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Abstract. Transmutation is a widely used technique to enhance
the flexibility of baseline probability distributions in statistical mod-
elling. While the quadratic transmutation is unique, the cubic
transmutation admits multiple formulations. This paper presents
a unified investigation of cubic transmuted Rayleigh distributions
from both theoretical and empirical perspectives. On the theoret-
ical side, we revisit six existing cubic transmutation formulas and
their modified versions, and we introduce a general formulation that
encompasses these models while establishing their main statistical
properties. To evaluate parameter estimation, simulation studies
are conducted to assess the efficiency of maximum likelihood esti-
mators, evaluating performance across different sample sizes and
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parameter settings, showing satisfactory performance across differ-
ent scenarios. On the empirical side, real data analyses highlight
the comparative performance of the proposed models, with some
formulations providing improved fit and flexibility. Overall, this
study offers a comprehensive framework that consolidates existing
approaches, extends the family of cubic transmuted Rayleigh dis-
tributions, and provides practical guidance for their application in
data analysis.

Keywords: Cubic transmutation, Rayleigh distribution, param-
eter estimation, maximum likelihood, numerical optimization.
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1. Introduction

Let x ∈ R and G(x) be a cumulative distribution function (CDF) and
g(x) be the probability density function (PDF) linked to G(x). In order
to improve data fitting, some of the recent scientific research has focused
on building functions R defined from [0, 1] to itself such that the com-
pound function F (x) = R[G(x)] is a CDF and then fitting the data with
F (x) = R[G(x)] instead of G(x). Such processes (known as extension or
generalization of probability distributions) usually need adding one or
more new parameters and have led to the emergence of new families of
probability distributions (see, for example, [1, 2] for detailed reviews).

One of the most used compound functions is

F (x) = R[G(x)] =
k−1∑
i=1

δi [G(x)]i +

(
1−

k−1∑
i=1

δi

)
[G(x)]k , (1.1)

where k is an integer such that k ⩾ 2 and δ1, . . . , δk−1 are real parameters
defined to ensure that R[G(x)] is also a CDF; that is (see, for example,
[17]),

inf
t∈[0,1]

[
k−1∑
i=1

iδit
i−1 + k

(
1−

k−1∑
i=1

δi

)
tk−1

]
⩾ 0.

This technique, called transmutation of order k − 1 by some authors
[15, 27, 28, 30] and transmutation of order k by others [4, 8], will be
referred to in this paper as transmutation of order k − 1. It is worth
noting that some authors (see, for example, [6, 22, 24, 32]) have used
the formula (1.1) by replacing G(x) by G(x)α or 1− (1−G(x))α, where
α > 0, and obtained new families which they also called transmuted fam-
ily of distributions. However, this can be considered as a combination of
transmutation and exponentiation [5], so it will not be considered in this
study. In a related line of research, Balakrishnan and He [8] combined
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transmutation with the theory of record values and developed record-
based transmuted families of distributions. This new development has
incited greater and greater interest in researchers. For example, Tanış
[38] introduced the transmuted lower record type inverse Rayleigh dis-
tribution, which was shown to be suitable for modelling recovery times
of Covid-19 patients. Other examples include the record-based trans-
muted power Lomax distribution [33] and the record-based transmuted
Rayleigh distribution [21].

In the case k = 2 (quadratic transmutation), Shaw and Buckley [36]
proved that the unique form possible is

R[G(x)] = (1 + λ)G(x)− λG2(x), (1.2)

where λ is an additional parameter such that |λ| ⩽ 1 and setting λ = 0
enables to get the baseline CDF G(x). Formula (1.2) has been applied
to several baseline distributions, thus leading to a considerable number
of quadratic transmuted distributions, all of which were proved to fit
data better than the underlying baseline distributions [11, 16].

Unlike quadratic transmutation (transmutation of order 1), transmu-
tation of order 2, called cubic transmutation (see, for example, [15]),
is not unique. Six different cubic transmutation (CT) formulas have
been developed respectively by Granzotto et al. [15], AL-Kadim and
Mohammed [3], and Rahman et al. [27, 28, 29, 31]. They will be respec-
tively denoted CTG, CTA, CTR18a, CTR18b, CTR19 and CTR23. Real
data applications suggest that these CTs generally fit the data better
than the quadratic transmutation and the baseline distribution. Ger-
aldo et al. [14] have made a comparative analysis of these CTs from
both theoretical and empirical viewpoints and suggested improvements
by modifying the parameters ranges. Their case study using Pareto dis-
tribution as baseline distribution suggests that modified CTs presented
a better fit to the studied data than the unmodified CTs.

In this paper, we investigate various cubic transmutations of the
Rayleigh distribution, which is an important statistical distribution with
applications in survival analysis, communication engineering, acoustics
and reliability theory [10]. Drawing on ideas from [14] and [17], we
derive general formulas for the CDF, PDF, and key statistical proper-
ties such as moments for different cubic transmuted Rayleigh (CTR)
distributions. These formulas depend on two parameters, which, once
specified, allow for the derivation of the desired properties for each cu-
bic transmutation form. We also compare the unmodified and modified
versions of different CTR models using real data. Sakthivel and Vidhya
[34] explored four CTR forms, using CTG, CTA, CTR18a, and CTR19 for-
mulas. In their work, they analysed each model separately, estimated
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parameters via maximum likelihood, and assessed their applicability us-
ing real data. However, they did not perform a simultaneous comparison
of the four models on the same datasets. Our work extends theirs in sev-
eral key aspects: (a) we examine six CTR forms, including CTR18b and
CTR23; (b) instead of treating statistical properties separately for each
model, we propose a unified general formula encompassing all cases; (c)
we simultaneously compare all six models across multiple datasets; (d)
we incorporate parameter range modifications suggested by Geraldo et
al. [14] to enhance model performance.

The remainder of the paper is structured as follows. Section 2 pro-
vides a brief review of six CT formulas proposed in the literature, along
with their modifications by Geraldo et al. [14] for improved data fit-
ting. Section 3 introduces a general formula for CTR distributions. In
Section 4, we derive formulas for the statistical properties of the gen-
eral CTR distribution, which depend on certain parameters that, once
specified, yield the properties of a given CTR form. Section 5 discusses
the maximum likelihood estimation of model parameters, while Section
6 provides the results of a simulation study conducted to assess the
performance of the maximum likelihood estimators (MLEs) for the pa-
rameters of all six CTR distributions. Section 7 presents a comparative
analysis of the modified and unmodified CTR models using real data in
R software [25]. Finally, Section 8 concludes with some remarks.

2. A brief review of CT formulas and their modifications

2.1. Cubic transmutation formulas. Let x ∈ R and G(x) be a base-
line CDF. To the best of our knowledge, there exist six formulas for
CT. In this section, we just briefly present these formulas. For a more
detailed review on the construction of each formula, we refer the reader
to [14].

The first CT formula (that we denote CTG) is due to Granzotto et
al. [15] who proposed the new CDF

FG(x) = λ1G(x) + (λ2 − λ1)G
2(x) + (1− λ2)G

3(x),

where (λ1, λ2) ∈ SG = [0, 1] × [−1, 1]. The second formula (that we
denote CTA) was proposed by AL-Kadim and Mohammed [3]. It corre-
sponds to the CDF

FA(x) = (1 + λ)G(x)− 2λG2(x) + λG3(x),

where λ ∈ [−1, 1]. The third formula (that we denote CTR18a) was
proposed by Rahman et al. [27] and corresponds to the CDF

FR18a(x) = (1 + λ1)G(x) + (λ2 − λ1)G
2(x)− λ2G

3(x),
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where
(λ1, λ2) ∈ SR18a =

{
(λ1, λ2) ∈ [−1, 1]2 : −2 ⩽ λ1 + λ2 ⩽ 1

}
.

The fourth formula (that we denote CTR18b) was proposed by Rahman
et al. [28] who obtained a new CDF in the form

FR18b(x) = (1 + λ1 + λ2)G(x)− (λ1 + 2λ2)G
2(x) + λ2G

3(x),

where (λ1, λ2) ∈ SR18b = [−1, 1] × [0, 1]. The fifth formula (that we
denote CTR19) was proposed by Rahman et al. [29] who defined another
form of CT through the new CDF

FR19(x) = (1− λ)G(x) + 3λG2(x)− 2λG3(x),

where λ ∈ [−1, 1]. The sixth and final formula (that we denote CTR23)
was developed by Rahman et al. [31] through the CDF

FR23(x) = [1− λ(θ − 1)]G(x) + λ(2θ − 1)G2(x)− λθG3(x),

where (λ, θ) ∈ SR23 = [−1, 1]× [0, 2].

2.2. Comparison and modifications of CT formulas. Let G(x)
be a CDF. Geraldo et al. [14] studied the six different CT formulas.
Their first very important result is that there exist values (λ1, λ2) ∈
[0, 1] × [−1, 1] such that the CDF FG(x) of the CTG distribution with
baseline CDF G(x) does not satisfy the properties of a CDF. They then
proposed a modified CTG distribution (denoted CTMG) with the same
CDF FG(x) but with the modified parameters range

(λ1, λ2) ∈ SMG =
{
(λ1, λ2) ∈ [0, 3]2 : 0 ⩽ λ1 + λ2 ⩽ 3

}
.

A second important result from Geraldo et al. [14] is that although the
other five CT formulas yield well-defined CDFs for all parameters values,
the fit to data of four of them can be improved by extending their respec-
tive parameter ranges. They proved that the CTA distribution is also
well defined under the extended condition λ ∈ [−1, 3] and named it the
modified AL-Kadim Cubic Transmutation (denoted CTMA). They also
proved that the CTR19 distribution is well defined under the extended
condition λ ∈ [−2, 1] and named it the modified cubic transmutation of
Rahman et al. [29] (denoted CTMR19). They also extended the param-
eter ranges of the CTR18a and CTR18b families respectively as

SMR18a =
{
(λ1, λ2) ∈ [−1, 2]2 : −2 ⩽ λ1 + λ2 ⩽ 1

}
and

SMR18b =
{
(λ1, λ2) ∈ [−2, 1]2 : −1 ⩽ λ1 + λ2 ⩽ 2

}
,

and respectively named them modified CTR18a (denoted CTMR18a) and
modified CTR18b (denoted CTMR18b). The third important result from
the paper [14], is that for all (λ1, λ2) ∈ SMG, the modified distributions
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CTMG(λ1, λ2), CTMR18a(λ1−1, λ2−1), and CTMR18b(λ1+λ2−2, 1−λ2)
linked to G(x) are equal. No modification has been proposed by the
authors for the CTR23 formula.

3. Unified formula for cubic transmuted Rayleigh
distributions

The Rayleigh distribution (also called the one-parameter Rayleigh
distribution) is defined by its CDF

G(x) = 1− exp

(
− x2

2σ2

)
, x > 0, (3.1)

and its PDF

g(x) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0,

where σ > 0 is the scale parameter. For all µ > 0, the random variable
Y = X + µ follows the two-parameter Rayleigh distribution and µ is
then called the location parameter [9].

Using the quadratic transmutation proposed by Shaw and Buckley
[36], Merovci [20] developed the transmuted Rayleigh (TR) distribution.
Dey et al. [10] studied different methods for estimating the parameters
of the TR distribution. More recently, Malik and Ahmad [19] developed
a new version of the TR distribution using a combination of quadratic
transmutation and exponentiation. Khan et al. [18] developed the trans-
muted version of the two-parameter Rayleigh distribution.

Rahman [26] proposed a CTR distribution using the CTR19 formula.
Rahman et al. [31] applied their own CTR23 formula to develop another
CTR distribution. Sakthivel and Vidhya [34] studied simultaneously
four CTR distributions by applying the CTG, CTA, CTR18a, and CTR19

formulas.
Beyond the Rayleigh baseline, the development of cubic transmuted

distributions has attracted considerable attention. For instance, Saraçoğlu
and Tanış [35] proposed a CT of the Kumaraswamy distribution and
derived several statistical properties together with maximum likelihood
estimation supported by simulation studies. More recently, Taniş and
Saraçoğlu [40] introduced a CT of the generalized Gompertz distribu-
tion, further demonstrating the flexibility of the CT approach through
three real data applications. Other works, such as the CT of the inverse
Rayleigh distribution by Taniş and Saraçoğlu [39], illustrate the broader
applicability of CT techniques across different baseline distributions.

In the remainder of this paper, the CTR distributions correspond-
ing to the CTG, CTA, CTR18a, CTR18b and CTR19 formulas will be
respectively denoted CTRG, CTRA, CTRR18a, CTRR18b and CTRR19
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and the corresponding modifications will be denoted CTRMG, CTRMA,
CTRMR18a, CTRMR18b and CTRMR19. The CTR of Rahman et al. [31]
will be denoted CTRR23.

The following proposition gives the respective general forms of the
CDF and PDF of any CTR distribution.

Proposition 3.1. For any CTR distribution, there exist two reals δ1
and δ2 such that

inf
t∈[0,1]

[
δ1 + 2δ2t+ 3(1− δ1 − δ2)t

2
]
⩾ 0, (3.2)

and the CDF and the PDF are respectively given for all x > 0 by

F (x) = 1 + (2δ1 + δ2 − 3) exp

(
− x2

2σ2

)
+ (3− 3δ1 − 2δ2) exp

(
−x2

σ2

)
+ (δ1 + δ2 − 1) exp

(
−3x2

2σ2

)
(3.3)

and

f(x) =
x

σ2
exp

(
− x2

2σ2

)[
(3− 2δ1 − δ2) + (6δ1 + 4δ2 − 6) exp

(
− x2

2σ2

)
+(3− 3δ1 − 3δ2) exp

(
−x2

σ2

)]
, (3.4)

where σ > 0.

Proof. Katchekpele et al. [17] proved in Section 2.3 of their paper, that
a CDF F (x) is a cubic transmutation of a baseline CDF G(x) if and
only if it has the form

F (x) = δ1G(x) + δ2G
2(x) + (1− δ1 − δ2)G

3(x), (3.5)

where δ1 and δ2 satisfy Equation (3.2). Now, let F and f be the respec-
tive CDF and PDF of a CTR distribution. By replacing Equation (3.1)
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in (3.5), we have

F (x) = δ1

[
1− exp

(
− x2

2σ2

)]
+ δ2

[
1− exp

(
− x2

2σ2

)]2
+ (1− δ1 − δ2)

[
1− exp

(
− x2

2σ2

)]3
= δ1

[
1− exp

(
− x2

2σ2

)]
+ δ2

[
1− 2 exp

(
− x2

2σ2

)
+ exp

(
−2x2

2σ2

)]
+ (1− δ1 − δ2)

[
1− 3 exp

(
− x2

2σ2

)

+ 3 exp

(
−2x2

2σ2

)
− exp

(
−3x2

2σ2

)]

= 1 + (2δ1 + δ2 − 3) exp

(
− x2

2σ2

)
+ (3− 3δ1 − 2δ2) exp

(
−2x2

2σ2

)
+ (δ1 + δ2 − 1) exp

(
−3x2

2σ2

)
,

which completes the proof of Equation (3.3). Equation (3.4) is then
deduced using the relation f(x) = F ′(x). □

Table 1 gives a summary of the values of (δ1, δ2) corresponding to the
six CT formulas considered in this paper.

Geraldo et al. [14] proved that all six CTs satisfy Equation (3.2)
(whether the parameter range is modified or not) except the CTG under
the initial parameter range. This further highlights the importance of
the modified parameter range for the CTG.

Remark 3.2. By applying the formulas (3.3) and (3.4) for the values
of (δ1, δ2) from Table 1, one gets the respective CDFs and PDFs of
the different CTR distributions (see [34] for CTRG, CTRA, CTRR18a,
CTRR19, and [31] for CTRR23).

• The CDF and PDF of both the CTRG and CTRMG distribu-
tions are

FG(x) = 1 + (λ1 + λ2 − 3) exp

(
− x2

2σ2

)
+ (3− λ1 − 2λ2) exp

(
−x2

σ2

)
+ (λ2 − 1) exp

(
−3x2

2σ2

)
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Table 1. Summary of the values of (δ1, δ2) for the six
CT formulas and their corresponding initial and modified
parameter ranges (if any)

Formula (δ1, δ2) Initial and modified ranges (if
any)

CTG (λ1, λ2 − λ1) Initial: (λ1, λ2) ∈ [0, 1]× [−1, 1]

Modified: (λ1, λ2) ∈ [0, 3]2 and
0 ⩽ λ1 + λ2 ⩽ 3

CTA (1 + λ,−2λ) Initial: λ ∈ [−1, 1]

Modified: λ ∈ [−1, 3]

CTR18a (1 + λ1, λ2 − λ1) Initial: (λ1, λ2) ∈ [−1, 1]2 and
−2 ⩽ λ1 + λ2 ⩽ 1

Modified: (λ1, λ2) ∈ [−1, 2]2 and
−2 ⩽ λ1 + λ2 ⩽ 1

CTR18b (1 + λ1 + λ2,−λ1 − 2λ2) Initial: (λ1, λ2) ∈ [−1, 1]× [0, 1]

Modified: (λ1, λ2) ∈ [−2, 1]2 and
−1 ⩽ λ1 + λ2 ⩽ 2

CTR19 (1− λ, 3λ) Initial: λ ∈ [−1, 1]

Modified: λ ∈ [−2, 1]

CTR23 (1 + λ− λθ, 2λθ − λ) Initial: (λ, θ) ∈ [−1, 1]× [0, 2]

and

fG(x) =
x

σ2
exp

(
− x2

2σ2

)[
(3− λ1 − λ2)

+ 2(λ1 + 2λ2 − 3) exp

(
− x2

2σ2

)
+ 3(1− λ2) exp

(
−x2

σ2

)]
.

• The CDF and PDF of both the CTRA and CTRMA distribu-
tions are

FA(x) = 1− exp

(
− x2

2σ2

)
+ λ exp

(
−x2

σ2

)
− λ exp

(
−3x2

2σ2

)
and

fA(x) =
x

σ2
exp

(
− x2

2σ2

)[
1− 2λ exp

(
− x2

2σ2

)
+ 3λ exp

(
−x2

σ2

)]
.
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• The CDF and PDF of both the CTRR18a and CTRMR18a dis-
tributions are

FR18a(x) = 1 + (λ1 + λ2 − 1) exp

(
− x2

2σ2

)
− (λ1 + 2λ2) exp

(
−x2

σ2

)
+ λ2 exp

(
−3x2

2σ2

)
and

fR18a(x) =
x

σ2
exp

(
− x2

2σ2

)[
(1− λ1 − λ2)

+ 2(λ1 + 2λ2) exp

(
− x2

2σ2

)
− 3λ2 exp

(
−x2

σ2

)]
.

• The CDF and PDF of both the CTRR18b and CTRMR18b dis-
tributions are

FR18b(x) = 1 + (λ1 − 1) exp

(
− x2

2σ2

)
+ (λ2 − λ1) exp

(
−x2

σ2

)
− λ2 exp

(
−3x2

2σ2

)
and

fR18b(x) =
x

σ2
exp

(
− x2

2σ2

)[
(1− λ1) + 2(λ1 − λ2) exp

(
− x2

2σ2

)
+3λ2 exp

(
−x2

σ2

)]
.

• The CDF and PDF of both the CTRR19 and CTRMR19 distri-
butions are

FR19(x) = 1 + (λ− 1) exp

(
− x2

2σ2

)
− 3λ exp

(
−x2

σ2

)
+ 2λ exp

(
−3x2

2σ2

)
and

fR19(x) =
x

σ2
exp

(
− x2

2σ2

)[
(1− λ) + 6λ exp

(
− x2

2σ2

)

− 6λ exp

(
−x2

σ2

)]
.

• The CDF and PDF of the CTRR23 distribution are

FR23(x) = 1+(λ−1) exp

(
− x2

2σ2

)
−λ(1+θ) exp

(
−x2

σ2

)
+λθ exp

(
−3x2

2σ2

)
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and

fR23(x) =
x

σ2
exp

(
− x2

2σ2

)[
(1− λ) + 2λ(1 + θ) exp

(
− x2

2σ2

)
−3λθ exp

(
−x2

σ2

)]
.

4. Moments and other results

4.1. Moments.

Theorem 4.1. Let X be a random variable following a CTR distribution
as defined by Proposition 3.1. Then, for all k ∈ N∗, the kth moment is
given by

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(3− 2δ1 − δ2) +

(3δ1 + 2δ2 − 3)

2k/2

+
(1− δ1 − δ2)

3k/2

]
, (4.1)

where Γ is the Gamma function. The mean and variance are respectively
given by

E(X) = σ
√
2Γ

(
3

2

)[
(3− 2δ1 − δ2) +

(3δ1 + 2δ2 − 3)

21/2
+

(1− δ1 − δ2)

31/2

]
and

V (X) = 2σ2

{[
(3− 2δ1 − δ2) +

(3δ1 + 2δ2 − 3)

2
+

(1− δ1 − δ2)

3

]

−
(
Γ

(
3

2

)[
(3− 2δ1 − δ2) +

(3δ1 + 2δ2 − 3)

21/2
+

(1− δ1 − δ2)

31/2

])2
}
.

Proof. Let k ∈ N∗. We have

E(Xk) =

∫ ∞

−∞
xkf(x) dx.
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From Equation (3.4), we have

E(Xk) =

∫ ∞

0

xk+1

σ2

[
(3− 2δ1 − δ2) exp

(
− x2

2σ2

)
+ (6δ1 + 4δ2 − 6) exp

(
−x2

σ2

)
+ (3− 3δ1 − 3δ2) exp

(
−3x2

2σ2

)]
dx

= (3− 2δ1 − δ2)

∫ ∞

0

xk+1

σ2
exp

(
− x2

2σ2

)
dx

+ (6δ1 + 4δ2 − 6)

∫ ∞

0

xk+1

σ2
exp

(
−x2

σ2

)
dx

+ (3− 3δ1 − 3δ2)

∫ ∞

0

xk+1

σ2
exp

(
−3x2

2σ2

)
dx.

By making respectively the changes of variables

s =
x2

2σ2
, t =

x2

σ2
and u =

3x2

2σ2
,

we have

E(Xk) = (3− 2δ1 − δ2)

∫ ∞

0

(
σ21/2s1/2

)k
e−s ds

+ (6δ1 + 4δ2 − 6)

∫ ∞

0

1

2

(
σt1/2

)k
e−t dt

+ (3− 3δ1 − 3δ2)

∫ ∞

0

1

3

(
σ21/2

(u
3

)1/2)k

e−u du

= (3− 2δ1 − δ2)

∫ ∞

0
σk2k/2sk/2e−s ds

+ (3δ1 + 2δ2 − 3)

∫ ∞

0
σktk/2e−t dt

+ (1− δ1 − δ2)

∫ ∞

0

σk2k/2

3k/2
uk/2e−u du

= (3− 2δ1 − δ2)σ
k2k/2Γ

(
k

2
+ 1

)
+ (3δ1 + 2δ2 − 3)σkΓ

(
k

2
+ 1

)
+ (1− δ1 − δ2)

σk2k/2

3k/2
Γ

(
k

2
+ 1

)
,
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and, finally,

E(Xk) = σk2k/2Γ

(
k + 2

2

)[
(3− 2δ1 − δ2) +

(3δ1 + 2δ2 − 3)

2k/2

+
(1− δ1 − δ2)

3k/2

]
.

The expectation E(X) corresponds to the case k = 1 and the variance
V (X) is deduced by considering k = 2 and using the relation V (X) =
E(X2)− [E(X)]2. □

Remark 4.2. By setting the values of δ1 and δ2 as in Table 1, one can
obtain the kth moment for each of the six CT formulas considered in
this paper (see [34] for CTRG, CTRA, CTRR18a, CTRR19 and [31] for
CTRR23).

• For both the CTRG and CTRMG distributions,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(3− λ1 − λ2) +

(λ1 + 2λ2 − 3)

2k/2
+

(1− λ2)

3k/2

]
.

• For both the CTRA and CTRMA distributions,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
1− λ

2k/2
+

λ

3k/2

]
.

• For both the CTRR18a and CTRMR18a distributions,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(1− λ1 − λ2) +

(λ1 + 2λ2)

2k/2
− λ2

3k/2

]
.

• For both the CTRR18b and CTRMR18b distributions,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(1− λ1) +

(λ1 − λ2)

2k/2
+

λ2

3k/2

]
.

• For both the CTRR19 and CTRMR19 distributions,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(1− λ) +

3λ

2k/2
− 2λ

3k/2

]
.

• For the CTRR23 distribution,

E(Xk) = σk2k/2 Γ

(
k + 2

2

)[
(1− λ) +

λ(1 + θ)

2k/2
− λθ

3k/2

]
.
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4.2. Moment generating function.

Proposition 4.3. Let X be a random variable following a CTR dis-
tribution as defined by Proposition 3.1. Then, the moment generating
function is defined for all t ∈ R by:

M(t) =
∞∑
k=0

{
tk

k!
σk2k/2 Γ

(
k + 2

2

)[
(3− 2δ1 − δ2)

+
(3δ1 + 2δ2 − 3)

2k/2
+

(1− δ1 − δ2)

3k/2

]}
.

Proof. The proof, largely inspired from the papers on CTR distributions
(see, for example, [26, 31, 34]), uses the power series expansion of the
exponential function. Indeed, we have

M(t) = E
(
etX
)
=

∫ ∞

0
etxf(x) dx

=

∫ ∞

0

∞∑
k=0

tkxk

k!
f(x) dx

=

∞∑
k=0

tk

k!
E(Xk),

where E(Xk) is given by Equation (4.1). □

5. Parameter estimation

Let x1, . . . , xn be a random sample of size n from the CTR with PDF
f(x) defined by Equation (3.4). The likelihood and its logarithm (log-
likelihood) are respectively defined by:

L =
n∏

i=1

f(xi) and ℓ = logL =
n∑

i=1

log [f(xi)] .

Since the parameters of the six CTR distributions are not the same, it
is necessary to detail the log-likelihood for each.
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• The log-likelihood corresponding to both the CTRG and the
CTRMG distributions is

ℓG(σ, λ1, λ2) = −2n log(σ) +
n∑

i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+

n∑
i=1

log

[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3) exp

(
− x2i
2σ2

)

+ 3(1− λ2) exp

(
−x2i
σ2

)]
.

The MLE (σ̂, λ̂1, λ̂2) of (σ, λ1, λ2) is

(σ̂, λ̂1, λ̂2) = argmax
(σ,λ1,λ2)∈R∗

+×S
ℓG(σ, λ1, λ2),

where S = SG for the CTRG distribution and S = SMG for the
CTRMG distribution.

• The log-likelihood corresponding to both the CTRA and the
CTRMA distributions is

ℓA(σ, λ) = −2n log(σ) +
n∑

i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+

n∑
i=1

log

[
1− 2λ exp

(
− x2i
2σ2

)
+ 3λ exp

(
−x2i
σ2

)]
.

The MLE (σ̂, λ̂) of (σ, λ) is

(σ̂, λ̂) = argmax
(σ,λ)∈R∗

+×S
ℓA(σ, λ),

where S = [−1, 1] for the CTRA distribution and S = [−1, 3] for
the CTRMA distribution.

• The log-likelihood corresponding to both the CTRR18a and the
CTRMR18a distributions is

ℓR18a(σ, λ1, λ2) = −2n log(σ) +
n∑

i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+
n∑

i=1

log

[
(1− λ1 − λ2) + 2(λ1 + 2λ2) exp

(
− x2i
2σ2

)
−3λ2 exp

(
−x2i
σ2

)]
.
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The MLE (σ̂, λ̂1, λ̂2) of (σ, λ1, λ2) is

(σ̂, λ̂1, λ̂2) = argmax
(σ,λ1,λ2)∈R∗

+×S
ℓR18a(σ, λ1, λ2),

where S = SR18a for the CTRR18a distribution and S = SMR18a

for the CTMR18a distribution.
• The log-likelihood corresponding to both the CTRR18b and the
CTRMR18b distributions is

ℓR18b(σ, λ1, λ2) = −2n log(σ) +
n∑

i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+

n∑
i=1

log

[
(1− λ1) + 2(λ1 − λ2) exp

(
− x2i
2σ2

)
+ 3λ2 exp

(
−x2i
σ2

)]
.

The MLE (σ̂, λ̂1, λ̂2) of (σ, λ1, λ2) is

(σ̂, λ̂1, λ̂2) = argmax
(σ,λ1,λ2)∈R∗

+×S
ℓR18b(σ, λ1, λ2),

where S = SR18b for the CTRR18b distribution and S = SMR18b

for the CTMR18b distribution.
• The log-likelihood corresponding to both the CTRR19 and the
CTRMR19 distributions is

ℓR19(σ, λ) = −2n log(σ) +

n∑
i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+

n∑
i=1

log

[
(1− λ) + 6λ exp

(
− x2i
2σ2

)
− 6λ exp

(
−x2i
σ2

)]
.

The MLE (σ̂, λ̂) of (σ, λ) is

(σ̂, λ̂) = argmax
(σ,λ)∈R∗

+×S
ℓR19(σ, λ),

where S = [−1, 1] for the CTRR19 distribution and S = [−2, 1]
for the CTRMR19 distribution.

• The log-likelihood corresponding to CTRR23 distribution is

ℓR23(σ, λ, θ) = −2n log(σ) +
n∑

i=1

log(xi)−
1

2σ2

n∑
i=1

x2i

+
n∑

i=1

log

[
(1− λ) + 2λ(1 + θ) exp

(
− x2i
2σ2

)
− 3λθ exp

(
−x2i
σ2

)]
.
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The MLE (σ̂, λ̂, θ̂) of (σ, λ, θ) is

(σ̂, λ̂, θ̂) = argmax
(σ,λ,θ)∈R∗

+×[−1,1]×[0,2]
ℓR23(σ, λ, θ).

The resolution of these optimization problems requires the use of a nu-
merical optimization algorithm which can handle inequality constraints.
As in [14], we will use the R function ”constrOptim” because it not only
provides algorithms performing numerical optimization under inequal-
ity constraints, but also returns the Hessian matrix of the log-likelihood
(the matrix of partial derivatives of order 2) thus allowing the easy esti-
mation of standard errors as the diagonal elements of the inverse of the
observed information matrix (the opposite of the Hessian matrix).

6. Simulation study

This section presents the results of a simulation study to evaluate the
performance of the MLEs of the parameters for the six CTR distribu-
tions. The true parameter values were set according to the following
scenarios:

• CTRMG distribution:
Scenario 1: (α, λ1, λ2) = (1.7, 1.3, 0.5);
Scenario 2: (α, λ1, λ2) = (3.0, 2.0, 0.0);

• CTRMA distribution:
Scenario 3: (α, λ) = (1.5,−0.5);
Scenario 4: (α, λ) = (3.0, 1.8);

• CTRMR18a distribution:
Scenario 5: (α, λ1, λ2) = (1.4,−0.5, 0.7);
Scenario 6: (α, λ1, λ2) = (3.0, 0.8,−0.8);

• CTRMR18b distribution:
Scenario 7: (α, λ1, λ2) = (1.0,−0.5, 0.9);
Scenario 8: (α, λ1, λ2) = (2.0, 0.8, 0.5);

• CTRMR19 distribution:
Scenario 9: (α, λ) = (1.2,−1.8);
Scenario 10: (α, λ) = (2.8, 0.9);

• CTRR23 distribution:
Scenario 11: (α, λ, θ) = (1.7,−0.5, 1.0);
Scenario 12: (α, λ, θ) = (3.0,−1.0, 2.0).

For each CTR distribution, the random sample x1, . . . , xn was simu-
lated using the inversion method for random number generation, i.e., by
generating n random samples u1, . . . , un from the uniform distribution
on [0, 1] (using the ”runif” function in R software [25]) and then, for



290 Issa Cherif Geraldo, Edoh Katchekpele, Tchilabalo Abozou Kpanzou

each i = 1, . . . , n, computing the unique real xi such that F (xi) = ui
(using the ”uniroot” function).

To observe the convergence properties of the MLEs, we fixed the sam-
ple sizes as follows: n ∈ {50, 100, 250, 500, 1000}. For each CTR distri-
bution and each combination of true parameter values and sample size,
we replicated R = 1000 times, the process consisting of generating a
sample of size n, and then computing the MLEs of the parameters using
the BFGS algorithm. In past studies (see, for example, [12, 13]), it was
observed that the log-likelihoods of transmuted distributions could have
local maxima (which are not the true MLEs), to which optimization al-
gorithms can sometimes converge, depending on the starting values. To
address this issue, we used a multi-start optimization approach, testing
m = 10 different starting values for each replication and retaining the
parameter estimates that produced the highest log-likelihood value. The
mean and the mean squared errors (MSEs) of the MLEs are respectively
estimated as

Mean(â) =
1

R

R∑
i=1

â(i) and MSE(â) =
1

R

R∑
i=1

(
â(i) − a

)2
,

where a stands for the true value of any of the parameters σ, λ, λ1, λ2

or θ, and â(i) represents the estimate of that parameter from replication
i ∈ {1, . . . , R}.

Tables 2 to 7 present the results of our simulation study.

Table 2. Means and MSEs for the MLEs of the param-
eters of the CTRMG distribution

α̂ λ̂1 λ̂2

Scenario n Mean MSE Mean MSE Mean MSE
1 50 1.766 0.087 1.395 0.269 0.451 0.315

100 1.776 0.071 1.426 0.181 0.444 0.195
250 1.738 0.040 1.366 0.086 0.465 0.106
500 1.713 0.014 1.332 0.031 0.472 0.056
1000 1.704 0.006 1.314 0.015 0.475 0.032

2 50 3.021 0.165 1.896 0.183 0.146 0.113
100 3.029 0.096 1.931 0.098 0.120 0.064
250 3.019 0.036 1.953 0.038 0.096 0.032
500 3.006 0.016 1.961 0.020 0.077 0.020
1000 3.009 0.007 1.972 0.010 0.060 0.011
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Table 3. Means and MSEs for the MLEs of the param-
eters of the CTRMA distribution

α̂ λ̂
Scenario n Mean MSE Mean MSE

3 50 1.508 0.026 −0.499 0.197
100 1.499 0.006 −0.517 0.061
250 1.498 0.002 −0.507 0.024
500 1.502 0.005 −0.493 0.026
1000 1.498 0.001 −0.505 0.006

4 50 2.984 0.103 1.783 0.257
100 2.997 0.042 1.799 0.115
250 2.998 0.015 1.801 0.039
500 3.001 0.008 1.807 0.020
1000 3.001 0.004 1.806 0.010

Table 4. Means and MSEs for the MLEs of the param-
eters of the CTRMR18a distribution

α̂ λ̂1 λ̂2

Scenario n Mean MSE Mean MSE Mean MSE
5 50 1.401 0.052 −0.433 0.247 0.447 0.746

100 1.408 0.041 −0.419 0.152 0.480 0.527
250 1.423 0.023 −0.440 0.062 0.644 0.207
500 1.427 0.017 −0.451 0.033 0.688 0.128
1000 1.423 0.010 −0.463 0.018 0.706 0.078

6 50 3.056 0.204 0.767 0.206 −0.765 0.143
100 3.035 0.102 0.801 0.121 −0.781 0.094
250 3.008 0.042 0.802 0.045 −0.793 0.048
500 3.019 0.022 0.806 0.027 −0.787 0.031
1000 3.007 0.009 0.802 0.012 −0.799 0.017

It is noticed that, when the sample size increases, the means of the
MLEs get closer to the true values of the parameters and the MSEs
decrease.

7. Comparison of models on real datasets

In this section, we compare the Rayleigh, TR, CTRG, CTRA, CTRR18a,
CTRR18b, CTRR19 and CTRR23 distributions and their modifications
on real datasets using R software [25]. As stated earlier, we will use
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Table 5. Means and MSEs for the MLEs of the param-
eters of the CTRMR18b distribution

α̂ λ̂1 λ̂2

Scenario n Mean MSE Mean MSE Mean MSE
7 50 1.043 0.020 −0.331 0.269 0.728 0.227

100 1.027 0.014 −0.378 0.186 0.773 0.138
250 1.015 0.005 −0.428 0.079 0.822 0.065
500 1.006 0.001 −0.464 0.033 0.848 0.034
1000 1.003 0.001 −0.484 0.014 0.875 0.017

8 50 1.690 0.224 0.253 0.593 0.503 0.361
100 1.775 0.153 0.428 0.311 0.472 0.280
250 1.888 0.090 0.605 0.111 0.503 0.166
500 1.942 0.058 0.685 0.052 0.524 0.117
1000 1.980 0.034 0.741 0.022 0.533 0.071

Table 6. Means and MSEs for the MLEs of the param-
eters of the CTRMR19 distribution

α̂ λ̂
Scenario n Mean MSE Mean MSE

9 50 1.201 0.003 −1.814 0.035
100 1.199 0.002 −1.807 0.021
250 1.199 0.001 −1.803 0.009
500 1.199 0.000 −1.803 0.004
1000 1.200 0.000 −1.800 0.002

10 50 2.803 0.022 0.875 0.026
100 2.797 0.013 0.891 0.016
250 2.798 0.005 0.897 0.008
500 2.804 0.002 0.903 0.004
1000 2.802 0.001 0.901 0.002

the R function ”constrOptim” and the BFGS algorithm to compute the
different MLEs. To avoid problems of convergence of the algorithm to-
wards wrong values that are not the MLEs, we tested for each model
and each dataset, m = 100 initial values randomly chosen in the param-
eter space and retained the best initial parameters to start the BFGS
algorithm.
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Table 7. Means and MSEs for the MLEs of the param-
eters of the CTRR23 distribution

α̂ λ̂ θ̂
Scenario n Mean MSE Mean MSE Mean MSE

11 50 1.793 0.078 −0.330 0.543 1.094 0.359
100 1.780 0.066 −0.361 0.421 1.066 0.307
250 1.773 0.056 −0.373 0.311 1.018 0.209
500 1.742 0.035 −0.434 0.180 1.007 0.133
1000 1.725 0.020 −0.455 0.097 0.999 0.073

12 50 3.016 0.044 −0.908 0.053 1.851 0.104
100 3.007 0.019 −0.946 0.019 1.915 0.036
250 3.005 0.007 −0.963 0.006 1.947 0.012
500 3.003 0.004 −0.973 0.003 1.961 0.006
1000 3.002 0.002 −0.981 0.002 1.973 0.003

We use the following likelihood-based model selection criteria to select
the distributions that best fit each dataset: the negative maximum log-
likelihood (−ℓ∗), the Akaike Information Criterion (AIC), the Akaike
Information Criterion Corrected (AICC) and the Bayesian Information
Criterion (BIC), which are defined by:

AIC = −2ℓ∗ + 2k; AICC = AIC +
2k(k + 1)

n− k − 1
; BIC = −2ℓ∗ + k log n,

where k is the number of parameters and n is the size (number of obser-
vations) of the dataset. The AIC, AICC, and BIC criteria incorporate
penalty terms for model complexity and are among the most used model
selection criteria. For each dataset, the best model is the one with the
smallest values for the criteria.

7.1. Life of fatigue fracture of Kevlar 373/epoxy. These data
taken from [7], consist of 76 observations of the life of fatigue fracture
of Kevlar 373/epoxy. Descriptive statistics for the Kevlar dataset are
presented in Table 8.

Table 8. Descriptive statistics for the Kevlar dataset

Min Q1 Median Mean Q3 Max
0.0251 0.9048 1.7362 1.9592 2.2959 9.0960

Tables 9 and 10 respectively present the different model selection cri-
teria for unmodified and modified models for the Kevlar dataset. In
these tables, the ranks of the models, from best to worse, are given in
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parentheses, i.e. a lower rank indicates a better fit. Among the unmod-
ified models (Table 9), the CTRR18b distribution provides the best fit to
the Kevlar dataset, as it ranks first for all four model selection criteria.
However, when considering the modified models (Table 10), they fit the
data better than their unmodified counterparts, as evidenced by a de-
crease in their corresponding model selection criteria values. For each
distribution, the corresponding criteria values of the modified version
(Table 10) are lower than or equal to those of the unmodified version
(Table 9). The overall model selection should therefore be done mainly
using Table 10. Consequently, the modified CTRMA distribution is the
best-fitting distribution for the Kevlar dataset, as it has the lowest val-
ues for all the criteria among all models considered.

Table 9. Model selection criteria and their correspond-
ing ranks (in parentheses) for unmodified models on the
Kevlar dataset

Distributions −ℓ∗ AIC AICC BIC
CTRG 137.320(7) 280.640(8) 280.973(8) 287.632(8)

CTRA 128.706(3) 261.412(3) 261.576(2) 266.073(2)

CTRR18a 127.701(2) 261.402(2) 261.735(3) 268.394(3)

CTRR18b 124.844(1) 255.688(1) 256.021(1) 262.680(1)

CTRR19 135.502(6) 275.004(6) 275.168(6) 279.665(7)

CTRR23 130.873(4) 267.746(5) 268.079(5) 274.738(5)

TR 130.873(4) 265.746(4) 265.910(4) 270.407(4)

Rayleigh 137.320(7) 276.640(7) 276.694(7) 278.971(6)

Table 10. Model selection criteria and their correspond-
ing ranks (in parentheses) for modified models on the
Kevlar dataset

Distributions −ℓ∗ AIC AICC BIC
CTRMG 124.844(2) 255.688(2) 256.021(2) 262.680(2)

CTRMA 123.532(1) 251.064(1) 251.228(1) 255.725(1)

CTRMR18a 124.844(2) 255.688(2) 256.021(2) 262.680(2)

CTRMR18b 124.844(2) 255.688(2) 256.021(2) 262.680(2)

CTRMR19 135.502(7) 275.004(7) 275.168(7) 279.665(8)

CTRR23 130.873(5) 267.746(6) 268.079(6) 274.738(6)

TR 130.873(5) 265.746(5) 265.910(5) 270.407(5)

Rayleigh 137.320(8) 276.640(8) 276.694(8) 278.971(7)
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Since the modified models fit the data better than the unmodified
ones, we present in Table 11, the MLEs and standard errors (SEs) of
the parameters for the modified CTR models.

Table 11. MLEs of the parameters for the modified
models on the Kevlar dataset (SEs are in parentheses)

Distributions Estimations
CTRMG σ̂ = 2.289 λ̂1 = 2.592 λ̂2 = 0.000

(0.207) (0.470) (0.523)

CTRMA σ̂ = 2.430 λ̂ = 2.309
(0.220) (0.309)

CTRMR18a σ̂ = 2.289 λ̂1 = 1.592 λ̂2 = −1.000
(0.207) (0.470) (0.523)

CTRMR18b σ̂ = 2.289 λ̂1 = 0.592 λ̂2 = 1.000
(0.207) (0.190) (0.523)

CTRMR19 σ̂ = 1.819 λ̂ = −0.455
(0.122) (0.247)

CTRR23 σ̂ = 2.076 λ̂ = 0.704 θ̂ = 0.000
(0.248) (0.175) (0.759)

TR σ̂ = 2.076 λ̂ = 0.704
(0.156) (0.150)

Rayleigh σ̂ = 1.772
(0.102)

Figure 1 represents the fitting of the different modified densities to the
Kevlar dataset. In this figure, the graphs for the CTRMG, CTRMR18a,
and CTRMR18b distributions are identical. This is a consequence of a
theoretical result obtained by Geraldo et al. [14] who proved that, for all
(λ1, λ2) ∈ SMG, the modified distributions CTMG(λ1, λ2), CTMR18a(λ1−
1, λ2− 1), and CTMR18b(λ1+λ2− 2, 1−λ2) linked to any baseline CDF
G(x) are equal. Since θ̂ = 0 for the CTRR23 distribution, its graph
is identical to that of the TR distribution. The PDF of the CTRMA

distribution, represented by the black dashed line, provides the best fit
to the histogram of the Kevlar dataset.

7.2. Carbon fibres dataset. This dataset comes from a study on the
breaking stress of carbon fibres [23]. It contains n = 100 observations.
Descriptive statistics for this dataset are presented by Table 12.

Tables 13 and 14 respectively present the different model selection
criteria for unmodified and modified models for the carbon fibres dataset.
In these tables also, the ranks of the models, from best to worse, are
given in parentheses. From the results for the unmodified models (Table
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Figure 1. Graphical comparison of the modified CTR
PDFs fitted to the Kevlar dataset

Table 12. Descriptive statistics for the carbon fibres dataset

Min Q1 Median Mean Q3 Max
0.390 1.840 2.700 2.621 3.220 5.560

13) and modified models (Table 14), none of the models simultaneously
has the lowest values for all the model selection criteria. According
to the −ℓ∗ criterion, the CTRMG, CTRMA, CTMR18a and CTRR23

distributions provide the best fit to the carbon fibres dataset while,
according to the AIC, AICC and BIC criteria, the best-fitting model
is the TR distribution. It is well known (see, for example, [15]) that,
for the same dataset, the penalty terms incorporated in AIC, AICC,
and BIC increase with the number k of parameters and, therefore, tend
to favour distributions with fewer parameters. For the carbon fibres
dataset, these three criteria tend to present the TR distribution as a good
compromise between model complexity (a greater number of parameters)
and a reasonable log-likelihood value.

Table 15 presents the MLEs and SEs (in parentheses) of the param-
eters for the modified models.
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Table 13. Model selection criteria and their correspond-
ing ranks (in parentheses) for unmodified models on the
carbon fibres dataset

Distributions −ℓ∗ AIC AICC BIC
CTRG 141.362(2) 288.724(5) 288.974(5) 296.540(5)

CTRA 142.176(7) 288.352(3) 288.476(3) 293.562(3)

CTRR18a 141.362(2) 288.724(5) 288.974(5) 296.540(5)

CTRR18b 141.395(4) 288.790(7) 289.040(7) 296.606(7)

CTRR19 141.515(6) 287.030(2) 287.154(2) 292.240(2)

CTRR23 141.357(1) 288.714(4) 288.964(4) 296.530(4)

TR 141.443(5) 286.886(1) 287.010(1) 292.096(1)

Rayleigh 149.501(8) 301.002(8) 301.043(8) 303.607(8)

Table 14. Model selection criteria and their correspond-
ing ranks (in parentheses) for modified models on the
carbon fibres dataset

Distributions −ℓ∗ AIC AICC BIC
CTRMG 141.357(1) 288.714(4) 288.964(4) 296.530(4)

CTRMA 142.176(7) 288.352(3) 288.476(3) 293.562(3)

CTRMR18a 141.357(1) 288.714(4) 288.964(4) 296.530(4)

CTRMR18b 141.357(1) 288.714(4) 288.964(4) 296.530(4)

CTRMR19 141.515(6) 287.030(2) 287.154(2) 292.240(2)

CTRR23 141.357(1) 288.714(4) 288.964(4) 296.530(4)

TR 141.443(5) 286.886(1) 287.010(1) 292.096(1)

Rayleigh 149.501(8) 301.002(8) 301.043(8) 303.607(8)

Figure 2 represents the fitting of the modified PDFs to the carbon
fibres dataset. In this figure, the graphs for the CTRMG, CTRMR18a,
and CTRMR18b distributions are identical for the same reasons as those
mentioned for the Kevlar dataset. Except the PDFs of the CTRMA

and Rayleigh distributions, all the others provide almost the same fit to
the histogram of the carbon fibres dataset. This clearly illustrates the
results of the model selection for the carbon fibres dataset.

7.3. Guinea pig dataset. This dataset consists of the survival times
of guinea pigs injected with different doses of tubercle bacilli. In this
paper, we consider the dataset in thousands of days containing n =
72 observations, as reported by Singh et al. [37]. Table 16 presents
descriptive statistics for the guinea pig dataset.
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Table 15. MLEs of the parameters for modified models
on the carbon fibres dataset (SEs are in parentheses)

Distributions Estimations
CTRMG σ̂ = 2.216 λ̂1 = 0.179 λ̂2 = 2.821

(0.522) (0.412) (0.766)

CTRMA σ̂ = 1.863 λ̂ = −0.938
(0.079) (0.141)

CTRMR18a σ̂ = 2.216 λ̂1 = −0.821 λ̂2 = 1.821
(0.522) (0.412) (0.766)

CTRMR18b σ̂ = 2.216 λ̂1 = 1.000 λ̂2 = −1.821
(0.522) (1.073) (0.765)

CTRMR19 σ̂ = 2.158 λ̂ = 0.892
(0.086) (0.153)

CTRR23 σ̂ = 2.216 λ̂ = 1.000 θ̂ = 1.821
(0.525) (1.080) (1.253)

TR σ̂ = 1.646 λ̂ = −0.919
(0.071) (0.121)

Rayleigh σ̂ = 1.986
(0.099)

Table 16. Descriptive statistics for the guinea pig dataset

Min Q1 Median Mean Q3 Max
0.01200 0.05475 0.07000 0.09982 0.11275 0.37600

Tables 17 and 18 respectively present the different model selection
criteria for unmodified and modified models for the guinea pig dataset.
In these tables, the ranks of the models, from best to worse, are given
in parentheses. From the results for the unmodified models (Table 17)
and the modified models (Table 18), the modified CTRMA distribution
is the best-fitting distribution for the guinea pig dataset, as it has the
lowest values for all the criteria among all models considered.

Table 19 presents the MLEs and SEs (in parentheses) for the param-
eters of the modified models.

Figure 3 represents the fitting of the different modified PDFs to the
guinea pig dataset. As in previous figures, the graphs for the CTRMG,
CTRMR18a, and CTRMR18b distributions are identical. Since θ̂ = 0 for
the CTRR23 distribution, its graph (represented in green dashed line) is
identical to that of the TR distribution (represented in red dot-dashed
line). The PDF of the CTRMA distribution, represented by the black
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Figure 2. Graphical comparison of the modified CTR
PDFs fitted to the carbon fibres dataset

Table 17. Model selection criteria and their correspond-
ing ranks (in parentheses) for unmodified models on the
guinea pig dataset

Distributions −ℓ∗ AIC AICC BIC
CTRG −89.062(7) −172.124(8) −171.771(8) −165.294(8)

CTRA −100.786(3) −197.572(2) −197.398(2) −193.019(2)

CTRR18a −101.036(2) −196.072(3) −195.719(3) −189.242(3)

CTRR18b −104.245(1) −202.490(1) −202.137(1) −195.660(1)

CTRR19 −94.309(6) −184.618(6) −184.444(6) −180.065(5)

CTRR23 −95.760(4) −185.520(5) −185.167(5) −178.690(6)

TR −95.760(4) −187.520(4) −187.346(4) −182.967(4)

Rayleigh −89.062(7) −176.124(7) −176.067(7) −173.847(7)

dashed line, provides the best fit to the histogram of the guinea pig
dataset.
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Table 18. Model selection criteria and their correspond-
ing ranks (in parentheses) for modified models on the
guinea pig dataset

Distributions −ℓ∗ AIC AICC BIC
CTRMG −104.245(2) −202.490(2) −202.137(2) −195.660(2)

CTRMA −110.079(1) −216.158(1) −215.984(1) −211.605(1)

CTRMR18a −104.245(2) −202.490(2) −202.137(2) −195.660(2)

CTRMR18b −104.245(2) −202.490(2) −202.137(2) −195.660(2)

CTRMR19 −94.374(7) −184.748(7) −184.574(7) −180.195(6)

CTRR23 −95.760(5) −185.520(6) −185.167(6) −178.690(7)

TR −95.760(5) −187.520(5) −187.346(5) −182.967(5)

Rayleigh −89.062(8) −176.124(8) −176.067(8) −173.847(8)

Table 19. MLEs of the parameters for modified models
on the guinea pig dataset (SEs are in parentheses)

Distributions Estimations
CTRMG σ̂ = 0.111 λ̂1 = 2.509 λ̂2 = 0.000

(0.009) (0.468) (0.539)

CTRMA σ̂ = 0.121 λ̂ = 2.592
(0.008) (0.253)

CTRMR18a σ̂ = 0.111 λ̂1 = 1.509 λ̂2 = −1.000
(0.009) (0.468) (0.539)

CTRMR18b σ̂ = 0.111 λ̂1 = 0.509 λ̂2 = 1.000
(0.009) (0.190) (0.539)

CTRMR19 σ̂ = 0.105 λ̂ = −1.115
(0.009) (0.313)

CTRR23 σ̂ = 0.103 λ̂ = 0.648 θ̂ = 0.000
(0.014) (0.205) (1.065)

TR σ̂ = 0.103 λ̂ = 0.648
(0.007) (0.141)

Rayleigh σ̂ = 0.091
(0.005)

8. Conclusion

In this paper, we have considered six different CTR distributions and
their modified versions based on the parameters range correction sug-
gested by Geraldo et al. [14]. Inspired by the previous works of Geraldo
et al. [14] and Katchekpele et al. [17], we have derived general formulas
for the CDF, PDF and the statistical properties such as moments for
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Figure 3. Graphical comparison of modified CTR PDFs
fitted to the guinea pig dataset

the different CTR distributions. These formulas depend on two param-
eters which, once fixed, make it possible to find the desired property for
the cubic transmutation form concerned. We have also compared the
unmodified and modified versions of the different CTR distributions on
real data.

Our work goes further than that of Sakthivel and Vidhya [34] since:
(a) we consider six different CTR distributions instead of four; (b) in-
stead of detailing the statistical properties model by model, we propose
a general formula including all CTR distributions already available in
the literature and also any other new form of CTR distribution that
could be proposed in the future; (c) we simultaneously compare the six
formulas on several real datasets; (d) we take into account the modifica-
tions of the parameter ranges proposed by Geraldo et al. [14] to improve
the different models.
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