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Abstract. This paper presents a numerical study on the steady
two-dimensional flow of a magnetohydrodynamic (MHD) nanofluid
over a convective stretching surface embedded within a porous
medium, accounting for nonlinear Darcy–Forchheimer resistance.
To effectively address uncertainties in critical physical parameters
such as magnetic field strength and porous medium permeability,
fuzzy set theory is applied. The governing boundary layer equations
containing fuzzy parameters are converted into nonlinear fuzzy or-
dinary differential equations through similarity transformations and
solved using the α-cut technique. The results indicate that increases
in the fuzzy magnetic field and Darcy–Forchheimer parameters lead
to elevated velocity and microrotation profiles, while temperature
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and nanoparticle concentration profiles decrease. The fuzzy ap-
proach provides uncertainty intervals around these predictions, of-
fering valuable insights for engineering designs involving nanofluid
flows under imprecise conditions.

Keywords: Magnetohydrodynamics, Nanofluid flow, Darcy–Forchheimer
porous medium, Fuzzy set theory, Uncertainty analysis.

2000 Mathematics subject classification: xxxx, xxxx; Secondary
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1. Introduction

In recent years, the incorporation of fuzzy logic with nanofluid dynamics
has emerged as a powerful approach to address uncertainty in heat and
mass transfer studies. Ayub et al. [1] conducted an in-depth analysis of
Cross nanofluid behavior influenced by an inclined magnetic field within
a fuzzy framework, unveiling distinctive thermophysical characteristics.
Building upon fuzzy nanofluid mechanics, Siddique et al. [2] performed
numerical simulations on magnetohydrodynamic Couette flow through
an inclined channel, integrating thermal radiation effects under fuzzy
conditions. Shanmugapriya et al. [3] proposed a chemically reactive
fuzzy hybrid model that focused on the magnetized Casson nanofluid
flow influenced by endothermic and exothermic processes. Furthermore,
Qeays et al. [4] applied a fuzzy-integrated optimization algorithm to
enhance the multi-performance of hybrid photovoltaic thermal systems,
which was complemented by Babanezhad et al. [5], who employed a
computational approach combining fuzzy logic, genetic algorithms, and
CFD techniques to predict turbulent convective heat transfer.

Reiterations of these studies were observed in subsequent works by
Ayub et al. [6] and Qeays et al. [7], reinforcing the applicability of
fuzzy modeling in thermal systems. Meanwhile, Ramya and Deivanayaki
[8] numerically modeled the Casson micropolar fluid flow over an in-
clined porous surface, highlighting flow and heat transfer complexities.
In follow-up studies, they examined the effect of radiative heat and mass
diffusion on Casson nanofluid flow over stretching surfaces [9], and later
incorporated the Soret and Dufour mechanisms under magnetic influ-
ence [10]. Additionally, Ramya et al. [11] explored the combined role of
Brownian motion, thermophoresis, and microbial interactions in Casson-
based ternary hybrid nanofluids over a horizontal plate.

Further advancement in fuzzy nanofluid theory was presented in Ramya
et al. [12], where the influence of homogeneous–heterogeneous chemical
reactions was analyzed using the Cattaneo–Christov heat flux model. In
another significant extension, the authors explored the Carreau nanofluid
flow in Darcy–Forchheimer porous media under magnetohydrodynamic
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conditions [13], emphasizing flow resistance and nonlinear characteris-
tics.

Parallel to fluid studies, graph-theoretic contributions in fuzzy en-
vironments have grown substantially. Lakdashti et al. [14] addressed
structural aspects of edge irregular product vague graphs, offering math-
ematical insight into vagueness in complex networks. Chen et al. [15] fo-
cused on elementary abelian covers of notable graphs such as the Wreath
graph W (3, 2) and Foster graph F26A, enriching the domain of algebraic
and topological graph theory. Talebi et al. [16] introduced interval-
valued intuitionistic fuzzy soft graphs by blending soft set theory and
intuitionistic fuzzy logic to handle uncertainty in graph modeling. This
effort expanded earlier work by Talebi et al. [17], who developed new
regularity principles for interval-valued fuzzy graphs.

Rashmanlou and Borzooei [18] contributed foundational properties
and practical applications of vague graphs, particularly under imprecise
data conditions. Kosari et al. [19] analyzed a specialized domination
metric known as the restrained Roman reinforcement number, pertinent
to securing networks. In the field of colored graph theory, Kosari et al.
[20] investigated the independent k-rainbow bondage number, a crucial
parameter for combinatorial optimization.

Further computational and complexity aspects were tackled by Kosari
et al. [21], who examined the NP-hardness of the signed total Roman
domination problem. Rashmanlou et al. [22] introduced bipolar fuzzy
graphs, allowing for simultaneous representation of positive and nega-
tive information — a structure valuable in opinion dynamics and social
networks. Kosari [23] addressed spectral characteristics such as spec-
tral radius and Zagreb Estrada index, tools with relevance in molecular
graph theory.

Expanding on categorical theory, Rashmanlou et al. [24] formulated
bipolar fuzzy graphs embedded with categorical properties. Borzooei
and Rashmanlou [25] introduced vague domination parameters to con-
trol and monitor uncertain networks. Additionally, Rashmanlou and
Jun [26] examined complete interval-valued fuzzy graphs, emphasizing
network completeness under uncertainty. In a study on regularity, Bor-
zooei et al. [27] extended the classical idea of regular graphs to vague
graph environments. Lastly, Rashmanlou and Pal [28] proposed bal-
anced interval-valued fuzzy graphs, which aim to represent equilibrium
states in fuzzy systems.
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2. Mathematical Analysis in Fuzzy Environment

The two-dimensional flow of magnetohydrodynamic (MHD) Casson
fluid over a convective stretching sheet is studied under uncertain con-
ditions modeled via fuzzy sets. Uncertain physical parameters such as
the Casson parameter, magnetic field intensity, and diffusion coefficients
are treated as fuzzy numbers to capture inherent imprecision. Unlike
classical models, the magnetic Reynolds number assumption is relaxed,
and cross-diffusion effects are incorporated.

The stretching velocity of the sheet is given by

um(x) = qx,

where q is a fuzzy stretching rate with membership function µq̃(q). A
steady fuzzy magnetic field B̃0 is applied in the y-direction. The flow is
governed by fuzzy-valued PDEs involving fuzzy parameters β̃, Ñb, Ñt, M̃ ,
etc.

The continuity equation remains deterministic:

∂u

∂x
+
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The fuzzy momentum equation:
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The microrotation equation:
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The concentration equation:

u
∂C

∂x
+ v
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∂y
+ λ̃2G(u, v, C) = D̃m

∂2C
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.

Fuzzy heat generation:

q̃′′′ =
k̃uw
xν

[
C̃∗(Tw − T∞)f ′ + D̃∗(T − T∞)

]
.

Radiative heat flux:

qr = −16

3

σ̃∗

k̃∗
T 3∂T

∂y
.

Fuzzy boundary conditions at y = 0:

u = uw + S
∂u

∂y
, −k

∂T

∂y
= h1(T∞ − T ),

−N = −m
∂u

∂y
, Dm

∂C

∂y
= h2(Cw − C).

As y → ∞:
u → 0, T → T∞, C → C∞.

Similarity variables:

ϕ =
√
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√
q
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√
q̃νf(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

Fuzzy ODEs (�-cut form):[
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φ′′+S̃c,αfφ
′−k̃r,αS̃c,αφ−αC S̃C,α(f

2θ′′+ff ′θ′)+S̃c,αS̃r,αθ
′′+

Ñt,α

Ñb,α

θ′′ = 0.

Boundary conditions at η = 0, η → ∞:
f ′(0) = 1 + γf ′′(0), f(0) = 0,

θ′(0) = BiT,α(1− θ(0)), φ′(0) = BiC,α(1− φ(0)),

f ′(∞) → 0, θ(∞) → 0, φ(∞) → 0.

Fuzzy dimensionless numbers:

G̃rT =
gβ̃T (Tw − T∞)

q̃2x
, G̃rC =

gβ̃C(Cw − C∞)

q̃2x
, Ñr =
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∞
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, . . .

Figure 1. Velocity numerous values of M

Figure 2. Temperature numerous values of M

Figure 3. Concentration numerous values of M

Figure 4. Angular numerous values of M

Fuzzy surface characteristics:

C̃fxRe1/2x =

(
1 +

1

β̃

)
f ′′(0), ÑuRe1/2x = −

(
1 + Ñr(θw)

3
)
θ′(0), S̃hRe−1/2

x = −φ′(0).

Definition 2.1 (Fuzzy Set). A fuzzy set Ã in a universe of discourse X
is characterized by a membership function

µÃ : X → [0, 1],

where µÃ(x) represents the degree of membership of element x ∈ X in
the fuzzy set Ã.

Definition 2.2 (Fuzzy Number). A fuzzy number Ñ is a fuzzy set on
the real line R that is

• Normal, i.e., ∃x0 ∈ R such that µÑ (x0) = 1,
• Convex, i.e., µÑ (λx1+(1−λ)x2) ≥ min{µÑ (x1), µÑ (x2)} for all
x1, x2 ∈ R and λ ∈ [0, 1],
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Figure 5. Velocity numerous values of Fr

Figure 6. Temperature numerous values of Fr

Figure 7. Concentration numerous values of Fr

Figure 8. Angular numerous values of Fr

• Upper semi-continuous,
• With compact support.

Definition 2.3 (α-cut). For a fuzzy set Ã and α ∈ (0, 1], the α-cut (or
α-level set) is defined as

Ãα = {x ∈ X | µÃ(x) ≥ α}.
The α-cut is a crisp set representing all elements whose membership
degree is at least α.

Definition 2.4 (Fuzzy Arithmetic). Given two fuzzy numbers Ã and
B̃, their sum C̃ = Ã+ B̃ is defined by the extension principle as

µC̃(z) = sup
x+y=z

min
(
µÃ(x), µB̃(y)

)
.

Arithmetic operations (addition, subtraction, multiplication, division)
between fuzzy numbers can be computed using α-cuts:

C̃α = Ãα + B̃α = [aLα + bLα, a
U
α + bUα ],

where Ãα = [aLα, a
U
α ] and B̃α = [bLα, b

U
α ].

Definition 2.5 (Fuzzy Parameter). A fuzzy parameter p̃ in a mathe-
matical model is a fuzzy number representing an uncertain or imprecise
quantity whose exact value is unknown but bounded by a membership
function µp̃(p).

3. Results and Discussion

In this study, uncertain physical parameters such as the magnetic
field intensity M̃ and Darcy–Forchheimer parameter F̃r are modeled as
fuzzy numbers to capture the inherent imprecision and variability that
naturally arise in real-world experimental and environmental conditions.
The fuzzy approach allows us to quantify the uncertainty in model inputs
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and observe its effects on the flow and thermal characteristics of the
nanofluid.

Effect of Fuzzy Magnetic Field M̃ . The magnetic field applied nor-
mal to the flow induces a Lorentz force opposing the fluid motion, thus
affecting the velocity and angular velocity of the nanofluid. The fuzzy
parameter M̃ represents a range of possible magnetic intensities with as-
sociated membership functions, allowing us to evaluate how variations
within this range influence the flow.

• Velocity Profile: As the fuzzy magnetic field parameter in-
creases (moving toward the upper α-cut values), the velocity pro-
file shows a marked increase in fluid velocity near the stretching
sheet. This occurs because the stronger magnetic field enhances
electromagnetic forces that can accelerate charged nanoparticles
suspended in the fluid, boosting the effective flow momentum.
The fuzzy modeling provides bounds on velocity increase, indi-
cating the possible variation due to uncertainty in M .

• Angular Velocity (Microrotation): Similarly, the angular
velocity of the micropolar fluid particles also increases with the
fuzzy magnetic field. This reflects enhanced micro-rotation in-
duced by magnetic torque effects, which is consistent with the
nanofluid’s microstructure interaction under magnetic influence.

• Temperature and Concentration Profiles: Conversely, the
temperature and concentration distributions show a decreasing
trend with increasing M̃ . The intensified magnetic field aug-
ments the convective heat and mass transfer rates away from
the boundary layer, resulting in thinner thermal and concentra-
tion boundary layers. Fuzzy analysis captures the variability in
these decreases, providing confidence intervals that reflect the
uncertainty in thermal response due to magnetic intensity fluc-
tuations.

Effect of Darcy–Forchheimer Parameter F̃r. The Darcy–Forchheimer
parameter represents nonlinear drag forces in porous media. Modeling
Fr as a fuzzy parameter reflects uncertainty in the porous structure and
flow resistance characteristics.

• Velocity and Angular Velocity: Increasing the fuzzy Darcy–
Forchheimer parameter results in enhanced velocity and angular
velocity profiles. Physically, higher Fr corresponds to stronger
inertial drag in the porous medium, which tends to accelerate
the fluid near the surface due to pressure gradients established
in the porous matrix. The fuzzy interval analysis shows how
these effects vary under uncertain porous media properties.
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• Temperature and Concentration: An increase in fuzzy F̃r

leads to a reduction in temperature and concentration profiles,
similar to the effect of the magnetic field. This is attributed to
the increased drag and flow velocity promoting enhanced con-
vective transport, thus thinning the thermal and concentration
boundary layers.

Figures 1 to 8 illustrate the influence of varying magnetic field pa-
rameter M and Darcy–Forchheimer parameter Fr on the velocity, tem-
perature, concentration, and angular velocity profiles of the nanofluid
flow.

• Figure 1: This graph depicts how the dimensionless velocity
profile increases with higher values of the magnetic field param-
eter M . The Lorentz force generated by the magnetic field acts
as a resistive force, which in this context enhances the fluid ve-
locity near the stretching sheet due to the coupling effects in the
flow.

• Figure 6: The temperature distribution shows a decreasing
trend as M increases. This reduction occurs because the stronger
magnetic field intensifies heat transfer away from the fluid, thereby
cooling the boundary layer.

• Figure 7: The concentration profile similarly declines with ris-
ing magnetic field intensity, indicating that nanoparticle disper-
sion reduces as the magnetic effects strengthen, limiting mass
diffusion near the surface.

• Figure 8: Angular velocity increases with M , demonstrating
that the micropolar rotation of fluid particles is amplified by
the magnetic field, which influences the microstructure dynamics
within the flow.

• Figure 5: Increasing the Darcy–Forchheimer parameter Fr, rep-
resenting the porous medium resistance and inertial drag, results
in an elevated velocity profile. This behavior suggests that flow
acceleration near the sheet is promoted despite the porous resis-
tance due to inertial effects.

• Figure 6: The temperature profile decreases as Fr increases,
indicating that higher porous drag facilitates thermal energy dis-
sipation from the fluid.

• Figure 7: Concentration decreases with increasing Fr, showing
reduced nanoparticle transport caused by intensified flow resis-
tance within the porous structure.

• Figure 8: Angular velocity grows with the Darcy–Forchheimer
parameter, highlighting that micro-rotational effects in the fluid
are strengthened by enhanced porous medium inertia.
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The fuzzy modeling of magnetic field and Darcy–Forchheimer parame-
ter provides a comprehensive framework for understanding the impact
of uncertain physical factors on nanofluid flow. The fuzzy parameters
introduce intervals of possible values rather than crisp single values,
allowing the capture of uncertainty and variability inherent in practi-
cal applications. Results confirm that both increased magnetic intensity
and Darcy–Forchheimer parameter amplify velocity and angular velocity
while reducing temperature and concentration, with fuzzy sets quanti-
fying confidence in these trends.

4. Conclusion

This study investigated the impact of uncertain physical parameters
on the magnetohydrodynamic (MHD) flow of a nanofluid over a convec-
tive stretching sheet embedded in a Darcy–Forchheimer porous medium
using fuzzy set theory. The fuzzy approach effectively captured the in-
herent uncertainty in parameters such as the magnetic field strength
and porous medium resistance. Numerical results demonstrated that
increasing the magnetic field intensity and Darcy–Forchheimer param-
eter enhances velocity and angular velocity profiles, while temperature
and concentration profiles decrease correspondingly. These findings pro-
vide deeper insights into controlling nanofluid behavior in porous media
under uncertain operating conditions, which is essential for optimizing
industrial and engineering applications.
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