- Heywood, J. B. (2018). Internal combustion engine fundamentals. McGraw-Hill Education. Columbus, United States.
- Ferguson, C. R., & Kirkpatrick, A. T. (2015). Internal Combustion Engines: Applied Thermosciences. Wiley, Hoboken, United States.
- Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12–71. doi:10.1016/j.pecs.2014.05.003.
- Baek, H. M., Jung, G. S., Vuong, Q. D., Lee, J. U., & Lee, J. W. (2023). Effect of Performance by Excessive Advanced Fuel Injection Timing on Marine Diesel Engine. Applied Sciences (Switzerland), 13(16), 9263. doi:10.3390/app13169263.
- Shuai, S., Abani, N., Yoshikawa, T., Reitz, R. D., & Park, S. W. (2009). Evaluation of the effects of injection timing and rate-shape on diesel low temperature combustion using advanced CFD modeling. Fuel, 88(7), 1235–1244. doi:10.1016/j.fuel.2009.01.012.
- Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19–30. doi:10.1016/j.energy.2018.05.144.
- Jung, D., & Assanis, D. N. (2001). Multi-zone di diesel spray combustion model for cycle simulation studies of engine performance and emissions. SAE Technical Papers. doi:10.4271/2001-01-1246.
- Li, J., Zhang, Z., Ye, Y., Li, W., Yuan, T., Wang, H., Li, Y., Tan, D., & Zhang, C. (2022). Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory. Energy, 260, 125056. doi:10.1016/j.energy.2022.125056.
- Ahmed, S. A., Zhou, S., Zhu, Y., Feng, Y., Malik, A., & Ahmad, N. (2019). Influence of injection timing on performance and exhaust emission of CI engine fuelled with butanol-diesel using a 1D GT-power model. Processes, 7(5), 299. doi:10.3390/pr7050299.
- Kamimoto, T., & Bae, M. H. (1988). High combustion temperature for the reduction of particulate in diesel engines. SAE Technical Papers, 880423. doi:10.4271/880423.
- Ladommatos, N., Abdelhalim, S. M., Zhao, H., & Hu, Z. (1996). The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions-part 1: Effect of reducing inlet charge oxygen. SAE Technical Papers, 961165. doi:10.4271/961165.
- Aldarwish, Z., Aghkhani, M. H., Sadrnia, H., & Zareei, J. (2024). Investigation of the optimal timing and amount of fuel injection on the efficiency and emissions of a diesel engine through experimentation and numerical analysis. Heliyon, 10(19), 38790. doi:10.1016/j.heliyon.2024.e38790.
- Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: Effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1–2), 114–135. doi:10.1016/j.combustflame.2004.04.006.
- Nehmer, D. A., & Reitz, R. D. (1994). Measurement of the effect of injection rate and split injections on diesel engine soot and NOx emissions. SAE Technical Papers, 940668. doi:10.4271/940668.
- Kook, S., Park, S., & Bae, C. (2008). Influence of early fuel injection timings on premixing and combustion in a diesel engine. Energy & Fuels, 22(1), 331–337. doi:10.1021/ef700521b.
- Mobasheri, R. (2015). Analysis the ECFM-3Z combustion model for simulating the combustion process and emission characteristics in a HSDI diesel engine. International Journal of Spray and Combustion Dynamics, 7(4), 353–372. doi:10.1260/1756-8277.7.4.353.
- Ruan, J., Xiao, H., Yang, X., Guo, F., Huang, J., & Ju, H. (2021). Effects of injection timing on combustion performance and emissions in a diesel engine burning biodiesel blended with methanol. Thermal Science, 25(4 Part A), 2819–2829. doi:10.2298/tsci191211202r.
- Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2–3), 226–236. doi:10.1016/j.applthermaleng.2005.05.006.
- Colin, O., Ducros, F., Veynante, D., & Poinsot, T. (2000). A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids, 12(7), 1843–1863. doi:10.1063/1.870436.
- Pei, Y., Hawkes, E. R., & Kook, S. (2013). Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 34(2), 3039–3047. doi:10.1016/j.proci.2012.07.033.
- Wei, M., Li, S., Liu, J., Guo, G., Sun, Z., & Xiao, H. (2017). Effects of injection timing on combustion and emissions in a diesel engine fueled with 2,5-dimethylfuran-diesel blends. Fuel, 192, 208–217. doi:10.1016/j.fuel.2016.11.084.
- Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proceedings of the Combustion Institute, 35(3), 3167–3174. doi:10.1016/j.proci.2014.06.040.
- Kundu, P., Pei, Y., Wang, M., Mandhapati, R., & Som, S. (2014). Evaluation of turbulence-chemistry interaction under diesel engine conditions with multi-flamelet rif model. Atomization and Sprays, 24(9), 779–800. doi:10.1615/AtomizSpr.2014010506.
- Costa, M., Catapano, F., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine. Applied Energy, 180, 86–103. doi:10.1016/j.apenergy.2016.07.089.
- Jafarmadar, S., Taghavifar, H., Taghavifar, H., & Navid, A. (2016). Numerical assessment of flow dynamics for various di diesel engine designs considering swirl number and uniformity index. Energy Conversion and Management, 110, 347–355. doi:10.1016/j.enconman.2015.12.035.
- Liu, K., Yang, J., Jiang, W., Li, Y., Wang, Y., Feng, R., Chen, X., & Ma, K. (2016). Effect of asynchronous valve timing on combustion characteristic and performance of a high speed SI marine engine with five valves. Energy Conversion and Management, 123, 185–199. doi:10.1016/j.enconman.2016.06.042.
- Liu, Y., Zhang, F., Zhao, Z., Dong, Y., Ma, F., & Zhang, S. (2016). Study on the synthetic scavenging model validation method of opposed-piston two-stroke diesel engine. Applied Thermal Engineering, 104, 184–192. doi:10.1016/j.applthermaleng.2016.03.094.
- Sadashiva Prabhu, S., Nayak, N. S., Kapilan, N., & Hindasageri, V. (2017). An experimental and numerical study on effects of exhaust gas temperature and flow rate on deposit formation in Urea-Selective Catalytic Reduction (SCR) system of modern automobiles. Applied Thermal Engineering, 111, 1211–1231. doi:10.1016/j.applthermaleng.2016.09.134.
- Taghavifar, H., Jafarmadar, S., Taghavifar, H., & Navid, A. (2016). Application of DoE evaluation to introduce the optimum injection strategy-chamber geometry of diesel engine using surrogate epsilon-SVR. Applied Thermal Engineering, 106, 56–66. doi:10.1016/j.applthermaleng.2016.05.194.
- Colin, O., & Benkenida, A. (2004). The 3-zones Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion. Oil & Gas Science and Technology, 59(6), 593–609. doi:10.2516/ogst:2004043.
- Hanjalić, K., Popovac, M., & Hadžiabdić, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow, 25(6), 1047–1051. doi:10.1016/j.ijheatfluidflow.2004.07.005.
- Popovac, M., & Hanjalic, K. (2007). Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow, Turbulence and Combustion, 78(2), 177–202. doi:10.1007/s10494-006-9067-x.
- Husberg, T., Denbratt, I., Ringvik, M., & Engström, J. (2005). Heavy-duty diesel combustion with ultra-low NOx and SOOT emissions - A comparison between experimental data and CFD simulations. SAE Technical Papers. doi:10.4271/2005-01-0380.
|