4n27T07T1 — 37T0b4b% — 4n7r07r1 — 7T07T1)
™0 (2n+ 1)

_ 2nmo+mo b b
X %y 40 + 4nb4b3 —on’m — 4b4b3 + nm 4+ m ,
o (2n + 1)

(3\/ - WO(?;ZLD boby
4b4 (n + 1)

0 (2n+1)

by = —

2n+1

\/—67r0b4bg n—4n27ro771—37r0b4b% —4dnmom —7r07r1)>

o (2n+1)

2n+1

/_ 2n7r0+7ro
V4 + b()

7r0(2n+1)
2n+1

5 (3 EETCIEST A
+

)

ba

. _ (4.47)

0 (QTZ + 1)

\/767r0b4b% n — 4dn?mom — 3mobab3 — dnmom — 7r07T1> n

o (2n + 1)
Utilizing (@), (@), (), and (), the following hyperbolic function solutions are achieved:

_QWEI;FWQ
Qur (1) = [bo YT
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— + tanh
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< ei(—mx-ﬁ-wt—f—xW(t)—xzt)'

(5

235

1

o-en) )]

(4.48)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—50 0 50 100
(A) (B)
t=—200
0.7
0.3
0% ; . ; .
— 500 0 500 1000
X
t=10
0.9
0.3
0 r , ,
—500 0 500 1000
t= 200
0.7
0.3
—500 0 500 1000
FIGURE 11. The kink type plots of Qo7(z,t) where r =1, H = —0.2, n
2, a=03 pB=-06 w=035, 6=1, y=05, W({t)=3t, x=
1, o=-1, k=-3, b=0, b=0.33.
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5. STABILITY ANALYSIS
From Eq(@),by using the Galilean transformation [27],we obtain:

ad __
o = U (5.1)
& = gnaog (= (1= 2n)mo(®)? — 4n’cy — 4ncr® — 4n’m @2 — 4n’by®® — 4nh, &),

Which is not the Hamiltonian system as it does not satisfies the Hamiltonian’s condition [28].
b.1)

By putting n = 1/4, the Eq.( becomes,
% -u
_ (@)24B+CO+ DI’ L B34 FP (5.2)
dy (<] ’
b b
Where,B = 27!'0 C = 27r , D= 27;10 E = 2;0 = 27;‘0
By using the Eq. (@) we obtain the following equation,
du*  2U?
3 = g T2Be 1420 +2D0 + 2E3% + 2F 33, (5.3)
By solving the above Eq.(@), the following solution is obtained:

2 2 3 2
We can see that Eq(@) satisfies the Hamiltonian condition, we can write Eq.(@), as:

2 4
v <B 420D + DB 4 2EDP 4 P ) = 0. (5.4)

U? B o4
H(U,®) = < +2C<I>+D<I>2+3E<I>3+F >:h, (5.5)
From Eq.(@), we have:
@4
U=+V2\/h—=—-20d - DP2 — §E<I>3 - (5.6)
Now,
d
U _ _dy
B 2 ]
£v2 \Jh— B 208 - Da? — 2Ee3 - FE
dU
— | _—2VD (y+w). (5.7)
\/h—g—zc*@—D@?—%Eqﬂ—F%
Eq(@) let fo= h—=%2-, f=-2C, fo=—-D, f3= —%E, fa= —% , then by follows [29],

we have the following solutlons
When fo=fi=fs= 0, we have the following solution:

Qs (Jfat):(\/_fT sech v/Jz (y)) x ei(TReHetnV O3 (5.8)

With constraint condition fo > 0 and f4 < 0.
When f; = f3 =0, we have the following solution,

ng z, t _ /gfo /_fQ z —rx+wt+xW(t)—x t). (5'9)
4

With constraint condition f; < 0 and f; > 0.
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FIGURE 12. bright soliton for Qg(x,t) where a = 0.3, § = —0.4, w = 0.35, 6 =
0.75,v=0.5, W(t) =3t, x =1, k = =3, by = 0.33.
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FiGURE 13. dark soliton for Qgg((l?, ), where o« = =02, [ =05, w =
035, 6=1, v=05 , W) =3, x=1., k=3, by=0.33.

6. CONCLUSION

This article reported on the optical soliton solutions of the stochastic resonant nonlinear Schrédinger
equation, integrating spatio-temporal dispersion, inter-modal dispersion, nonlinearity, and mul-
tiplicative White noise under generalized Kudryashov’s law. This paper used the following
methods: ( 2 )-expansion method and the new kudryashov method, we got the extraction of
numerous sohton solutions, from which bright and dark, periodic, and even singular solitons
are attained, providing interesting details on how stochastic effects drive, complicated dynamics
within the soliton’s nonlinear optics systems.The presence of multiplicative noise significantly
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affects the propagation and stability of solitons in the interplay between STD and IMD. Graph-
ical representations of the soliton solutions illustrate how the noise and dispersion interactions
shape the dynamics of the solitons. The exact solutions of the SRNLSE, under the influence
of multiplicative noise, also reveal its effects on the profiles of the solitons. We have analyzed
the stability characteristics of critical points through stability analysis near equilibrium points,
which gives a deeper insight into the dynamical behavior of the system. This analysis underpins
the importance of nonlinear interactions and noise in determining the robustness of solitons.
This research contributes to advancing the understanding of soliton behavior in nonlinear op-
tical systems with stochastic influences. Future work could extend these ideas by considering
fractional and stochastic fractional variants of the SRNLSE, as well as practical implications in
optical communication systems, fiber lasers, and other nonlinear photonic devices.
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