- Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news: Addressing fake news requires a multidisciplinary effort. Science, 359(6380), 1094–1096. doi:10.1126/science.aao2998.
- Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. doi:10.1126/science.aap9559.
- Guo, Y., Ji, S., Fang, X., Chiu, D. K. W., Cao, N., & Leung, H. (2025). An Unsupervised Fake News Detection Framework Based on Structural Contrastive Learning. Cybersecurity, 8(1). doi:10.1186/s42400-024-00342-5.
- Xie, B., Ma, X., Wu, J., Yang, J., Xue, S., & Fan, H. (2023). Heterogeneous Graph Neural Network via Knowledge Relations for Fake News Detection. 35th International Conference on Scientific and Statistical Database Management, 1–11. doi:10.1145/3603719.3603736.
- Kuntur, S., Krzywda, M., Wróblewska, A., Paprzycki, M., & Ganzha, M. (2024). Comparative Analysis of Graph Neural Networks and Transformers for Robust Fake News Detection: A Verification and Reimplementation Study. Electronics (Switzerland), 13(23), 4784. doi:10.3390/electronics13234784.
- Mridha, M. F., Keya, A. J., Hamid, Md. A., Monowar, M. M., & Rahman, Md. S. (2021). A Comprehensive Review on Fake News Detection With Deep Learning. IEEE Access, 9, 156151–156170. doi:10.1109/access.2021.3129329.
- Aïmeur, E., Amri, S., & Brassard, G. (2023). Fake news, disinformation and misinformation in social media: a review. Social Network Analysis and Mining, 13(1), 1–36. doi:10.1007/s13278-023-01028-5.
- Farhangian, F., Cruz, R. M. O., & Cavalcanti, G. D. C. (2024). Fake news detection: Taxonomy and comparative study. Information Fusion, 103, 102140. doi:10.1016/j.inffus.2023.102140.
- Ma, J., Gao, W., & Wong, K. F. (2018). Rumor detection on twitter with tree-structured recursive neural networks. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 1, 1980–1989. doi:10.18653/v1/p18-1184.
- Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 34(1), 549–556. doi:10.1609/aaai.v34i01.5393.
- Ozcelik, O., Toraman, C., & Can, F. (2025). Detecting Misinformation on Social Media using Community Insights and Contrastive Learning. ACM Transactions on Intelligent Systems and Technology, 16(2). doi:10.1145/3709009.
- Truică, C. O., Apostol, E. S., & Karras, P. (2024). DANES: Deep Neural Network Ensemble Architecture for Social and Textual Context-aware Fake News Detection. Knowledge-Based Systems, 294, 111715. doi:10.1016/j.knosys.2024.111715.
- Jovanović, A., & Ross, B. (2023). Rumour Detection in the Wild: A Browser Extension for Twitter. 3rd Workshop for Natural Language Processing Open Source Software, NLP-OSS 2023, Proceedings of the Workshop, 130–140. doi:10.18653/v1/2023.nlposs-1.15.
- Koloski, B., Stepišnik Perdih, T., Robnik-Šikonja, M., Pollak, S., & Škrlj, B. (2022). Knowledge graph informed fake news classification via heterogeneous representation ensembles. Neurocomputing, 496, 208–226. doi:10.1016/j.neucom.2022.01.096.
- Shen, X., Huang, M., Hu, Z., Cai, S., & Zhou, T. (2024). Multimodal Fake News Detection with Contrastive Learning and Optimal Transport. Frontiers in Computer Science, 6. doi:10.3389/fcomp.2024.1473457.
- Mu, G., Chen, C., Li, X., Chen, Y., Dai, J., & Li, J. (2025). CLAAF: Multimodal fake information detection based on contrastive learning and adaptive Agg-modality fusion. PLoS ONE, 20(5 MAY), 322556. doi:10.1371/journal.pone.0322556.
- Liu, H., Wang, W., & Li, H. (2023). Interpretable Multimodal Misinformation Detection with Logic Reasoning. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 9781–9796. doi:10.18653/v1/2023.findings-acl.620.
- Ahmad, P. N., Guo, J., AboElenein, N. M., Haq, Q. M. ul, Ahmad, S., Algarni, A. D., & A. Ateya, A. (2025). Hierarchical graph-based integration network for propaganda detection in textual news articles on social media. Scientific Reports, 15(1). doi:10.1038/s41598-024-74126-9.
- Farhoudinia, B., Ozturkcan, S., & Kasap, N. (2024). Emotions unveiled: detecting COVID-19 fake news on social media. Humanities and Social Sciences Communications, 11(1), 504. doi:10.1057/s41599-024-03083-5.
- Wu, X., Huang, K.-H., Fung, Y., & Ji, H. (2022). Cross-document Misinformation Detection based on Event Graph Reasoning. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi:10.18653/v1/2022.naacl-main.40.
- Roostaee, M. (2022). Citation Worthiness Identification for Fine-Grained Citation Recommendation Systems. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 46(2), 353–365. doi:10.1007/s40998-021-00472-3.
- Giachanou, A., Ghanem, B., Ríssola, E. A., Rosso, P., Crestani, F., & Oberski, D. (2022). The impact of psycholinguistic patterns in discriminating between fake news spreaders and fact checkers. Data & Knowledge Engineering, 138, 101960. doi:10.1016/j.datak.2021.101960.
- Pillai, S. E. V. S., & Hu, W.-C. (2023). Misinformation Detection Using an Ensemble Method with Emphasis on Sentiment and Emotional Analyses. 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA), 295–300. doi:10.1109/sera57763.2023.10197706.
- Abdali, S., Shaham, S., & Krishnamachari, B. (2024). Multi-modal Misinformation Detection: Approaches, Challenges and Opportunities. ACM Computing Surveys, 57(3). doi:10.1145/3697349.
- Yue, Z., Zeng, H., Kou, Z., Shang, L., & Wang, D. (2022). Contrastive Domain Adaptation for Early Misinformation Detection. Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2423–2433. doi:10.1145/3511808.3557263.
- Nan, Q., Cao, J., Zhu, Y., Wang, Y., & Li, J. (2021). MDFEND: Multi-domain Fake News Detection. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 3343–3347. doi:10.1145/3459637.3482139.
- Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., & Krishnan, D. (2020). Supervised contrastive learning. 34rd Conference on Neural Information Processing Systems (NeurIPS 2020), 33, 18661-18673, 6-12, December, 2020, Vancouver, Canada.
- Huang, L., Zhang, C., & Zhang, H. (2020). Self-adaptive training: beyond empirical risk minimization. Advances in neural information processing systems, 33, 19365-19376.
- Cavus, N., Goksu, M., & Oktekin, B. (2024). Real-time fake news detection in online social networks: FANDC Cloud-based system. Scientific Reports, 14(1). doi:10.1038/s41598-024-76102-9.
- Wan, H., Feng, S., Tan, Z., Wang, H., Tsvetkov, Y., & Luo, M. (2024). DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection. Findings of the Association for Computational Linguistics ACL 2024, 2637–2667. doi:10.18653/v1/2024.findings-acl.155.
- Ma, J., Gao, W., & Wong, K.-F. (2017). Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. doi:10.18653/v1/p17-1066.
- Liu, Y., & Wu, Y. F. B. (2018). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 32(1), 354–361. doi:10.1609/aaai.v32i1.11268.
- He, Z., Li, C., Zhou, F., & Yang, Y. (2021). Rumor Detection on Social Media with Event Augmentations. SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020–2024. doi:10.1145/3404835.3463001.
- Zhou, X., Wu, J., & Zafarani, R. (2020). SAFE: Similarity-Aware Multi-modal Fake News Detection. Advances in Knowledge Discovery and Data Mining. PAKDD 2020. Lecture Notes in Computer Science, vol 12085. Springer, Cham, Switzerland. doi:10.1007/978-3-030-47436-2_27.
- Alghamdi, J., Lin, Y., & Luo, S. (2023). Towards COVID-19 fake news detection using transformer-based models. Knowledge-Based Systems, 274, 110642. doi:10.1016/j.knosys.2023.110642.
- Yue, Z., Zeng, H., Zhang, Y., Shang, L., & Wang, D. (2023). MetaAdapt: Domain Adaptive Few-Shot Misinformation Detection via Meta Learning. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.286.
- D'Angelo, F., Andriushchenko, M., Varre, A. V., & Flammarion, N. (2024). Why do we need weight decay in modern deep learning?. Advances in Neural Information Processing Systems, 37, 23191-23223.
- Roostaee, M. (2024). Language-independent Profile-based Tag Recommendation for Community Question Answering Systems. International Journal of Engineering Transactions C: Aspects, 37(12), 2547–2559. doi:10.5829/ije.2024.37.12c.13.
- Dorrani, Z. (2025). Anomaly Detection in Emerging Crimes with Deep Autoencoder Contributions of Science and Technology for Engineering, 2(3), 45-56. doi:10.22080/cste.2025.28900.1023.
- Rasouli, A., Mikaeil, R., Atalou, S., & Esmaeilzadeh, A. (2025). Optimizing Traditional Clustering Methods Using Meta-Heuristic Algorithms for Joint Set Identification in Copper Mines. Contributions of Science and Technology for Engineering, 2(3), 57-72. doi:10.22080/cste.2025.29024.1032.
|