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1. Introduction and Mathematical Background

The Golden Ratio, denoted as ϕ, is a mathematical constant that appears
in many aspects of mathematics, nature, art, and architecture [6]. It is
defined by the following equation:

a+ b

a
=

a

b
= ϕ,

where a and b are two quantities such that a > b. This ratio reveals
a natural relationship that is seen in various geometrical structures and
mathematical phenomena.

The Fibonacci sequence is a numerical sequence that starts with the
two numbers 0 and 1, and each subsequent number is the sum of the two
preceding ones:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

This sequence is one of the most important sequences in mathematics and
is observed in various natural systems, such as the growth of plants and
biological structures.

The Golden Ratio and the Fibonacci sequence are closely related. In
fact, the ratio of consecutive Fibonacci numbers approaches ϕ as the num-
bers increase. This connection has made the Golden Ratio particularly
significant in mathematical analysis, as well as in the arts and architecture
[13].

The appearance of the golden ratio as the radius of convergence of the
Fibonacci-generated power series is not just a mathematical curiosity; it
reflects the deep connection between discrete recursive sequences and con-
tinuous analytic structures. In particular, generating functions involving
Fibonacci numbers often emerge in the study of dynamical systems, ana-
lytic combinatorics, and computational models. The fact that the golden
ratio governs the convergence behavior behaviour reinforces its role as a
natural scaling factor in recursive phenomena. This connection has been
discussed in the context of generating functions and analytic combinatorics
[5].

In recent years, various families of special polynomials have been devel-
oped and analyzed using different operational and algebraic frameworks.
These approaches offer versatile methods to extend classical polynomial
structures, including Hermite, Laguerre, and hybrid types, and connect
them with functional transforms and spectral methods. Notably, studies
such as Dattoli et al. on hybrid polynomials [2], and further developments
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in the context of Hermite-type polynomials linked to parabolic cylinder
functions [1] provide broader perspectives on generalizations and their func-
tional applications. Similarly, structural frameworks for such generalized
polynomials and their role in number theory and approximation theory
have been explored in [9]. These perspectives support the integration of
our approach into a wider mathematical context involving weighted poly-
nomial families and pseudo-right-angled triangle classifications.

In this article, we will explore the properties and applications of the
Golden Ratio and the Fibonacci sequence and analyze their interrelation
in the real world.

1.1. Properties and Applications of the Golden Ratio. The Golden
Ratio, as mentioned in the introduction, is a mathematical constant that
appears in various natural and human-made phenomena. This ratio has
applications in several fields, including geometry, art, architecture, and
biology.

i). Geometrical Properties: The Golden Ratio is particularly relevant
in geometry, especially in relation to rectangles. Rectangles whose side
lengths adhere to the Golden Ratio are known as Golden Rectangles. In such
rectangles, when a square is removed, the remaining rectangle maintains
the same Golden Ratio.

If we have a rectangle with dimensions a× b, then:
a

b
= ϕ,

where ϕ ≈ 1.618 [3].
ii). Algebraic Equation: The Golden Ratio ϕ can be defined alge-

braically by the following equation:

ϕ =
1 +

√
5

2
.

This equation is a quadratic equation, which has only one positive root,
and that root is the Golden Ratio.

iii). Similar Ratios in Nature: The Golden Ratio also appears in
natural structures, such as flowers, tree branches, and even in the structure
of galaxies [13].

iv). Architecture: One of the most famous applications of the Golden
Ratio in architecture is found in historical structures such as the Great
Pyramid of Giza and the temples of ancient Greece (Figure 1). These
structures typically feature proportions that approximate the Golden Ratio.

In particular, the Great Pyramid of Giza is believed to have dimensions
based on the Golden Ratio. The ratio of its height to half the base length
closely approximates ϕ ≈ 1.618. More precisely, this ratio can be expressed
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as
√
ϕ2 + 1, which mathematically links the pyramid’s slope angle to the

golden number.
Similarly, the Parthenon in Athens, a symbol of ancient Greek archi-

tecture, is often cited as a canonical example. The ratio of facade height
to width, as well as internal spatial divisions, exhibit approximations of
ϕ. These proportional relationships, observed in both external dimensions
and column spacing, suggest a deliberate or naturally emergent use of the
Golden Ratio in classical design.

Such geometric and numerical evidence strengthens the hypothesis that
the Golden Ratio was more than an aesthetic principle.

The following image illustrates these applications of the Golden Ratio in
architecture, showcasing both the Great Pyramid of Giza (on the left) and
the Parthenon (on the right). The Golden Ratio proportions are highlighted
on both structures, indicating how this mathematical principle has been
applied to create harmonious and aesthetically pleasing designs in ancient
architecture [8, 10].

Figure 1. This image shows the application of the
Golden Ratio in two iconic architectural structures:
the Great Pyramid of Giza (left) and the Parthenon
(right). The proportions of these structures approx-
imately follow the Golden Ratio. (Image source:
https://connect2grp.medium.com/java-understanding-
the-golden-ration-phi-19fef244f81a)

v). The Golden Ratio in Art Leonardo da Vinci’s ”The Last Supper”
(Figure 2) is a significant example of how the Golden Ratio plays a crucial
role in the composition of the artwork. This famous painting demonstrates
how mathematical principles, particularly the Golden Ratio, were applied
by the artist to achieve balance and harmony in the arrangement of figures
and architectural elements.

In the provided image, we can observe various rectangular divisions,
highlighted in different colors, which are based on the Golden Ratio. These
divisions are not coincidental but represent the careful placement of the
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figures and key elements of the scene. The placement of Jesus at the center,
as well as the proportional arrangement of the surrounding apostles, follows
the Golden Ratio to create an aesthetically pleasing and harmonious visual
effect.

The use of the Golden Ratio is also evident in the overall proportions
of the room and the arches above. The division of space within the room,
the distribution of figures, and the positioning of the background elements
such as the windows and ceiling are all designed to reflect the Golden Ratio,
enhancing the sense of balance and symmetry [6].

Figure 2. An example of Leonardo da Vinci’s ”The
Last Supper,” where the proportions and compo-
sition follow the Golden Ratio. (Image source:
https://www.goldennumber.net/art-composition-design/ )

1.2. Main Properties of the Fibonacci Sequence. The Fibonacci se-
quence is one of the most important and well-known numerical sequences,
which has applications in mathematics, nature, art, and architecture. This
sequence is generally composed of a series of numbers where each number
is the sum of the two preceding ones. The sequence is defined as follows:

F0 = 0, F1 = 1,

and for n ≥ 2:
Fn = Fn−1 + Fn−2.

i). Recurrence relation : As seen in the definition of the Fibonacci
sequence, each number (except for the first two) is the sum of the two previ-
ous numbers [13]. This property is especially useful in many mathematical
problems and computer algorithms. For example, by using this relation,
we can easily calculate any number in the sequence.
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For example, to calculate F5 in the Fibonacci sequence, we first calculate
the previous values:

F2 = F1 + F0 = 1 + 0 = 1,

F3 = F2 + F1 = 1 + 1 = 2,

F4 = F3 + F2 = 2 + 1 = 3,

F5 = F4 + F3 = 3 + 2 = 5.

Therefore, F5 = 5.
ii). Golden Ratio: One of the interesting properties of the Fibonacci

sequence is that the ratio of two consecutive numbers in the sequence, when
we approach larger numbers, tends to a constant value. This constant value
is known as the Golden Ratio, denoted by ϕ, and is approximately equal
to 1.618.

For example, if we consider F5 = 5 and F6 = 8, the ratio between them
is:

F6

F5
=

8

5
= 1.6.

Now, if we consider F7 = 13:

F7

F6
=

13

8
= 1.625.

As we can see, this ratio continuously gets closer to the Golden Ratio.
iii). Presence of the Fibonacci Sequence in Nature: Another fas-

cinating property of the Fibonacci sequence is its occurrence in nature. In
many plants, flowers, leaves, and even the structures of animal bodies, the
Fibonacci sequence appears. This natural property creates a link between
mathematics and nature.

iv). Combinatorial Properties: The Fibonacci sequence also has
interesting properties in combinatorics [6, 11, 12]. For example, the number
of ways to climb a staircase with n steps, where at each step one can either
take a single step or jump two steps, is directly related to the Fibonacci
sequence. Specifically, the number of ways to reach the n-th step is equal
to Fn.

This combinatorial aspect could be used to interpret the triangular con-
structions: the number of such triangle configurations based on Fibonacci
sides corresponds to partitions of a given number, reminiscent of tiling
problems and recursive sequences [11, 12].

For example, for 5 steps, the number of distinct ways to climb them is
F5 = 5. In fact, this problem can be solved using the recurrence relation of
the Fibonacci sequence:



400 S. M. Ramezani , M. Kamandar, A. Delbaznasab, A. Ilkhanizadeh Manesh

Wn = Wn−1 +Wn−2,

where Wn is the number of ways to climb n steps, and it is clearly
equivalent to the Fibonacci sequence.

2. Main results

In the following theorem, we show that the series
∑∞

n=1
1
Fn

, whose general
term is the inverse of the nth term of the Fibonacci sequence, is a convergent
series.

Theorem 2.1. Let {Fn}∞n=1 be a Fibonacci sequence, then the series
∑∞

n=1
1
Fn

is convergent and

0 <

∞∑
n=1

1

Fn
≤ 2

√
5.

Proof. Suppose that {Fn}∞n=1 is a Fibonacci sequence and consider the se-
ries

∑∞
n=1

1

Fn
and applying the ratio test, one computes the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
1

Fn+1

1

Fn

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ Fn

Fn+1

∣∣∣∣ = 1

1 +
√
5

2

=

√
5− 1

2
,

since this limit is less than 1, the series converges. On the other hand, for
n ≥ 1 we have

Fn =
1√
5

((1 +√
5

2

)n
+
(1−√

5

2

)n)
,

and if n is an odd number so

Fn =
1√
5

((1 +√
5

2

)n
+
(1−√

5

2

)n)
≥ 1√

5

(1 +√
5

2

)n
,

To bound the series, note that Fn ≥ 1√
5

(
1+

√
5

2

)n
. Thus,

1

Fn
≤

√
5

(
2

1 +
√
5

)n

=
√
5 · rn, where r =

2

1 +
√
5
< 1,

which ensures convergence and gives the upper bound via the geometric
series formula.
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Since Fn < Fn+1, for every n ≥ 2 then
∞∑
n=1

1

Fn
=

1

F1
+

1

F3
+

1

F5
+ · · ·+ 1

F2
+

1

F4
+

1

F6
+ · · ·

≤ 1

F1
+

1

F3
+

1

F5
+ · · ·+ 1

F1
+

1

F3
+

1

F5
+ · · ·

= 2

(
1

F1
+

1

F3
+

1

F5
+ · · ·

)
≤ 2

√
5

((√5− 1

2

)
+
(√5− 1

2

)3
+
(√5− 1

2

)5
+ · · ·

)

= 2
√
5

√
5− 1

2

1−
(√5− 1

2

)2
= 2

√
5.

According to the above and also that the members of the Fibonacci sequence
are positive, consequently,

0 <
∞∑
n=1

1

Fn
≤ 2

√
5,

and this completes the proof. □

From Theorem 2.1, it can be concluded that the radius of convergence

of the series
∑∞

n=1
(x−x0)n

Fn
is equal to 1 +

√
5

2
, which is the golden ratio.

Corollary 2.2. Let x0 ∈ R and {Fn}∞n=1 be a Fibonacci sequence, then the

radius of convergence of the power series
∑∞

n=1
(x−x0)n

Fn
is equal to 1 +

√
5

2
,

which is the golden ratio.

The following theorem shows under what conditions the three members
of the Fibonacci sequence can be the length of the three sides of a triangle.

Theorem 2.3. Let A, B, and C are the three vertices of a triangle and a,
b, and c are three members of the Fibonacci sequence such that BC = a,

AC = b,
AB = c,

then the following are true.
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(1) If a, b, and c are three distinct members of the Fibonacci sequence,

then
∆

ABC does not form a triangle.

(2) If a = b = Fn and c = Fn+1, where in n ≥ 2, then
∆

ABC forms an
isosceles triangle

(3) If a = Fn and b = c = Fn+1, then
∆

ABC forms an isosceles triangle

Proof. (1) Suppose that a = Fl, b = Fm and c = Fn, where l < m < n,
then a < b < c, so we have

a+ b = Fl + Fm ≤ Fm−1 + Fm = Fm+1 ≤ Fn = c,

therefore a+ b ≤ c, consequently
∆

ABC does not form a triangle.

(2) Let’s assume that
∆

ABC is an isosceles triangle with sides a = b = Fn

and c = Fn+1, then a+ b = Fn + Fn > Fn + Fn−1 = Fn+1 = c,
a+ c = Fn + Fn+1 > Fn = b,
b+ c = Fn + Fn+1 > Fn = a,

so
∆

ABC forms an isosceles triangle.

(3) Let’s assume that
∆

ABC is an isosceles triangle with sides a = Fn

and b = c = Fn+1, then a+ b = Fn + Fn+1 > Fn+1 = c,
a+ c = Fn + Fn+1 > Fn+1 = b,
b+ c = Fn+1 + Fn+1 > Fn = a,

so
∆

ABC forms an isosceles triangle.
□

Now, if we denote the isosceles triangles made in theorem 2.3 then the
following theorems hold for these isosceles triangles generated by the Fi-
bonacci sequence.

Theorem 2.4. Let
∆

AnBnCn be an isosceles triangle generated by the Fi-
bonacci sequence such that AnCn = BnCn = Fn , and AnBn = Fn+1 where
in n ≥ 2, then

(1) The angle Ĉn is always an obtuse angle.

(2) limn→∞ cos Ĉn = cos 108◦.
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Proof. (1) It is enough to show that cos Ĉn < 0. For n ≥ 2 we have

cos Ĉn =
F 2
n + F 2

n − F 2
n+1

2FnFn

=
2F 2

n − (Fn + Fn−1)
2

2F 2
n

=
F 2
n − 2FnFn−1 − F 2

n−1

2F 2
n

=
Fn(Fn − 2Fn−1)− F 2

n−1

2F 2
n

.

Since Fn − 2Fn−1 < 0 and −F 2
n−1 < 0, then cos Ĉn < 0 and Hence,

the angle Ĉn is an obtuse angle.
(2)

lim
n→∞

cos Ĉn = lim
n→∞

2F 2
n − F 2

n+1

2F 2
n

=
1

2
lim
n→∞

(
2−

F 2
n+1

F 2
n

)
=

1

2

(
2− (

1 +
√
5

2
)2

)

=
1−

√
5

4
= cos 108◦.

□

Theorem 2.5. Let
∆

AnBnCn be an isosceles triangle generated by the Fi-
bonacci sequence such that AnBn = Fn, and AnCn = BnCn = Fn+1, then

(1) The angle Ĉn is always an acute angle.

(2) limn→∞ cos Ĉn = cos 36◦.

Proof. (1) It is enough to show that cos Ĉn > 0. For every n ∈ N we
have

cos Ĉn =
F 2
n+1 + F 2

n+1 − F 2
n

2Fn+1Fn+1
>

2F 2
n+1 − F 2

n+1

2F 2
n+1

=
F 2
n+1

2F 2
n+1

=
1

2
,

so the angle Ĉn is an acute angle.
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(2)

lim
n→∞

cos Ĉn = lim
n→∞

2F 2
n+1 − F 2

n

2F 2
n+1

=
1

2
lim
n→∞

(
2− F 2

n

F 2
n+1

)
=

1

2

(
2− (

2

1 +
√
5
)2
)

=
1 +

√
5

4
= cos 36◦.

□

Lemma 2.6. Let
∆

ABC be a right-angled triangle, if the sides of the triangle
∆

ABC form a geometric sequence, then the ratio of the chord to the smaller
side of the right angle is equal to the golden number.

Proof. Suppose that

 BC = a
AC = b
AB = c

and Â = 90◦, then we have according to

the given conditions

a2 = b2 + c2,

and

b2 = ac,

so

(
a

c
)2 − a

c
− 1 = 0,

because a, b and c are positive numbers, therefore

a

c
=

1 +
√
5

2
.

□

In this part, we define the concept of pseudo-right-angled triangle.

Definition 2.7. Let’s consider the triangle
∆

ABC so that

 BC = a
AC = b
AB = c

. We

call this triangle pseudo-Pythagorean or pseudo-right-angled if

a2 = mb2 + nc2,
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where m,n ∈ R. In a special case, if m = n = 1, then the triangle
∆

ABC is
the right triangle. If m and n are chosen from the Fibonacci sequence, in

this case, we call the triangle
∆

ABC Fibonacci pseudo-Pythagorean.

The concept of pseudo-right-angled triangles provides a generalization
of the classical Pythagorean theorem, where the sum of the squares of two
sides is linearly weighted by constants m and n. When m and n are selected
from the Fibonacci sequence, this yields what we call Fibonacci pseudo-
Pythagorean triangles. Such generalizations are not merely theoretical:
they may arise in computational geometry, particularly in mesh generation
algorithms where flexible triangle constraints are needed, or in optimization
problems with geometric cost functions. Further, this idea aligns with
extended notions of distance in weighted graph representations of geometric
structures, where triangle side relations are modified based on data-driven
weights. Below we characterize the pseudo-right-angled triangles.

Theorem 2.8. If two medians of a triangle are perpendicular to each other,
then the triangle is pseudo-right-angled.

Proof. Let △ABC be a triangle with medians AE, BD, and CF drawn
from vertices A, B, and C to the midpoints of the opposite sides BC, AC,
and AB, respectively. Denote the midpoints as: E : midpoint of BC,

D : midpoint of AC,
F : midpoint of AB.

Assume that medians BD and CF are perpendicular and intersect at
point G, the centroid of triangle △ABC. Figure 3 illustrates this config-
uration, highlighting the perpendicularity of the medians at the centroid.

Figure 3.



406 S. M. Ramezani , M. Kamandar, A. Delbaznasab, A. Ilkhanizadeh Manesh

Let the sides of the triangle be denoted by: BC = a,
AC = b,
AB = c,

and the medians as:

 BD = d,
CF = f,
AE = e.

From the well-known formula for the length of a median in a triangle,
we have:

d2 =
2a2 + 2c2 − b2

4
,

f2 =
2a2 + 2b2 − c2

4
,

e2 =
2b2 + 2c2 − a2

4
.

Since the centroid divides each median in a 2 : 1 ratio, we get:

BG =
2

3
d,

CG =
2

3
f.

By the Pythagorean Theorem applied to triangle △BGC (since ∠BGC =
90◦), we have:

(BG)2 + (CG)2 = (BC)2 = a2,

so: (
2

3
d

)2

+

(
2

3
f

)2

= a2,

which simplifies to:
4

9
(d2 + f2) = a2 ⇒ 4(d2 + f2) = 9a2.

Now substitute the values of d2 and f2:

4

(
2a2 + 2c2 − b2

4
+

2a2 + 2b2 − c2

4

)
= 9a2,

(2a2 + 2c2 − b2) + (2a2 + 2b2 − c2) = 9a2,

4a2 + b2 + c2 = 9a2 ⇒ b2 + c2 = 5a2.

This is a generalized Pythagorean relation (not a2 + b2 = c2), and hence
the triangle satisfies the identity:

b2 + c2 = 5a2,

which confirms that △ABC is a pseudo-right-angled triangle, as defined
earlier.

□
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The following result is an interesting answer to the question under which
conditions the converse of Theorem 2.8 is true.

Corollary 2.9. Let
∆

ABC be a pseudo-right-angled such that b2+ c2 = 5a2,
then the two medians of this triangle are perpendicular.

Corollary 2.10. If two medians of a triangle are perpendicular to each
other, then the third median is 3

2
of the side facing to it.

Proof. In the proof of Theorem 2.8, we saw that e2 =
2b2 + 2c2 − a2

4
, so

e2 =
9a2

4
consequently, e = 3a

2
, and the proof is complete. □

In the following theorem, we decompose the polynomial xn − Fnx −
Fn−1 = 0, whose golden number is one of its roots.
Theorem 2.11. Let {Fn}∞n=1 be a Fibonacci sequence, then the polynomial
xn − Fnx− Fn−1 where n ≥ 2 is decomposed as follows

xn − Fnx− Fn−1 = (x2 − x− 1)

(
n−1∑
j=1

Fjx
n−1−j

)
. (2.1)

Proof. We will prove by induction that (2.1) holds for all n ≥ 2. For the
base case, we can clearly see that Equation (2.1) holds for n = 2. For the
inductive step, assume that Equation (2.1) holds for n = k, meaning that

xk − Fkx− Fk−1 = (x2 − x− 1)

(
k−1∑
j=1

Fjx
k−1−j

)
.

We will prove that Equation (2.1) holds for n = k + 1. To see this, note
that
xk+1 − Fk+1x− Fk = xk+1 + xk − xk − Fkx− Fk−1x− Fk−1 − Fk−2

= (xk+1 − xk − Fk−1x− Fk−2) + (xk − Fkx− Fk−1)

= (xk+1 − xk − xk−1 + xk−1 − Fk−1x− Fk−2) + (xk − Fkx− Fk−1)

= xk−1(x2 − x− 1) + (xk−1 − Fk−1x− Fk−2) + (xk − Fkx− Fk−1)

= (x2 − x− 1)

(
xk−1 +

k−2∑
j=1

Fjx
k−2−j +

k−1∑
j=1

Fjx
k−1−j

)

= (x2 − x− 1)

(
k∑

j=1

Fjx
k−j

)
.

We’ve arrived at statement Equation (2.1), which we know is true and
completing the induction. □
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Potential Applications

The concept of pseudo-right-angled triangles provides a generalization of
classical triangle relations and may be relevant in applied geometry, par-
ticularly in physics-based simulations where strict right-angle constraints
are relaxed but geometric consistency is still required. For example, in
finite element mesh generation for curved surfaces, approximate angular
relations governed by weighted side squares (as in pseudo-right-angled con-
figurations) could improve stability in irregular domains.

On the other hand, the polynomial decomposition xn − Fnx − Fn−1 =
(x2 − x − 1) · Pn−2(x) can be interpreted within the framework of recur-
sive filters in signal processing, where Fibonacci-based recurrence models
appear in digital systems. These polynomials may also serve as basis func-
tions in spectral methods for solving differential equations, particularly in
Fibonacci-like discretization schemes or grid refinement algorithms.

Conclusion

In this article, we investigated several important properties of the Fi-
bonacci sequence and its connection to convergence of series and geometric
properties. Specifically, we demonstrated that the series

∑∞
n=1

1
Fn

, where
the general term is the reciprocal of the n-th Fibonacci number, converges.
Furthermore, we found an upper bound for the sum of this series, which
is given by 2

√
5. We also explored the radius of convergence of the power

series
∑∞

n=1
(x−x0)n

Fn
, establishing that it is equal to the golden ratio 1+

√
5

2 .
Finally, we examined the conditions under which the Fibonacci numbers
can represent the sides of a triangle. Specifically, we showed that when the
sides of the triangle are Fibonacci numbers, certain configurations result in
a valid triangle, including isosceles triangles. These results not only shed
light on the mathematical properties of the Fibonacci sequence but also
provide a connection between number theory, series convergence, and ge-
ometry. Future work could explore further generalizations and applications
of these findings in both theoretical and practical contexts.
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