- Cakir, F., Acar, V., Aydin, M. R. Experimental and numerical assessment of intraply hybrid composites strengthened RC deep beams. Mechanics of Advanced Materials and Structures, 2025; 1-24. doi:10.1080/15376494.2025.2476208.
- Fathalla, E., Mihaylov, B. Shear behaviour of deep beams strengthened with high-strength fiber reinforced concrete jackets. Engineering Structures, 2025; 325: 119404. doi:10.1016/j.engstruct.2024.119404.
- Liu, C., Xu, D., Duanmu, X. Analysis of shear strength influencing factors in reinforced concrete deep beams: A modified calculating model. Journal of Building Engineering, 2024; 95: 110243. doi:10.1016/j.jobe.2024.110243.
- Tamimi, M. F., Alshannaq, A. A., Abu Qamar, M. a. I. Enhancing reliability in reinforced concrete deep beams through probabilistic analysis and topology optimized strut-and-tie models. Structures, 2024; 70: 107872. doi:10.1016/j.istruc.2024.107872.
- Prayoonwet, W., Koshimizu, R., Ozaki, M., Sato, Y., Jirawattanasomkul, T., Yodsudjai, W. Shear strength prediction for RC beams without shear reinforcement by neural network incorporated with mechanical interpretations. Engineering Structures, 2024; 298: 117065. doi:10.1016/j.engstruct.2023.117065.
- AlHamaydeh, M., Markou, G., Bakas, N., Papadrakakis, M. AI-based shear capacity of FRP-reinforced concrete deep beams without stirrups. Engineering Structures, 2022; 264: 114441. doi:10.1016/j.engstruct.2022.114441.
- Zhang, G., Ali, Z. H., Aldlemy, M. S., Mussa, M. H., Salih, S. Q., Hameed, M. M., Al-Khafaji, Z. S., Yaseen, Z. M. Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model. Engineering with Computers, 2022; 38: 15-28. doi:10.1007/s00366-020-01137-1.
- Baghdadi, A., Babovic, N., Kloft, H. Fuzzy Logic, Neural Network, and Adaptive Neuro-Fuzzy Inference System in Delegation of Standard Concrete Beam Calculations. Buildings, 2023; 14: 15. doi:10.3390/buildings14010015.
- Feng, D.-C., Wang, W.-J., Mangalathu, S., Hu, G., Wu, T. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Engineering Structures, 2021; 235: 111979. doi:10.1016/j.engstruct.2021.111979.
- Chou, J.-S., Pham, A.-D. Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Construction and Building Materials, 2013; 49: 554-563. doi:10.1016/j.conbuildmat.2013.08.078.
- Kaloop, M. R., Roy, B., Chaurasia, K., Kim, S.-M., Jang, H.-M., Hu, J.-W., Abdelwahed, B. S. Shear strength estimation of reinforced concrete deep beams using a novel hybrid metaheuristic optimized SVR models. Sustainability, 2022; 14: 5238. doi:10.3390/su14095238.
- Vapnik, V. N. The Nature of Statistical Learning Theory. 2nd ed. New York (NY): Springer International Publishing; 1999. doi:10.1007/978-1-4757-3264-1.
- Megahed, K. Prediction and reliability analysis of shear strength of RC deep beams. Scientific Reports, 2024; 14: 14590. doi:10.1038/s41598-024-64386-w.
- Chen, R., Zhang, P., Wu, H., Wang, Z., Zhong, Z. Prediction of shield tunneling-induced ground settlement using machine learning techniques. Frontiers of Structural and Civil Engineering, 2019; 13: 1363-1378. doi:10.1007/s11709-019-0561-3.
- Liu, Z., Wu, D., Liu, Y., Han, Z., Lun, L., Gao, J., Jin, G., Cao, G. Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction. Energy Exploration & Exploitation, 2019; 37: 1426-1451. doi:10.1177/0144598718822400.
- Acar, E., Rais-Rohani, M. Ensemble of metamodels with optimized weight factors. Structural and Multidisciplinary Optimization, 2009; 37: 279-294. doi:10.1007/s00158-008-0230-y.
- Chou, J.-S., Yang, K.-H., Lin, J.-Y. Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods. Journal of Computing in Civil Engineering, 2016; 30: 04016036. doi:10.1061/(ASCE)CP.1943-5487.0000595.
- Hoang, N.-D., Tran, X.-L., Nguyen, H. Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model. Neural Computing and Applications, 2020; 32: 7289-7309. doi:10.1007/s00521-019-04258-x.
- Luo, H., Paal, S. G. Metaheuristic least squares support vector machine-based lateral strength modelling of reinforced concrete columns subjected to earthquake loads. Structures, 2021; 33: 748-758. doi:10.1016/j.istruc.2021.04.048.
- Gharehbaghi, S., Yazdani, H., Khatibinia, M. Estimating inelastic seismic response of reinforced concrete frame structures using a wavelet support vector machine and an artificial neural network. Neural Computing and Applications, 2020; 32: 2975-2988. doi:10.1007/s00521-019-04075-2.
- Luo, H., Paal, S. G. A novel outlier-insensitive local support vector machine for robust data-driven forecasting in engineering. Engineering with Computers, 2023; 39: 3671-3689. doi:10.1007/s00366-022-01781-9.
- Prayogo, D., Cheng, M.-Y., Wu, Y.-W., Tran, D.-H. Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams. Engineering with Computers, 2020; 36: 1135-1153. doi:10.1007/s00366-019-00753-w.
- American Concrete Institute (ACI). ACI 318-25: Building Code for Structural Concrete—Code Requirements and Commentary. Farmington Hills (MI): ACI; 2025.
- Canadian Standards Association (CSA). CSA A23.3:19: Design of Concrete Structures. Longueuil (QC): CSA; 2019.
- Clark, A. P. Diagonal Tension in Reinforced Concrete Beams. ACI Journal Proceedings, 1951; 48: 145-156. doi:10.14359/11876.
- Kong, F.-K., Robins, P. J., Cole, D. F. Web Reinforcement Effects on Deep Beams. ACI Journal Proceedings, 1970; 67: 1010-1018. doi:10.14359/7336.
- Smith, K. N., Vantsiotis, A. S. Shear Strength of Deep Beams. ACI Journal Proceedings, 1982; 79: 201-213.
- Anderson, N. S., Ramirez, J. A. Detailing of Stirrup Reinforcement. ACI Structural Journal, 1989; 86: 507-515. doi:10.14359/3005.
- Tan, K.-H., Kong, F.-K., Teng, S., Guan, L. High-Strength Concrete Deep Beams With Effective Span and Shear Span Variations. ACI Structural Journal, 1995; 92: 395-405. doi:10.14359/991.
- Oh, J.-K., Shin, S.-W. Shear Strength of Reinforced High-Strength Concrete Deep Beams. ACI Structural Journal, 2001; 98: 164-173. doi:10.14359/10184.
- Aguilar, G., Matamoros, A. B., Parra-Montesinos, G. J., Ramírez, J. A., Wight, J. K. Experimental Evaluation of Design Procedures for Shear Strength of Deep Reinforced Concrete Beams. ACI Structural Journal, 2002; 99: 539-548. doi:10.14359/12123.
- Quintero-Febres, C. G., Parra-Montesinos, G., Wight, J. K. Strength of Struts in Deep Concrete Members Designed Using Strut-and-Tie Method. ACI Structural Journal, 2006; 103: 577-586. doi:10.14359/16434.
- Suykens, J. A. K., De Brabanter, J., Lukas, L., Vandewalle, J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002; 48: 85-105. doi:10.1016/S0925-2312(01)00644-0.
- Li, H.-s., Lü, Z.-z., Yue, Z.-f. Support vector machine for structural reliability analysis. Applied Mathematics and Mechanics, 2006; 27: 1295-1303. doi:10.1007/s10483-006-1001-z.
- Widodo, A., Yang, B.-S. Wavelet support vector machine for induction machine fault diagnosis based on transient current signal. Expert Systems with Applications, 2008; 35: 307-316. doi:10.1016/j.eswa.2007.06.018.
- Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., Aljarah, I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 2018; 30: 2355-2369. doi:10.1007/s00521-016-2818-2.
- Hoang, N.-D., Pham, A.-D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Systems with Applications, 2016; 46: 60-68. doi:10.1016/j.eswa.2015.10.020.
- Cheng, M.-Y., Prayogo, D., Wu, Y.-W. Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression. Neural Computing and Applications, 2019; 31: 6261-6273. doi:10.1007/s00521-018-3426-0.
- Prayogo, H. Prediction of Concrete Compressive Strength from Early Age Test Result Using an Advanced Metaheuristic-Based Machine Learning Technique. In: Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC); 2017 July 1-3; Taipei, Taiwan. p. 856-863. doi:10.22260/ISARC2017/0120.
|