تعداد نشریات | 31 |
تعداد شمارهها | 512 |
تعداد مقالات | 4,961 |
تعداد مشاهده مقاله | 7,605,126 |
تعداد دریافت فایل اصل مقاله | 5,653,378 |
Development and Characterization SSR Makers Based on Next-generation Sequencing Technology in Iranian Turkmen Camel | ||
Journal of Genetic Resources | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 مرداد 1404 اصل مقاله (930.24 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/jgr.2025.28696.1424 | ||
نویسندگان | ||
Elham Rezvannejad1؛ Karim Nobari* 2؛ Mohammadreza Bakhtiari Zadeh3 | ||
1Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran | ||
2Animal Science Research Department, Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Iran | ||
3Department of Animals and Poultry Science, Campus of Agriculture and Natural Resources, Aburaihan Campus, Tehran | ||
تاریخ دریافت: 27 اردیبهشت 1404، تاریخ بازنگری: 26 مرداد 1404، تاریخ پذیرش: 15 تیر 1404 | ||
چکیده | ||
The Iranian Turkmen one-humped camel (Camelus dromedarius) is an economically and culturally significant species valued for its milk and meat production. It is well-adapted to the arid and semi-arid climates of Middle East. Despite its importance, the genetic diversity and historical demography of this species remain poorly characterized compare to two-humped camel species, which exhibit limited genetic differentiation, the genetic diversity and historical demography of one-humped camels remain poorly understood. This study developed novel simple sequence repeat (SSR) markers for the Iranian Turkmen camel genome to facilitate genetic studies and marker-assisted breeding. We aimed to identify polymorphic loci to support analyses of genetic diversity, population structure, and evolutionary biogeography. Using Illumina HiSeq 2000 sequencing, we generated 589,326,158 clean 150 bp paired-end reads at 50x coverage. De novo assembly produced 235,978 contigs (N50= 8,526 bp) from which 151,556 SSR motifs were identified, primarily 2-mer (38.80%), 4-mer (21.85%), and 1-mer (16.20%) motifs. Primer pairs were designed for 144,184 loci (95%) (amplicon sizes of 100-180 bp). The Turkmen camel exhibited high SSR diversity (6,201 unique motifs), significantly exceeding than of Arabian and Bactrian camels (χ² = 7.14, p= 0.007, df= 1) with an estimated 78 to 510 additional unique motifs. These markers enable genetic diversity analysis, historical demography studies, and identification of breed-specific motifs (e.g., 1,179 novel motifs in Turkmen camels). Additionally, 19,425 codon-repeat loci, predominantly leucine-rich repeats (42%), were identified, potentially linked to stress response genes, offering insights into functional genomics. These SSR markers support conservation genomics and breeding programs for Camelus species, enhancing their long-term sustainability. Limitations include potential bias from using short contigs rather than scaffolds, and the need for functional validation of 19,425 codon-repeat loci, particularly leucine-rich repeats (42%). | ||
کلیدواژهها | ||
Primer؛ SSR marker؛ Turkmen camel؛ Whole genome sequencing | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abe, H., & Gemmell, N. J. (2014). Abundance, arrangement, & function of sequence motifs in the chicken promoters. BMC Genomics, 15(1), 900. https://doi.org/10.1186/1471-2164-15-900
Bakhtiarizadeh, M., Arefnejad, B., Ebrahimie, E., & Ebrahimi, M. (2012). Application of functional genomic information to develop efficient EST-SSRs for the chicken (Gallus gallus). Genetics and Molecular Research, 11(2), 1558-1574. https://doi.org/10.4238/2012.may.21.12
Barazandeh, A., Mokhtari, M., Moghbeli Damaneh, M., & Roudbari, Z. (2020). Analyzing simple sequence repeats derived from expressed sequence tags in dromedary camels. Iranian Journal of Applied Animal Science, 10(3), 555-565. http://www.ijas.ir/
Burger, P. A. (2016). The history of old world camelids in the light of molecular genetics. Tropical Animal Health and Production, 48(5), 905-913.
Chen, T. W., Gan, R. C., Chang, Y. F., Liao, W. C., Wu, T. H., Lee, C. C., ... & Tang, P. (2015). Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing. BMC Genomics, 16(1), 648. https://doi.org/10.1186/s12864-015-1859-8
Cuadrado, A., & Schwarzacher, T. (1998). The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma, 107(8), 587-594. https://doi.org/10.1007/s004120050345
Desai, A., Marwah, V. S., Yadav, A., Jha, V., Dhaygude, K., Bangar, U., Kulkarni, V., & Jere, A. (2013). Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data. PloS One, 8(4), e60204. https://doi.org/10.1371/journal.pone.0060204
Durand, J., Bodénès, C., Chancerel, E., Frigerio, J.-M., Vendramin, G., Sebastiani, F., Buonamici, A., Gailing, O., Koelewijn, H.-P., & Villani, F. (2010). A fast & cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 11, 570. https://doi.org/10.1186/1471-2164-11-570
Fatemi, M., Estaji, A., Ghanbari, A., Torabi Giglou, M., & Jamali, M. (2025). Evaluation of genetic diversity of wild raspberry genotypes in the western areas of the Caspian Sea by ISSR molecular markers. Journal of Genetic Resources, 11(1), 98-104. https://doi.org/10.22080/jgr.2025.28406.1420
Fitak, R. R., Mohandesan, E., Corander, J., & Burger, P. A. (2016). The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Molecular Ecology Resources, 16(1), 314-324. https://doi.org/10.1111/1755-0998.12443
Glazko, V. I., Kosovsky, G. Y., Glazko, T. T., & Fedorova, L. M. (2023). DNA markers and microsatellite code. Sel'skokhozyaistvennaya Biologiya ,58(2), 223-248. https://doi.org/10.15389/agrobiology.2023.2.223
Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Léger, P., Lepais, O., ... & Petit, R. J. (2011). Current trends in microsatellite genotyping. Molecular Ecology Resources, 11(4), 591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
Hedayat-Evrigh, N., Miraei-Ashtiani, S. R., Khalkhali Ivrigh, R., & Pourasad, K. (2018). Molecular assessment of genetic diversity in dromedaries and Bactrian camel using microsatellite markers. Journal of Agricultural Science and Technology, 20(6), 1137-1148.
Jeanjean, S. I., Shen, Y., Hardy, L. M., Daunay, A., Delépine, M., Gerber, Z., ... & How-Kit, A. (2025). A detailed analysis of second and third-generation sequencing approaches for accurate length determination of short tandem repeats and homopolymers. Nucleic Acids Research, 53(5), gkaf131. https://doi.org/10.1093/nar/gkaf131
Joshi, R. K., Kuanar, A., Mohanty, S., Subudhi, E., & Nayak, S. (2010). Mining and characterization of EST derived microsatellites in Curcuma longa L. Bioinformation, 5(3), 128- 131. https://doi.org/10.6026/97320630005128
Kadim, I., Mahgoub, O., & Purchas, R. (2008). A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries). Meat Science, 80(3), 555-569. https://doi.org/10.1016/j.meatsci.2008.02.010
Kelkar, Y. D., Tyekucheva, S., Chiaromonte, F., & Makova, K. D. (2008). The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Research, 18(1), 30-38. http://www.genome.org/cgi/doi/10.1101/gr.7113408
Kumar, A. S., Sowpati, D. T., & Mishra, R. K. (2016). Single amino acid repeats in the proteome world: structural, functional, and evolutionary insights. PloS One, 11(11), e0166854. https://doi.org/10.1371/journal.pone.0166854
Mahmoud, A., Alshaikh, M., Aljumaah, R., & Mohammed, O. (2012). Genetic variability of camel (Camelus dromedarius) populations in Saudi Arabia based on microsatellites analysis. African Journal of Biotechnology, 11(51), 11173-11180. https://doi.org/10.5897/AJB12.1081
Ming, L., Yuan, L., Yi, L., Ding, G., Hasi, S., Chen, G., Jambl, T., Hedayat-Evright, N., Batmunkh, M., & Badmaevna, G. K. (2020). Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Communications Biology, 3(1), 1. https://doi.org/10.1038/s42003-019-0734-6
Nobari, K., Ghazanfari, S., Nassiry, M. R., Tahmoorespur, M., & Jorjani, E. (2010). Relationship between leptin gene polymorphism with economical traits in Iranian Sistani and Brown Swiss cows. https://doi.org/10.3923/javaa.2010.2807.2810
Pandey, M., Kumar, R., Srivastava, P., Agarwal, S., Srivastava, S., Nagpure, N. S., Jena, J. K., & Kushwaha, B. (2018). WGSSAT: a high-throughput computational pipeline for mining and annotation of SSR markers from whole genomes. Journal of Heredity, 109(3), 339-343. https://doi.org/10.1093/jhered/esx075 Piro, M., Mabsoute, F., El Khattaby, N., Laghouaouta, H., & Boujenane, I. (2020). Genetic variability of dromedary camel populations based on microsatellite markers. Animal, 14(12), 2452-2462. https://doi.org/10.1017/S1751731120001573 Rao, M., Gupta, R., & Dastur, N. (1970). Camels' milk and milk products. Indian Journal of Dairy Science, 23, 71-78. https://epubs.icar.org.in/index.php/IJDS
Rhie, A., McCarthy, S. A., Fedrigo, O., et al. (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature, 592(7856), 737-746. https://doi.org/10.1038/s41586-021-03451-0
Roth, H. H., & Merz, G. (2013). Wildlife resources: a global account of economic use. Springer Science and Business Media.
Sadder, M., Migdadi, H., Al-Haidary, A., & Okab, A. (2015). Identification of simple sequence repeat markers in the dromedary (Camelus dromedarius) genome by next-generation sequencing. Turkish Journal of Veterinary and Animal Sciences, 39(2), 218-228. https://doi.org/10.3906/vet-1402-72
Shaltenbay, G., Ualiyeva, D., Kapassuly, T., Kozhakhmet, A., Orazymbetova, Z., Kulboldin, T., ... & Dossybayev, K. (2025). Genetic variability and population structure of Camelus from Kazakhstan Inferred from 17 STR markers. Diversity, 17(7), 459. https://doi.org/10.3390/d17070459
Srivastava, S., Avvaru, A.K., Sowpati, D.T., & Mishra, R.K. (2019). Patterns of microsatellite distribution across eukaryotic genomes. BMC Genomics, 20(1), 153. https://doi.org/10.1186/s12864-019-5516-5
Teneva, A., Dimitrov, K., Petrović, C. V., Petrović, M. P., Dimitrova, I., Tyufekchiev, N., & Petrov, N. (2013). Molecular genetics and SSR markers as a new practice in farm animal genomic analysis for breeding and control of disease disorders. Biotechnology in Animal Husbandry, 29(3), 405-429. https://doi.org/10.2298/BAH1303405T
Tóth, G., Gáspári, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 10(7), 967-981. https://doi.org/10.1101/gr.10.7.967
Varshney, R. K., Thiel, T., Stein, N., Langridge, P., & Graner, A. (2002). In silico analysis on frequency & distribution of microsatellites in ESTs of some cereal species. Cellular and Molecular Biology Letters, 7(2A), 537-546. http://www.cmbl.org.pl
Wang, P., Yang, L., Zhang, E., Qin, Z., Wang, H., Liao, Y., Wang, X., & Gao, L. (2017). Characterization and development of EST-SSR markers from a cold-stressed transcriptome of centipedegrass by illumina paired-end sequencing. Plant Molecular Biology Reporter, 35, 215-223. https://doi.org/10.1007/s11105-016-1017-8
Wu, H., Guang, X., Al-Fageeh, M. B., Cao, J., Pan, S., Zhou, H., ... & Wang, J. (2014). Camelid genomes reveal evolution and adaptation to desert environments. Nature Communications, 5(1), 5188. https://doi.org/10.1038/ncomms6188
Yan, Q., Zhang, Y., Li, H., Wei, C., Niu, L., Guan, S., Li, S., & Du, L. (2008). Identification of microsatellites in cattle unigenes. Journal of Genetics and Genomics, 35(5), 261-266. https://doi.org/10.1016/S1673-8527(08)60037-5
Young, E. T., Sloan, J. S., & Van Riper, K. (2000). Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics, 154(3), 1053-1068. https://doi.org/10.1093/genetics/154.3.1053
Yousefzadeh, H., Nasiri, M., Amirchakhmaghi, N., Sabbagh, S. A., Walas, Ł., & Kozlowski, G. (2024). Transmission of genetic variation from the adult generation to naturally established seedlings of Fagus orientalis in the Hyrcanian forest. Journal of Genetic Resources, 10(2), 152-163. https://doi.org/10.22080/jgr.2024.26853.1387
Zhou, Q., Luo, D., Ma, L., Xie, W., Wang, Y., Wang, Y., & Liu, Z. (2016). Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Scientific Reports, 6(1), 20549. https://doi.org/10.1038/srep20549 | ||
آمار تعداد مشاهده مقاله: 1 |