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Abstract. In this article, a method for solving the fractional Ric-
cati differential equation is presented, which is based on the com-
bination of Laplace transform and Runge-Kutta methods. In this
way, first, by using the Laplace transform, the fractional deriva-
tive of Caputo in the fractional Riccati equation is converted into
the ordinary derivative, and then, the resulting ordinary differen-
tial equation of the correct order is solved using the fourth-order
Runge-Kutta method. Also, the error estimate and convergence
are investigated. In addition, examples are provided to demon-
strate the effectiveness of this method in practice. These examples
show that the proposed method can give the approximate solution
of fractional Riccati differential equations with high accuracy. Also,
another advantage of the proposed method is that the approximate
solution of fractional Riccati differential equations can be provided
with appropriate accuracy in time intervals greater than one (max-
imum absolute errors 10−5 over t ∈ [0, 8]). Additionally, the pro-
posed Laplace-based reformulation removes the need to carry the
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full time-history of the solution, leading to a simpler time-domain
model that is easier to handle in practice.
Keywords: Fractional order Riccati equation, Caputo fractional de-
rivative, Laplace transform method, Runge-Kutta method.

2000 Mathematics subject classification: 26A33, 44A10, 34A34;
Secondary 65L06.

1. Introduction
The widespread use of fractional differential equations in various fields
of science and engineering has been increasingly interesting to a grow-
ing number of scientists [1]. Fractional Riccati differential equations are
regarded as a significant category of fractional differential equations.
These equations, for instance, are used to describe various phenomena
in engineering, financial mathematics, economics, optimal control, and
transmission lines. The fractional Riccati equation is a part of the char-
acteristic function of the rough Heston model, which is widely used for
option pricing in financial markets [2]. In addition, the Riccati differen-
tial equation has numerous applications in applied science, including the
one dimensional stationary Schrödinger equation and expressing solitary
wave solutions of nonlinear partial differential equations via the projec-
tive Riccati equation. Such problems are also encountered in the optimal
control literature [3]. For this reason, many methods have been proposed
to solve these equations [4, 5].
In 2006, the fractional Riccati equation was solved using the Adomian
decomposition method [6]. In 2012, Merdan used the modified Riemann-
Liouville derivative to solve these equations [7]. In 2013, Yusbas used
a technique based on Bernstein polynomials to obtain the approximate
solutions to fractional Riccati equation [8]. Abd-Elhameed et al (2014)
introduced two spectral wavelet algorithms for solving the fractional
Riccati differential equations [9]. In 2017, these equations were solved
using the reproducing kernel method [10]. In 2018, Agheli used the
method called the trigonometric transform method to solve fractional
Riccati equations [11]. In 2019, Chebyshev polynomials of the second
kind method and a method based on Bessel, Legendre, and Chelishkov’s
fractional order basis functions were used to solve fractional Riccati dif-
ferential equations [12, 13]. In 2021, the Adomian asymptotic decom-
position method and fractional-order Boubaker wavelets method were
used to obtain an approximate solution to fractional Riccati equations
[14, 15]. In 2022, a compact finite difference method was presented to
solve these equations [16]. That same year, Toma et al. introduced a
method based on the combination of fractional Block-pulse functions
and Bernoulli polynomials to solve fractional Riccati differential equa-
tions [1]. In 2023, methods like the Mittag-Leffler-Galerkin method, the
generalized Bell colocation method, and the operational matrix method
based on Lagrange polynomials were introduced for the approximate so-
lution of the fractional Riccati equation [4, 5, 17].
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In this paper, we aim to solve the initial value of fractional Riccati equa-
tion as follows [14]:

c
0D

β
t u(t) = r(t)u(t)2 + q(t)u(t) + p(t), t > 0, 0 < β ≤ 1. (1.1)

u(0) = α, (1.2)

Whereas, q(t), r(t) and p(t) are given functions, and c
0D

β
t is the Caputo

fractional derivative operator with respect to t of order 0 < β ≤ 1, which
is defined as follows [18]:

c
0D

β
t u(t) =

1

Γ(1− β)

∫ t

0

(t− τ)−β dv(τ)

dτ
dτ.

The method considered in this paper is based on a combination of
Laplace transform and Runge-Kutta methods to obtain an approximate
solution to a fractional Riccati differential equation. Therefore, the frac-
tional Riccati differential equation is first converted into an ordinary dif-
ferential equation using Laplace transform, and the resulting ordinary
differential equation is then solved using the Runge-Kutta method. In
this study, the performance of the proposed method is compared against
a set of well-established approaches, including: [1] the fractional-hybrid
function based on Block-pulse functions and Bernoulli polynomials, [4]
the Mittag-Leffler-Galerkin, [5] the Generalized Bell collocation, [11]
Trigonometric basic functions, [12] Third-kind Chebyshev wavelet, [15]
fractional-order Boubaker wavelets, [16] the compact finite difference,
and [25] the variation of parameters method. The aim of this compari-
son is to evaluate both the accuracy and computational efficiency of the
proposed method relative to these benchmark techniques.
The rest of the article is organized as follows. In Section 2, we first
describe the Runge-Kutta method, Laplace transform, and its inverse,
along with how to apply them to solve fractional Riccati equations. In
Section 3, we explore the introduced method’s convergence. In Section
4, we solve several fractional Riccati differential equation examples us-
ing the aforementioned combination method. In Section 5, we analyze
the results obtained.

2. Combination method based on Laplace transform and
Runge-Kutta method

2.1. The Laplace transform method. In this subsection, firstly, we
introduce the Laplace transform and inverse Laplace transform, and
then, using the Caputo fractional derivative Laplace transform, and
then, we convert the fractional Riccati differential equation (1.1) with
the initial condition (1.2) into the non-linear integer order ordinary dif-
ferential equation.
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Definition 2.1. The Laplace transform of a function u : [0,∞) → R,
that is represented by the symbol ũ(s) is defined as follow [19]:

ũ(s) = L{u(t), s} =

∫ ∞

0
u(t)e−stdt, s ∈ C.

Definition 2.2. The inverse Laplace transform of a function ũ(s), is
defined as follow [19]:

L−1{ũ(s)} = u(t) =
1

2πi

∫ w+i∞

w−i∞
ũ(s)estds, ∀w ∈ R.

We illustrate the differential transform of some required functions in
the following [19]:

L{c0D
β
t u(t), s} = sβũ(s)−

n−1∑
k=0

sβ−k−1u(k)(0), n− 1 < β ≤ n, n ∈ N.

L{u(n)(t), s} = snũ(s)−
n−1∑
k=0

sn−k−1u(k)(0), n ∈ N.

Since 0 < β ≤ 1, we can write
L{c0Dβ

t u(t), s} = sβ ũ(s)− sβ−1u(0) = sβ
[
ũ(s)− s−1u(0)

]
, (2.1)

We can approximate sβ using the linear Lagrange interpolation with
respect to β by two support points (0, 1), and (1, s) as follows [22, 21, 20]:

sβ ≈ βs1 + (1− β)s0 = βs+ (1− β), (2.2)

By substituting the equation (2.2) into (2.1), we have:
L{c0Dβ

t u(t), s} ≈
(
βs+ (1− β)

)[
ũ(s)− s−1u(0)

]
(2.3)

= βs
[
ũ(s)− s−1u(0)

]
+ (1− β)

[
ũ(s)− s−1u(0)

]
= β

[
sũ(s)− u(0)

]
+ (1− β)

[
ũ(s)− s−1u(0)

]
,

Now, by applying the inverse Laplace transform to equation (2.3), we
have:

c
0D

β
t u(t) ≈ βu′(t) + (1− β)

[
u(t)− u(0)

]
, 0 < β ≤ 1. (2.4)

By substituting the equation (2.4) into (1.1), we have:
βu′(t)+(1−β)

[
u(t)−u(0)

]
= r(t)u(t)2+q(t)u(t)+p(t), 0 < β ≤ 1, 0 < t ≤ T, (2.5)

which
u(0) = α. (2.6)

Assuming 1
β = d ∈ R+ and 1−β

β = c ∈ R+, equation (2.5) can be
rewritten as:
u′(t) = d

[
r(t)u(t)2 + q(t)u(t) + p(t)

]
− c

[
u(t)− u(0)

]
= f(t, u(t)), 0 < t ≤ T, (2.7)

which
u(0) = α. (2.8)
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As a result, the non-linear integer order ordinary differential equation
(2.7) with the initial condition (2.8) is derived from the fractional order
equation (1.1) with the initial condition (1.2).

2.2. Runge-Kutta method. In this subsection, we apply the fourth-
order Runge-Kutta method to solve the non-linear integer order ordinary
differential equation (2.7) with initial condition (2.8). An approximate
solution to this equation in the interval [0, T ] is what we are looking
for. To do this, we divide interval [0, T ] into N equal subintervals of
step-length h, that is:

h =
T

N
, ti = ih, i = 0, 1, . . . , N. (2.9)

The function u∗(t) is assumed to be an approximation of the u(t).
We take into consideration the main formula that provides us with the
value of u∗(ti+1) in terms of u∗(ti) in the fourth-order Runge-Kutta
method as follow [23]:

k1 = hf
(
ti, u

∗(ti)
)
,

k2 = hf
(
ti +

h
2
, u∗(ti +

k1
2
)
)
,

k3 = hf
(
ti +

h
2
, u∗(ti +

k2
2
)
)
,

k4 = hf
(
ti + h, u∗(ti + k3)

)
,

u∗(ti+1) = u∗(ti) +
1
6
(k1 + 2k2 + 2k3 + k4), i = 0(1)N − 1.

(2.10)

Consequently, the Runge-Kutta method and the approximate solution
of Equation (1.1) with initial condition (1.2) are as follows, by relations
(2.10) for equation (2.7) and initial condition (2.8):

k1 = h

[
d

(
r(ti)(u

∗(ti))
2 + q(ti)u

∗(ti) + p(ti)

)
− c

(
u∗(ti)− α

)]
,

k2 = h

[
d

(
r(ti +

h
2
)(u∗(ti +

k1
2
))2 + q(ti +

h
2
)u∗(ti +

k1
2
) + p(ti +

h
2
)

)
− c

(
u∗(ti +

k1
2
)− α

)]
,

k3 = h

[
d

(
r(ti +

h
2
)(u∗(ti +

k2
2
))2 + q(ti +

h
2
)u∗(ti +

k2
2
) + p(ti +

h
2
)

)
− c

(
u∗(ti +

k2
2
)− α

)]
,

k4 = h

[
d

(
r(ti + h)(u∗(ti + k3))

2 + q(ti + h)u∗(ti + k3) + p(ti + h)

)
− c

(
u∗(ti + k3)− α

)]
,

u∗(ti+1) = u∗(ti) +
1
6
(k1 + 2k2 + 2k3 + k4), i = 0(1)N − 1.

(2.11)

3. Convergence analysis

The proposed procedure transforms the original fractional problem
(1.1) with the initial condition (1.2) into an integer-order nonlinear ODE
((2.7) with the initial condition (2.8)) using the Laplace transform and
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linear approximation of sβ [21]. This substitution is an analytical re-
formulation of the model, carried out directly in the Laplace domain.
Therefore, in numerical error analysis (e.g., stability and convergence
of discretization like the fourth-order Runge-Kutta), the error from this
step is ignored, because once substituted, the resulting system is an ex-
act closed-form problem for the modified model. The discrepancy from
the true sβ regarded as modeling error, separate from any numerical
discretization error. The integer-order ODE is then solved using the
classical fourth-order Runge-Kutta method. The stability of the overall
procedure is identical to the absolute stability property of the fourth-
order Runge-Kutta method. Since both the Laplace and its inverse
transformation are analytical, no further stability condition arises and
the total method error solely arises from the Runge-Kutta scheme.
Definition 3.1. [23] A function f(t, u) is said to satisfy a Lipschitz
condition in the variable u on a set D ⊂ R2 if a constant L exists with

|f(t, u)− f(t, u∗)| ≤ L|u− u∗|,

where (t, u) and (t, u∗) are in D and the constant L is called the Lipschitz
constant.
Theorem 3.2. [23] Suppose that D = {(t, u)|0 ≤ t ≤ T,−∞ < u < ∞}
and f(t, u) is continuous on D. If f satisfies a Lipschitz condition on
D in the variable u, then the initial-value problem

u′(t) = f(t, u(t)), 0 ≤ t ≤ T, (3.1)
u(0) = α.

has a unique solution u(t) for 0 ≤ t ≤ T .

Theorem 3.3. Suppose that D = {(t, u)|0 ≤ t ≤ T,−∞ < u < ∞} and
r, p, q, u ∈ C[0, T ]. If the function f(t, u) satisfies the Lipschitz condition
with respect to the variable u, then the differential equation (2.7) with
the initial condition (2.8) has a unique solution u(t) for 0 ≤ t ≤ T .
Proof. To prove, it suffices to show that the function

f(t, u(t)) = d
[
r(t)u2(t) + q(t)u(t) + p(t)

]
− c

[
u(t)− u(0)

]
,

satisfies the Lipschitz condition with respect to the variable u. For all
(t, u1), (t, u2) ∈ D ⊆ R2, we have:

|f(t, u1)− f(t, u2)| = |d
[
r(t)u2

1(t) + q(t)u1(t) + p(t)
]
− c

[
u1(t)− u(0)

]
−d

[
r(t)u2

2(t) + q(t)u2(t) + p(t)
]
+ c

[
u2(t)− u(0)

]
|

≤ d|r(t)||u2
1(t)− u2

2(t)|+ d|q(t)||u1 − u2|+ c|u1 − u2|, (3.2)

Using the first-degree Taylor polynomial of g(u) around the point u2,
we have:

u2 = u2
2 + (u− u2)

∂g

∂u
|u=u2 = u2

2 + (u− u2)(2u2),
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Thus, we can write
u2
1 = u2

2 + 2(u1 − u2)u2. (3.3)
Substituting (3.3) into (3.2), we have:
|f(t, u1)− f(t, u2)| ≤ 2d|r(t)||u2||u1 − u2|+ d|q(t)||u1 − u2|+ c|u1 − u2|,

(3.4)
Since r, q, u ∈ C[0, T ], there exist positive numbers m1, m2 and m3 such
that for all t ∈ [0, T ], |r(t)| ≤ m1, |q(t)| ≤ m2 and |u(t)| ≤ m3.
Consequently, we can write:
|f(t, u1)− f(t, u2)| ≤ 2dm1m3|u1 − u2|+ dm2|u1 − u2|+ c|u1 − u2|

= (2dm1m3 + dm2 + c)|u1 − u2|. (3.5)
□

To achieve the full O(h4) convergence order of the fourth-order Runge-
Kutta method, the function

f(t, u) = d
[
r(t)u2 + q(t)u+ p(t)

]
− c

[
u− α

]
,

must be four times continuously differentiable with respect to t (f ∈
C4[0, T ]). Since r(t), q(t), and p(t) are smooth functions derived from
physical parameters, and d and c are positive constants, this condition
holds over the entire time interval.
Theorem 3.4. [24] Assume f(t, u) ∈ C4[0, T ] (with respect to u) and
its partial derivatives are bounded and assume that there exist positive
numbers P and M as follows:

|f(t, u)| < M, | ∂
i+jf

∂ti∂uj
| < P i+j

M j−1
, i+ j ≤ 4,

then, in the fourth-order Runge-Kutta method, we have:
u(ti)− u∗(ti) =

73

720
h5MP 4 +O(h6). (3.6)

4. Numerical examples

To verify the theoretical convergence of the fourth-order Runge-Kutta
method, we computed the solution of the transformed ODE for several
decreasing time steps h. For each refinement, we calculated the maxi-
mum absolute error with respect to the analytical solution (available for
our test problems) and then estimated the ROC (rate of convergence)
using the standard formula

ROC = log2(
eh
e2h

),

where eh and e2h are, respectively, the maximum absolute errors for
step size h and 2h. In all examples, the computed orders were equal to
4 or very close to 4, matching the theoretical fourth-order Runge-Kutta
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order and confirming that the method’s only numerical error (fourth-
order Runge-Kutta discretization error) is fully controlled.
Example 4.1. Consider the following fractional Riccati differential equa-
tion with the given initial condition: [25, 16, 15, 11, 5, 4]:

c
0D

β
t u(t) = 1− u2(t), 0 < β ≤ 1, 0 < t ≤ T,

u(0) = 0. (4.1)

The exact solution to this problem for β = 1, is equal u(t) = e2t−1
e2t+1

.
We use the method described in Section 2 to solve this problem, and for
the range of values of N , β, and T we report the numerical solutions,
the absolute error of the solution at the nodes, and the maximum abso-
lute error of this method. Additionally, we compare the results of this
method with those of some existing methods for Example 4.1.
Table 1 shows the comparison of the absolute error of the solution ob-
tained by our proposed method with the method introduced in [16], to
solve Example 4.1 where the results are obtained for t ∈ [0, 10], β = 1
and N = 100. Table 2 shows the maximum absolute error, convergence
order, and calculation time of the proposed algorithm for Example 4.1
for T = 1, β = 1, and various values of N . The numerical solutions
derived from the methods in [25, 16, 15, 11, 5, 4] and associated with
Example 4.1 for T = 1, β = 1, and N = 10 are shown in Table 3. The
results from the methods in [15, 11] and the proposed method associated
with Example 4.1 for two different values of β = 0.5 and β = 0.75 are
shown in Table 4. The comparison diagram between the exact solution
and the numerical solutions for various values of β, T = 1, and N = 10
associated with Example 4.1 is shown in Figure 1. In the Table 5, the
absolute errors obtained by the proposed method for Exmple 4.1 are re-
ported for various values of N = 50, 100 and β = 1 and compared with
the results of the methods presented in [4] and [5].
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Table 1. Comparison of the absolute error related to
the numerical solution of Example 4.1, obtained from
our proposed method with the presented method in [16],
for T = 10, β = 1, and N = 100.

t Error of the proposed method Error of [16]
1 1.44736× 10−6 2.3983554× 10−6

2 1.08038× 10−6 5.2634336× 10−6

3 3.00082× 10−7 1.0067173× 10−5

4 6.17995× 10−8 1.9654761× 10−5

5 1.1228× 10−8 3.8236123× 10−5

6 1.90694× 10−9 7.4334413× 10−5

7 3.10499× 10−10 1.4450373× 10−4

8 4.9116× 10−11 2.8091453× 10−4

9 7.60257× 10−12 2.4611733× 10−4

Table 2. Maximum absolute error, ROC and CPU
time(s) corresponding to the approximate solution of
Example 4.1 for β = 1, T = 1 and different values
N = 5, 10, 20, 40, 80, and 160.

N Maximum Absolute Error ROC CPU time(s)
5 2.48× 10−5 − 0.05
10 1.44× 10−6 4.1062 0.05
20 8.71× 10−8 4.04725 0.08
40 5.34× 10−9 4.02776 0.06
80 3.31× 10−10 4.01194 0.07
160 2.06× 10−11 4.00611 0.11

Table 3. Comparing the error of different methods, re-
lated to Example 4.1 for β = 1, T = 1, and N = 10.

t Exact solution Numerical solution Error of[11] Error of[15] Error of[16] Error of[25] Error of proposed method
0.2 0.1973753203 0.1973751438 3.97× 10−4 3.20× 10−7 2.67× 10−6 4.3× 10−9 1.76× 10−7

0.4 0.3799489622 0.3799485359 4.73× 10−4 3.78× 10−8 2.03× 10−6 1.97× 10−6 4.26× 10−7

0.6 0.5370495670 0.53704879 3.99× 10−4 5.67× 10−7 1.43× 10−6 6.61× 10−5 7.72× 10−7

0.8 0.6640367702 0.664035622 2.48× 10−4 2.29× 10−7 7.70× 10−7 7.35× 10−4 1.14× 10−6

1 0.7615941560 0.761592708 7.68× 10−5 1.56× 10−7 2.21× 10−5 4.42× 10−3 1.44× 10−6

Example 4.2. Assume the below fractional Riccati differential equation
[12, 11, 1]:

c
0D

β
t u(t) = u2(t)− u(t), 0 < β ≤ 1, 0 < t ≤ T,

u(0) = 0.5. (4.2)

For β = 1, the exact solution to this problem is equal to u(t) = 1
1+et .

By using the proposed methods, we will resolve this example and display
the results as tables and figure. A comparison between the absolute
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Table 4. Comparing the numerical solutions, related to
Example 4.1 for β.

β = 0.5 β = 0.75
t Our Method Method of[11] Method of [15] Our Method Method of [11] Method of[15]
0.2 0.345996 0.334626 0.426843 0.252216 0.260941 0.298583
0.4 0.535308 0.498466 0.543787 0.43079 0.442638 0.471284
0.6 0.680026 0.604588 0.611016 0.611699 0.67693 0.54723
0.8 0.73535 0.677429 0.666009 0.715028 0.749104 0.668492

Table 5. Comparison of the absolute error related to
the numerical solution of Example 4.1, obtained from
our proposed method with the presented method in [4]
and [5], for T = 1, β = 1, and N = 50, 100.

t Our Method N = 50 Our Method N = 100 Method of [4] Method of [5]
0.1 1.359× 10−10 8.511× 10−12 2.824× 10−11 2.51× 10−8

0.2 2.888× 10−10 1.809× 10−11 3.467× 10−11 4.46× 10−8

0.3 4.724× 10−10 2.960× 10−11 3.502× 10−11 5.60× 10−8

0.4 6.930× 10−10 4.338× 10−11 2.737× 10−11 1.08× 10−8

0.5 9.475× 10−10 5.922× 10−11 9.246× 10−12 1.46× 10−7

0.6 1.224× 10−9 7.386× 10−11 1.095× 10−11 2.42× 10−7

0.7 1.504× 10−9 9.374× 10−11 2.270× 10−11 1.17× 10−6

0.8 1.769× 10−9 1.100× 10−10 2.390× 10−11 1.57× 10−6

0.9 2.003× 10−9 1.242× 10−10 1.557× 10−11 1.16× 10−6

β=0.5

β=0.6

β=0.7

β=0.8

β=0.9

β=1

Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
u

Figure 1. Comparing the exact solution and numerical
solution, related to Example 4.1 for N = 10, T = 1 and
β = 0.5, 0.6, 0.7, 0.8, 0.9, 1.

error for Example 4.2 obtained for β = 1, t ∈ [0, 1] using the proposed
method with N = 10 and the method available in [11] with n = 500
is shown in Table 6. The maximum absolute error, convergence order
and calculation time of the algorithm of the proposed method for β = 1,
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T = 1 and various values of N = 5, 10, 20, 40, 80, 160 in Example 4.2 are
shown in Table 7.
A graph of the exact solution and the numerical solutions for different
values of β� N = 10 and T = 1 for Example 4.2 is shown in Figure 2.
Figure 3 includes panel (A) with the absolute errors of the proposed
method for Example 4.2, for values of β = 1, N = 100 and T = 1,
and panel (B) with the absolute errors of the method in [1] for the
same example. In the Table 9, the approximate solution obtained by
the proposed method for Exmple 4.1 are reported for various values of
N = 10, 20 and β = 1 and compared with the results of the method
presented in [12].

Table 6. Comparison of the absolute error related to
the numerical solution of Example 4.2, obtained from
our proposed method with the presented method in [11],
for T = 1, β = 1.

t Error of the proposed method Error of [11]
0 0 0
0.2 2.64162× 10−9 1.01× 10−4

0.4 5.59648× 10−9 1.34× 10−4

0.6 9.15537× 10−9 1.40× 10−4

0.8 1.34665× 10−8 1.28× 10−4

1 1.84416× 10−8 1.04× 10−4

Table 7. Maximum absolute error, ROC and CPU
time(s) corresponding to the approximate solution of
Example 4.2 for β = 1, T = 1 and different values
N = 5, 10, 20, 40, 80, 160.

N Maximum Absolute Error ROC CPU time(s)
5 2.94× 10−7 − 0.06
10 1.84× 10−8 3.998 0.08
20 1.15× 10−9 4 0.08
40 7.22× 10−11 3.993 0.09
80 4.51× 10−12 4 0.08
160 2.82× 10−13 3.999 0.08
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β=0.5

β=0.7

β=0.9

β=1

Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0.1

0.2

0.3

0.4

0.5
u

Figure 2. Comparing the exact solution and numerical
solution, related to Example 4.2 for N = 10, T = 1 and
β = 0.5, 0.7, 0.8, 0.9, 1.

(a) (b)

Figure 3. (A), The absolute error corresponding to the
approximate solution of Example 4.2 for β = 1 and
N = 100. (B), The absolute error corresponding to
the approximate solution of Example 4.2 by presented
method in [1].
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Table 8. Comparison of exact solution and numerical
solution related to the Example 4.2, obtained from our
proposed method, for T = 8, β = 1 and N = 80.

t Exact solution Numerical solution Error
0.8 0.3100255188 0.3100255323 1.34× 10−8

1.6 0.1679816148 0.1679816499 3.50× 10−8

2.4 0.0831726964 0.0831727442 4.77× 10−8

3.2 0.0391657227 0.0391657663 4.35× 10−8

4.0 0.0179862099 0.0179862415 3.15× 10−8

4.8 0.0081625711 0.0081625911 1.99× 10−8

5.6 0.0036842398 0.0036842515 1.16× 10−8

6.4 0.0016588010 0.0016588075 6.43× 10−9

7.2 0.0007460288 0.0007460322 3.43× 10−9

8.0 0.0003353501 0.0003353519 1.78× 10−9

Table 9. Comparison of the approximate solution re-
lated to the numerical solution of Example 4.2, obtained
from our proposed method with the presented method in
[12], for T = 1, β = 1, and N = 10, 20.

t Exact solution Our Method N = 10 Our Method N = 20 Method of [12]
0 0.500000000000 0.500000000000 0.500000000000 0.500000000690
0.1 0.475020812521 0.475020813824 0.475020812603 0.475020819612
0.2 0.450166002688 0.450166005329 0.450166002853 0.450166016633
0.3 0.425557483188 0.425557487248 0.425557483444 0.425557503350
0.4 0.401312339888 0.401312345484 0.401312340240 0.401312365921
0.5 0.377540668798 0.377540676085 0.377540669257 0.377540700506
0.6 0.354343693774 0.354343702929 0.354343694350 0.354343729236
0.7 0.331812227832 0.331812239046 0.331812228536 0.331812266624
0.8 0.310025518872 0.310025532339 0.310025519718 0.310025559907
0.9 0.289050497375 0.289050513275 0.289050498371 0.289050539822

Example 4.3. Assume the below fractional Riccati differential equation
[25, 16, 12, 4]:

c
0D

β
t u(t) = 1 + 2u(t)− u2(t), 0 < β ≤ 1, 0 < t ≤ T,

u(0) = 1. (4.3)

The exact solution to this problem for β = 1 is

u(t) = 1 +
√
2tanh

(√
2t+

1

2
log(

√
2− 1√
2 + 1

)
)
.

The results of applying the aforementioned combined method to solve
Example 4.3 are as follows.
The exact and approximate solution of Example 4.3 for N = 10, t ∈ [0, 1]
and various values   of β are shown in Figure 4. Figure 5 includes panel
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(A) with the absolute errors of the proposed method for Example 4.3,
for various values of β = 1, N = 100 and T = 1, and panel (B) with
the absolute errors of the method in [4] for the same example. The
maximum absolute error, convergence order and calculation time of the
algorithm of the proposed method for β = 1, T = 1 and various values
of N in Example 4.3 are shown in Table 10.
We can see the comparison of the absolute error for Example 4.3 ob-
tained for β = 1, t ∈ [0, 8] and N = 80 using our proposed method and
the method available in [16] in Table 11. The numerical solutions and
absolute errors for Example 4.3 for β = 1 obtained using our proposed
method and the method available in[25] are compared in Table 12.
In the Table 13, the absolute error obtained by the proposed method for
Exmple 4.3 are reported for various values of N = 10, 20, 40 and β = 1
and compared with the results of the method presented in [12].

β=0.5

β=0.6

β=0.7

β=0.8

β=0.9

β=0.95

β=1

Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0
u

Figure 4. Comparing the exact solution and numerical
solution, related to Example 4.3 for N = 10, T = 1 and
β = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.
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0.0 0.2 0.4 0.6 0.8 1.0
t0

2.×10-10

4.×10-10

6.×10-10

8.×10-10

1.×10-9

1.2×10-9

1.4×10-9
Absolue Error

(a) (b)

Figure 5. (A), The absolute error corresponding to the
approximate solution of Example 4.3 for β = 1 and
N = 100. (B), The absolute error corresponding to the
approximate solution of Example 4.3 in [4].

Table 10. Maximum absolute error, ROC and CPU
time(s) corresponding to the approximate solution of
Example 4.3 for β = 1, T = 1 and different values
N = 5, 10, 20, 40, 80, 160.

N Maximum Absolute Error ROC CPU time(s)
5 1.97× 10−4 − 0.08
10 1.32× 10−5 3.9 0.08
20 8.54× 10−7 3.95 0.08
40 5.44× 10−8 3.973 0.09
80 3.43× 10−9 3.99 0.11
160 2.15× 10−10 4 0.12
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Table 11. Comparison of the absolute error related to
the numerical solution of Example 4.3, obtained from our
proposed method with the presented method in [16], for
T = 8, β = 1 and N = 80.

t Exact solution Our Method Method of [16] Error of [16] Error of Our Method
0.8 1.346363553683 1.34635055517 1.346362994 6.61× 10−7 1.31× 10−5

1.6 2.246285959891159 2.2462736470889 2.246290755 4.79× 10−6 1.23× 10−5

2.4 2.395756424796480 2.3957525303123 2.395782816 2.63× 10−5 3.84× 10−6

3.2 2.412281528797622 2.4122808275535 2.412338083 5.65× 10−5 7.01× 10−7

4.0 2.4140123826056925 2.414012278819 2.414131848 1.19× 10−4 1.03× 10−7

4.8 2.41419262531085 2.4141926113068 2.414445422 2.52× 10−4 1.40× 10−8

5.6 2.414211383547892 2.414211381757 2.414746423 5.35× 10−4 1.79× 10−9

6.4 2.414213356339754 2.4142133541293 2.415345681 1.13× 10−3 2.21× 10−10

7.2 2.414213538777537 2.4142135387509 2.416609669 2.39× 10−3 2.66× 10−11

8.0 2.414213559917628 2.41421355991448 2.418416749 4.20× 10−3 3.14× 10−12

Table 12. Comparison of the absolute error related to
the numerical solution of Example 4.3, obtained from our
proposed method with the presented method in [25], for
T = 1, β = 1 and N = 10.

t Exact solution Our Method Method of [25] Error of [25] Error of Our Method
0.2 0.2419744004 0.2419720233 0.2419499764 2.44× 10−5 4.77× 10−6

0.4 0.5678068604 0.5678026028 0.5673979034 4.08× 10−4 9.56× 10−6

0.6 0.9535582813 0.9535538089 0.9525886597 9.69× 10−4 1.24× 10−5

0.8 1.346354258 1.346350555 1.345789984 5.64× 10−4 1.31× 10−5

1.0 1.689488974 1.689485146 1.688651308 8.37× 10−4 1.32× 10−5

Table 13. Comparison of the absolute error related to
the numerical solution of Example 4.3, obtained from our
proposed method with the presented method in [12], for
T = 1, β = 1, and N = 10, 20, 40.

t Our Method N = 10 Our Method N = 20 Our Method N = 40 Error of [12]
0.1 2.25× 10−6 1.51× 10−7 9.89× 10−9 2.14× 10−6

0.2 4.77× 10−6 3.19× 10−7 2.06× 10−8 2.54× 10−6

0.3 7.30× 10−6 4.85× 10−7 3.12× 10−8 2.80× 10−6

0.4 9.56× 10−6 6.30× 10−7 4.04× 10−8 2.86× 10−6

0.5 1.13× 10−5 7.40× 10−7 4.73× 10−8 2.66× 10−6

0.6 1.24× 10−5 8.09× 10−7 5.17× 10−8 2.34× 10−6

0.7 1.29× 10−5 8.43× 10−7 5.38× 10−8 2.34× 10−6

0.8 1.31× 10−5 8.53× 10−7 5.44× 10−8 1.41× 10−6

0.9 1.32× 10−5 8.53× 10−7 5.43× 10−8 1.01× 10−6

5. Conclusion

In this paper, an effective methodology for resolving fractional dif-
ferential equations was introduced and its convergence and error were
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investigated. By applying this method to a number of fractional dif-
ferential equation examples, we obtained results that demonstrate the
desirable advantages of the proposed method. Among these advantages,
we can mention the aforementioned method’s efficiency and simplicity
at the same time, it considerably cuts down on calculation execution
time and allows results to be reported for an interval larger than 1 with
a desired level of accuracy. Additionally, this method’s high accuracy in
presenting results shows that it performs better than some of the other
methods currently in use.

References
[1] A.Toma, F. Dragoi, and O. Postavaru, Enhancing the accuracy of solving

Riccati fractional differential equations, Fractal Fract. 6(2022), 275.
[2] S. W. jeng, and A. Kilicman , Fractional Riccati equation and its ap-

plications to Rough Heston model using numerical methods, Symmetry.
12(2020), 959.

[3] F. Geng, Y. Lin, and M. Cui, A piecewise variational iteration method for
Riccati differential equations, Comput. Math. Appl. 58(2009), 2518-2522.

[4] L. Sadek, A. S. Bataineh, H. Talibi Alaoui, and I. Hashim, The novel
Mittag-Leffler–Galerkin method: Application to a Riccati differential equa-
tion of fractional order, Fractal Fract. 7(2023), 302.

[5] R. Jin, and L. Wang, Generalized bell collocation method to solve fractional
Riccati differential equations, IAENG Int. J. Appl. Math. 53(2023),1-7.

[6] S. Momani, and N. Shawagfeh, Decomposition method for solving frac-
tional Riccati differential equations, Appl. Math. Comput. 182(2006),1083-
1092.

[7] M. Merdan, On the solutions fractional Riccati differential equation with
modified Riemann-Liouville derivative, Int. J. Differ. Equ. 2012(2012).

[8] Ş. Yüzbaşı, Numerical solutions of fractional Riccati type differential
equations by means of the Bernstein polynomials, Appl. Math. Comput.
219(2013), 6328-6343.

[9] W. M. Abd-Elhameed, and Y. H.Youssri, New ultraspherical wavelets
spectral solutions for fractional Riccati differential equations, Abstr. Appl.
Anal. 2014(2014)

[10] M. G. Sakar, A. Akgül, and D. Baleanu, On solutions of fractional Riccati
differential equations, Adv. Differ. Equ. 2017(2017),1-10.

[11] B. Agheli, Approximate solution for solving fractional Riccati differential
equations via trigonometric basic functions, Trans. A. Razmadze Math.
Inst. 172(2018), 299-308.

[12] S. N. Tural-Polat, Third-kind Chebyshev wavelet method for the solution
of fractional order Riccati differential equations, J. Circuits. Syst. Comput.
28(2019), 1950247.

[13] M. Izadi, Fractional polynomial approximations to the solution of frac-
tional Riccati equation, Punjab Univ. J. Math. 51(2020), 123-141.

[14] B. Hasani Lichae, J. Biazar, and Z. Ayati, Asymptotic decomposition
method for fractional order Riccati differential equation, CMDE. 9(2021),
63-78.



374 Z. Sahraee, M. Arabameri and, A. Ahmadian

[15] K. Rabiei, and M. Razzaghi, Fractional-order Boubaker wavelets method
for solving fractional Riccati differential equations, Appl. Numer. Math.
168(2021), 221-234.

[16] H. Porki, M. Arabameri, and R. Gharechahi, Numerical solution of nonlin-
ear fractional Riccati differential equations using compact finite difference
method, IJNAO. 12(2022), 585-606.

[17] S. Kumar, V. Gupta, A. Kumar, and J. F. Gómez-Aguilar, An accurate
operational matrix method based on Lagrange polynomials for solving
fractional-order pantograph delay and Riccati differential equations, Phys.
Scr. 98(2023), 044005.

[18] M. Mohammad, A. Trounev, and M. Alshbool, A novel numerical method
for solving fractional diffusion-wave and nonlinear Fredholm and Volterra
integral equations with zero absolute error, Axioms. 165(2021).

[19] I. Podlubny, Fractional differential equations: an introduction to frac-
tional derivatives. fractional differential equations, to methods of their so-
lution and some of their applications, Mathematics in Science and Engi-
neering,1999.

[20] M. Bishehniasar, S. Salagshour, A. Ahmadian, F. Ismail, and D.
Baleanu, An Accurate Approximate-Analytical Technique for Solving
Time-Fractional Partial Differential Equations, J. Complex. 2017(2017),
8718209.

[21] J. Ren, Z. Z. Sun, and W. Dai, New approximations for solving the Caputo-
type fractional partial differential equations, Appl. Math. Model. 40(2016),
2625-2636.

[22] N. H. Salama, M. Ali, and N. N. A. Hamid, Fast O(N) hybrid Laplace
transform-finite difference method in solving 2D time fractional diffusion
equation, J. Math. Comput. Sci. 23(2021),110-123.

[23] R. L. Burden, and D. J. Faires, Numerical Anaiysis, Ninth Edition.
[24] S. Abbasbandy, and T. Allah Viranloo, Numerical solution of Fuzzy dif-

ferential equation by Runge-Kutta method, J. Sci (Kharazmi Univercity).
1(2002), 31-43.

[25] E. UI Haq, M. Ali, and A. Saeed Khan, On the solution of fractional
Riccati differential equations with variation of parameters method, EASL.
3(2020),1-9.


	1.  Introduction
	2.  Combination method based on Laplace transform and Runge-Kutta method 
	2.1. The Laplace transform method 
	2.2. Runge-Kutta method

	3. Convergence analysis
	4. Numerical examples
	5. Conclusion
	References

