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Abstract. This paper introduces a new type of integral contrac-
tion in metric spaces. We define the notion of an ”(ϕ, ψ)-integral-
type coupled contraction” and establish coupled fixed point theo-
rems under this new contraction condition. The presented results
generalize and extend several existing theorems in the literature,
particularly those involving integral-type contractions. We demon-
strate the applicability of our results by providing an example and
outlining potential applications in solving systems of integral equa-
tions.
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1. Introduction

Fixed point theory is a rich, interesting and exciting branch of mathe-
matics. It is relatively young but fully developed area of research. Study
of the existence of fixed points falls within several domains such as func-
tional analysis, operator theory, general topology. Fixed points and
fixed point theorems have always been a major theoretical tool in fields
as widely apart as topology, mathematical economics, game theory, ap-
proximation theory and initial and boundary value problems in ordinary
and partial differential equations. Moreover, recently, the usefulness of
this concept for applications increased enormously by the development
of accurate and efficient techniques for computing fixed points, making
fixed point methods a major tool in the arsenal of mathematics.

The Banach fixed point theorem which was first presented by Banach
in 1922 is a significant result in fixed point theory. Because of its im-
portance in proving the existence of solutions for functional equations,
nonlinear Volterra integral equations and nonlinear integro-differential
equations, this result has been extended in many different directions
(see, e.g., [1, 2, 4, 5, 7, 11, 12, 13, 16, 17, 18, 20]).

In recent years, different contractive circumstances have been inves-
tigated using fixed point theory. Indeed, integral type contraction is
among them. In 2002, Branciari [7] analyzed the existence of fixed
points for mapping defined on a complete metric space satisfying a gen-
eral contractive condition of integral type. Following Branciari’s finding,
other studies have been conducted on generalizing integral type contrac-
tive conditions for various contractive mappings that meet a variety of
known features (see [3, 9, 14, 15].

On the other hand, Bhaskar and Lakshmikantham [6] introduced the
concept of a coupled fixed point in partially ordered metric spaces. They
noted that their theorem can be used to investigate a large class of prob-
lems and discussed the existence and uniqueness of solution for a periodic
boundary value problem. It was after the appearance of a coupled con-
traction mapping theorem, the coupled fixed point results appeared in
a large number of works like [8, 10, 19].

Motivated by the above considerations, this paper introduces a new
integral-type contraction condition tailored for coupled mapping and es-
tablishes coupled fixed point theorems in complete metric spaces. We
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then demonstrate the applicability of our results by providing an ex-
ample and discussing potential applications in the context of integral
equations.

2. Preliminaries

Let (X, d) be a metric space.

Definition 2.1 ([6]). A coupled fixed point of a mapping
F : X × X → X is a pair (x, y) ∈ X × X such that F (x, y) = x and
F (y, x) = y.

Example 2.2. Let X be the set of real numbers and define a map-
ping F : X ×X → X as F (x, y) = x2+ y. A coupled fixed point for this
mapping would be a pair (x, y) such that x2 + y = x and y2 + x = y.
One solution to this system is (x, y) = (0, 0).

Definition 2.3. A metric space (X, d) is said to be complete if ev-
ery Cauchy sequence in X converges to a point in X.

Notation 2.4. Let Ψ be the family of nondecreasing functions ψ :
[0,∞) → [0,∞) such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0.

Notation 2.5. Let Φ be the family of Lebesgue integrable mapping
ϕ : [0,∞) → [0,∞) which is summable, nonnegative, and such that∫ ϵ
0 ϕ(t)dt > 0 for all ϵ > 0.

3. Main results

In this section, we present our main results. At first, we introduce
our new integral type contraction condition.

Definition 3.1. Let (X, d) be a metric space and F : X × X → X
be a mapping. We say that F is an (ϕ, ψ)-integral-type coupled con-
traction if there exist (ϕ, ψ) ∈ Φ×Ψ such that for all x, y, u, v ∈ X :∫ d(F (x,y),F (u,v))

0
ϕ(t)dt ≤ ψ

(∫ max{d(x,u),d(y,v)}

0
ϕ(t)dt

)
.

Theorem 3.2. Let (X, d) be a complete metric space and F : X×X →
X be an (ϕ, ψ)-integral-type coupled contraction satisfying the condi-
tion in Definition 3.1. Then there exists a unique pair (x∗, y∗) ∈ X ×X
such that F (x, y∗) = x∗ and F (y, x∗) = y∗.
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Proof. Let x0, y0 ∈ X be arbitrary. Define the sequences {xn} and
{yn} by:

xn+1 = F (xn, yn), yn+1 = F (yn, xn) for all n ≥ 0.

Then, we have∫ d(xn+1,xn)

0
ϕ(t)dt =

∫ d(F (xn,yn),F (xn−1,yn−1))

0
ϕ(t)dt

≤ ψ

(∫ max{d(xn,xn−1),d(yn,yn−1)}

0
ϕ(t)dt

)
.

Similarly,∫ d(yn+1,yn)

0
ϕ(t)dt =

∫ d(F (yn,xn),F (yn−1,xn−1))

0
ϕ(t)dt

≤ ψ

(∫ max{d(yn,yn−1),d(xn,xn−1)}

0
ϕ(t)dt

)
.

Let an = max{d(xn, xn−1), d(yn, yn−1)}. Then,∫ an+1

0
ϕ(t)dt ≤ ψ

(∫ an

0
ϕ(t)dt

)
. (3.1)

Since ψ is nondecreasing, it follows that
∫ an+1

0 ϕ(t)dt ≤
∫ an
0 ϕ(t)dt. Thus,

the sequence {
∫ an
0 ϕ(t)dt} is a decreasing sequence of nonnegative real

numbers, and hence it converges to some real number L ≥ 0.

Suppose L > 0. Then, taking the limit as n→ ∞ in the inequality (1)
we obtain L ≤ ψ(L). However, since

∑∞
n=1 ψ

n(L) < ∞, it follows that
ψ(L) < L for all L > 0. This is a contradiction. Therefore, L = 0. This
implies that limn→∞

∫ an
0 ϕ(t)dt = 0. Consequently, limn→∞ an = 0,

which means limn→∞ d(xn, xn−1) = 0 and limn→∞ d(yn, yn−1) = 0.

Now, we show that {xn} and {yn} are Cauchy sequences. Suppose
not. Then there exists an ϵ > 0 and sequences mk and nk of positive
integers such that nk > mk > k and

d(xnk
, xmk

) ≥ ϵ.

Assume that nk is the smallest such integer. Then d(xnk−1, xmk
) < ϵ.

Therefore,

ϵ ≤ d(xnk
, xmk

) ≤ d(xnk
, xnk−1) + d(xnk−1, xmk

) < d(xnk
, xnk−1) + ϵ.



256 A.A. Alzwaihm , S.H. Rasouli

Taking the limit as k → ∞, we get limk→∞ d(xnk
, xmk

) = ϵ. Similarly,
we can show that limk→∞ d(ynk

, ymk
) = ϵ. Now, consider∫ d(xnk

,xmk
)

0
ϕ(t)dt =

∫ d(F (xnk−1,ynk−1),F (xmk−1,ymk−1))

0
ϕ(t)dt

≤ ψ

(∫ max{d(xnk−1,xmk−1),d(ynk−1,ymk−1)}

0
ϕ(t)dt

)
.

Taking the limit as k → ∞, we obtain∫ ϵ

0
ϕ(t)dt ≤ ψ

(∫ ϵ

0
ϕ(t)dt

)
<

∫ ϵ

0
ϕ(t)dt,

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Simi-
larly, we can show that {yn} is a Cauchy sequence. Since X is complete,
there exist x, y ∈ X such that limn→∞ xn = x and limn→∞ yn = y.

Now, we show that (x, y) is a coupled fixed point of F . Consider∫ d(x,F (x,y))

0
ϕ(t)dt ≤

∫ d(x,xn+1)

0
ϕ(t)dt+

∫ d(xn+1,F (x,y))

0
ϕ(t)dt

=

∫ d(x,xn+1)

0
ϕ(t)dt+

∫ d(F (xn,yn),F (x,y))

0
ϕ(t)dt

≤
∫ d(x,xn+1)

0
ϕ(t)dt+ ψ

(∫ max{d(xn,x),d(yn,y)}

0
ϕ(t)dt

)
.

Taking the limit as n→ ∞, we get∫ d(x,F (x,y))

0
ϕ(t)dt ≤ 0 + ψ(0) = 0.

Since
∫ ϵ
0 ϕ(t)dt > 0 for all ϵ > 0, it follows that d(x, F (x, y)) = 0. There-

fore, x = F (x, y). Similarly, we can show that y = F (y, x). Thus, (x, y)
is a coupled fixed point of F .

To prove uniqueness, suppose (u, v) is another coupled fixed point of
F . Then u = F (u, v) and v = F (v, u). Consider∫ d(x,u)

0
ϕ(t)dt =

∫ d(F (x,y),F (u,v))

0
ϕ(t)dt ≤ ψ

(∫ max{d(x,u),d(y,v)}

0
ϕ(t)dt

)
.

Similarly,∫ d(y,v)

0
ϕ(t)dt =

∫ d(F (y,x),F (v,u))

0
ϕ(t)dt ≤ ψ

(∫ max{d(y,v),d(x,u)}

0
ϕ(t)dt

)
.
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Let M = max{d(x, u), d(y, v)}. Then∫ M

0
ϕ(t)dt ≤ ψ

(∫ M

0
ϕ(t)dt

)
.

If M > 0, then
∫M
0 ϕ(t)dt > 0. But since ψ(t) < t for all t > 0, we

have a contradiction. Therefore, M = 0, which implies d(x, u) = 0 and
d(y, v) = 0. Thus, x = u and y = v. Hence, the coupled fixed point is
unique. □

Here, we provide examples to illustrate the applicability of our theo-
retical results.

Example 3.3. LetX = [0, 1] with the usual metric d(x, y) = |x−y|. De-
fine F : X×X → X by F (x, y) = x+y

8 . Let ψ(t) = t
2 and ϕ(t) = 1. Then,∫ ϵ

0 ϕ(t)dt = ϵ > 0 for all ϵ > 0, and
∑∞

n=1 ψ
n(t) =

∑∞
n=1

t
2n = t <∞ for

all t > 0. Now, for any x, y, u, v ∈ X,∫ d(F (x,y),F (u,v))

0
ϕ(t)dt =

∣∣∣∣x+ y

8
− u+ v

8

∣∣∣∣
≤ 1

4
max{|x− u|, |y − v|}

=
1

4

∫ max{|x−u|,|y−v|}

0
ϕ(t)dt

=
1

2

(
1

2

∫ max{|x−u|,|y−v|}

0
ϕ(t)dt

)

= ψ

(∫ max{|x−u|,|y−v|}

0
ϕ(t)dt

)
.

Thus, F satisfies the contraction condition defined in Definition 3.1.
Therefore, by Theorem 3.2, F has a unique coupled fixed point in X.
□

4. Application to system of integral equations

Consider the following system of integral equations:

x(t) =

∫ T

0
K1(t, s, x(s), y(s))ds, y(t) =

∫ T

0
K2(t, s, y(s), x(s))ds,

for t ∈ [0, T ], where K1,K2 : [0, T ]× [0, T ]× R× R → R are continuous
functions. Let X = C([0, T ],R) be the space of continuous real-valued
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functions on [0, T ], equipped with the metric

d(x, y) = sup
t∈[0,T ]

|x(t)− y(t)|.

Then (X, d) is a complete metric space. Define a mapping F : X×X →
X by

F (x, y)(t) =

∫ T

0
K1(t, s, x(s), y(s))ds,

Similarly, define

G(y, x)(t) =

∫ T

0
K2(t, s, y(s), x(s))ds

A solution to these integral equations is a coupled fixed point of the
operator F (x, y).

Theorem 4.1. Assume that there exist (ψ, ϕ) ∈ (Ψ,Φ) such that for
all t, s ∈ [0, T ] and x, y, u, v ∈ R

|K1(t, s, x, y)−K1(t, s, u, v)| ≤
1

T
ϕ(max{|x− u|, |y − v|}),

|K2(t, s, y, x)−K2(t, s, v, u)| ≤
1

T
ϕ(max{|x− u|, |y − v|}).

Then the system of integral equations has a unique solution in C([0, T ],R)×
C([0, T ],R).

Proof. For any x, y, u, v ∈ X and t ∈ [0, T ],

|F (x, y)(t)− F (u, v)(t)| =

∣∣∣∣∫ T

0
K1(t, s, x(s), y(s))ds−

∫ T

0
K1(t, s, u(s), v(s))ds

∣∣∣∣
≤

∫ T

0
|K1(t, s, x(s), y(s))−K1(t, s, u(s), v(s))|ds

≤
∫ T

0

1

T
ψ(max{|x(s)− u(s)|, |y(s)− v(s)|})ds.

Since ψ, x, y, u, v are bounded, thus

|F (x, y)(t)− F (u, v)(t)| ≤ ψ( sup
s∈[0,T ]

max{|x(s)− u(s)|, |y(s)− v(s)|})

= ψ(max{d(x, u), d(y, v)}).

Thus,

d(F (x, y), F (u, v)) = sup
t∈[0,T ]

|F (x, y)(t)−F (u, v)(t)| ≤ ψ(max{d(x, u), d(y, v)}).
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Then, for any x, y, u, v ∈ X∫ d(F (x,y),F (u,v))

0
ϕ(t)dt ≤

∫ ψ(max d(x,u),d(y,v))

0
ϕ(t)dt ≤ ψ

(∫ max{d(x,u),d(y,v)}

0
ϕ(t)dt

)
.

Then all conditions of Theorem 3.2 are satisfied, thus there is a unique
solution to the system of integral equations.
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