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Abstract. Let L be a bounded distributive lattice. In this paper,
we introduce and investigate the join coatom element graph of L,
denoted by CG(L). It is the (undirected) graph with all nontriv-
ial elements of L as vertices, and for distinct nontrivial elements
a, b ∈ L, the vertices a and b are adjacent if and only if a ∨ b is a
coatom element of L. The basic properties and possible structures
of the graph CG(L) are investigated. The connectedness, clique
number, domination number and independence number of CG(L)
and their relations to algebraic properties of L are explored.
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1. Introduction

One of the meeting points of graph theory and classical algebra is
the study of graphs defined in terms of elements and subobjects of the
algebraic structure. There are many studies on various graphs associated
to modules, rings, lattices and other algebraic structures (see for example
[1-8, 11, 13-19, 21]). The aim of the paper is to investigate the interplay
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between lattice properties of a lattice L and properties of its join coatom
element graphs. This will result in classification of lattices in terms of
some specific properties of those graphs. All lattices considered in this
paper are assumed to have a least element denoted by 0 and a greatest
element denoted by 1, in other words they are bounded.

Beck [4], Anderson and Naseer [2], and Anderson and Livingston [1]
et. al. have studied graphs on commutative rings. One of the most
important graphs which have been studied is the intersection graph.
Bosak [5] defined the intersection graph of semigroups. Csàkàny and
Pollàk [8] studied the graph of subgroups of a finite group. The inter-
section graph of ideals of a ring was considered by Chakrabarty, Ghosh,
Mukherjee and Sen [7]. The intersection minimal ideal graph of a ring,
i.e. a simple graph whose vertices are nontrivial ideals of a ring R and
two vertices I, J are adjacent if the intersection of corresponding ideals
is a minimal ideal, was investigated by Barman and Rajkhowa in [6].
The intersection graph of ideals of rings, submodules of modules and
lattices has been investigated by several authors (see for example [3,
17-19, 21]).

Let L be a bounded distributive lattice. The purpose of this paper is
to investigate a graph associated to a lattice L called the join coatom
element graph of L. The join coatom element graph of L is a simple
graph CG(L) whose vertices are all nontrivial elements and two distinct
vertices are adjacent if and only if the join of the corresponding ele-
ments is a coatom element of L. Here is a brief outline of the article.
Among many results in this paper, the first, preliminaries section con-
tains elementary observations needed later on. In Section 3, Section 4
and Section 5, We characterize the lattices for which the join coatom
element graphs are connected, complete bipartite, star. The concepts
of planarity, clique number, domination number and split character are
also investigated.

2. Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E (G). The
degree of a vertex v of the graph G, denoted by degG(v), is the number
of edges incident to v. The (open) neighborhood N(v) of a vertex v of
V(G) is the set of vertices which are adjacent to v. A graph G is said
to be connected if there exists a path between any two distinct vertices,
G is a complete graph if every pair of distinct vertices of G are adjacent
and Kn will stand for a complete graph with n vertices. If the vertices of
G can be partitioned into two disjoint sets V1 and V2 with every vertex
of V1 is adjacent to any vertex of V2 and no two vertices belonging to
same set are adjacent, then G is called a complete bipartite graph. If
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|V1| = m and |V2| = n, then the complete bipartite graph is denoted by
Km,n. If one of the partite sets contains exactly one element, then the
graph becomes a star graph. If graph G does not have K5 or K3,3 as its
subgraph, then G is planar. Let u and v be elements of V (G). We say
that u is a universal vertex of G if u is adjacent to all other vertices of
G and write u ∽ v if u and v are adjacent. The distance d(u, v) is the
length of the shortest path from u to v if such path exists, otherwise,
d(a, b) = ∞. The diameter of G is diam(G) = sup{d(a, b) : a, b ∈ V(G)}.
The girth of a graph G, denoted by gr(G), is the length of a shortest
cycle in G. If G has no cycles, then gr(G) = ∞. A clique of a graph is
its maximal complete subgraph and the number of vertices in the largest
clique of graph G, denoted by ω(G), is called the clique number of G.
A subset S of V (G) is said to be an independent set if no two vertices
of S are adjacent. If V (G) can be partitioned in an independent set
and a clique then G is said to be split. A set D ⊆ V (G) is said to be
a dominating set if every vertex not in D is adjacent to at least one of
the members of D. The cardinality of smallest dominating set is the
domination number of the graph G and is denoted by γ(G). Note that
a graph whose vertices set is empty is a null graph and a graph whose
edge set is empty is an empty graph. For a connected graph G, x is a
cut vertex of G if G \ {x} is not connected [20].

A poset (L,≤) is a lattice if sup{a, b} = a ∨ b and inf{a, b} = a ∧ b
exist for all a, b ∈ L (and call ∧ the meet and ∨ the join). A lattice
L is complete when each of its subsets X has a least upper bound and
a greatest lower bound in L. Setting X = L, we see that any nonvoid
complete lattice contains a least element 0 and greatest element 1 (in
this case, we say that L is a lattice with 0 and 1). A lattice L is called
a distributive lattice if (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) for all x, y, z ∈ L
(equivalently, L is distributive if (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) for all
x, y, z ∈ L). We say that an element x in a lattice L is an atom (resp.
coatom) if there is no y ∈ L such that 0 < y < x (resp. x < y < 1).
The set of all coatom (resp. atom) elements of L is denoted by CA(L)
(resp. A(L)). If L is a complete lattice, then the Jacobson radical of L
is the meet of all coatom elements of L, and is denoted as Rad(L) (i.e.
Rad(L) =

∧
c∈CA(£) c). In a lattice L with 1 an element a ∈ L is called

small, denoted by a ≪ L, if a∨ b ̸= 1 holds for every b ̸= 1. An element
x of a lattice L is nontrivial (resp. proper) if x ̸= 0, 1 (resp. x ̸= 1). A
nonzero element x of a lattice L is called semisimple, if for each element
y of L with y < x, there exists an element z of L such that x = y ∨ z
and y ∧ z = 0. In this case, we say that y is a direct join of x, and we
write x = y ⊕ z [15]. A lattice L is Artinian (satisfies DCC) if there
is no infinite strictly descending chain a0 > a1 > · · · in L. A lattice
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L is called local if it has exactly one coatom element c that x ≤ c for
each proper element x. The undefined terms related to lattice theory
are taken from [9, 10] and terms related to graph theory are taken from
[20].

3. Connectedness of CG(L)

Throughout this paper we shall assume, unless otherwise stated, that
L is a bounded distributive lattice. In this section, we collect some basic
properties concerning the join coatom element graph CG(L) of L. We
remind the reader with the following definition.

Definition 3.1. The join coatom element graph CG(L) of L is simple
undirected graph whose vertices are all nontrivial elements of L and any
two distinct vertices a and b are adjacent if and only if a∨ b is a coatom
element of L.

Lemma 3.2. Every non-coatom vertex of the graph CG(L) is adjacent
to at least one of the coatom elements of L.

Proof. Let x be a non-atom vertex of the graph CG(L). Then there
exists a coatom element c of L such that x ≨ c by [14, Lemma 2.1].
Hence, x ∨ c = c is a coatom element, as needed. □
Proposition 3.3. If L is an Artinian lattice and CG(L) has a non-
coatom universal vertex a, then a is an atom element.

Proof. On the contrary, assume that a is not an atom element. By
assumption, there exists an atom element a′ of L such that a′ ≨ a.
Then a is an universal vertex gives a = a∨a′ is a coatom element which
is impossible. Thus, a is an atom element. □
Proposition 3.4. If L is complete and Rad(L) ̸= 0, then every element
of CA(L) is adjacent to Rad(L).

Proof. Since Rad(L) ̸= 1, we conclde that Rad(L) is a vertex of the
graph CG(L). Let c ∈ CA(L). Then Rad(L) ≤ c gives c∨Rad(L) = c ∈
CA(L) and so c adjacent to Rad(L). □
Proposition 3.5. The subgraph induced by the coatom elements of L is
empty.

Proof. Let c, c′ ∈ CA(L) with c ̸= c′. Then c, c′ ≤ c ∨ c′ gives c ∨ c′ = 1
which implies that c is not adjacent to c′, as required. □
Corollary 3.6. If CG(L) has a coatom universal vertex c, then L is a
local lattice with unique coatom element c.

Proof. Apply Proposition 3.5. □
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Proposition 3.7. If L is a local lattice with unique coatom element c,
then c is a universal vertex.

Proof. If x is a nontrivial element of L, then x ≤ c gives x ∨ c = c and
so c is a universal vertex. □
Theorem 3.8. If CG(L) is a complete graph, then L is a local lattice.

Proof. If c, c′ ∈ CA(L) with c ̸= c′, then c and c′ are not adjacent in
CG(L) by Proposition 3.5 which is impossible, as CG(L) is complete.
Hence, L is a local lattice. □

The following example shows that, in general, the converse of Theorem
3.8 is not true.

Example 3.9. Assume that L = {0, a, b, c, d, e, 1} is a lattice with the
relations 0 ≤ e ≤ a ≤ b ≤ c ≤ 1, 0 ≤ e ≤ a ≤ d ≤ c ≤ 1, d ∨ b = c and
d∧b = a. Clearly, CA(L) = {c}. Then b∨a = b is not a coatom element
gives CG(L) is not a complete graph.

In the following theorem, we give a condition under which the graph
CG(L) is complete.

Theorem 3.10. Suppose that L is an Artinian lattice and let c be a
vertex of CG(L) with degree 1. If c is a coatom in L which is not an
atom element, then CG(L) ∼= K2.

Proof. By the hypothesis, a ≨ c for some atom element a of L; so
a ∽ c. If a′ is an element of L such that a ≨ a′ ≨ c, then a′ ∽ c gives
degCG(L)(c) ≥ 2 which is a contradiction. Thus, V (CG(L)) = {a, c}, as
required. □

The following theorems, we give a condition under which CG(L) is a
empty graph.

Theorem 3.11. Every nontrivial element of a lattice of L is a coatom
if and only if CG(L) is an empty graph.

Proof. If every nontrivial element of L is coatom, then CG(L) is an
empty graph by Proposition 3.5. Conversely, assume that CG(L is empty
and let x be any vertex of the graph of CG(L such that x /∈ CA(L). Then
by Lemma 3.2, there exists a coatom element y of L such that y adjacent
to x which is impossible, as needed. □
Theorem 3.12. If c1 ⊕ c2 = 1 for some coatom elements c1 and c2 of
L, then CG(L) is an empty graph.

Proof. Let a be a nontrivial element of L. Then a = a ∨ 0 = (a ∨ c1) ∧
(a ∨ c2). If a ∨ c1 = 1 = a ∨ c2, then a = 1 which is a contradiction. If
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a ∨ c1 ̸= 1 (so a ≤ c1, as c1 is a coatom) and a ∨ c2 ̸= 1 (so a ≤ c2),
then a = c1 ∧ c2 = 0 which is impossible. Without loss of generality,
let a ∨ c1 ̸= 1 (so a ≤ c1) and a ∨ c2 = 1 which implies that a = c1.
Therefore, every nontrivial element of L is a coatom element. Therefore,
CG(L) is an empty graph by Theorem 3.5. □

Theorem 3.13. If L is complete and Rad(L) ̸= 0, then the subgraph
induced by the non-coatom elements of L is connected graph of diameter
not bigger than 4.

Proof. Suppose that x and y are distinct non-coatom vertices of the
graph CG(L). If x adjacent to y, then x ∽ y is a path. So we may assume
that x∨y is not a coatom. By assumption, there exist a, b ∈ CA(L) such
that x ≨ a and y ≨ b. If a = b, then x ∽ a ∽ y is a path in CG(L) with
d(x, y) = 2. If a ̸= b, then a ∧ b ̸= 1 and 0 ̸= Rad(L) ≤ a ∧ b gives a ∧ b
is a vertex of the graph CG(L) and so x ∽ a ∽ a ∧ b ∽ b ∽ y is a path
in CG(L) with d(x, y) = 4, i.e. the result holds. □

The next theorem gives a more explicit description of the diameter of
CG(L).

Theorem 3.14. The graph CG(L) is connected with diam(CG(L)) ≤ 4
if and only if the meet of any two distinct coatom elements of L is not
0 or L is a local lattice.

Proof. Suppose that L is a local lattice with unique coatom element c
and let x and y be distinct non-coatom vertices of the graph CG(L).
Then x ∽ c ∽ y is a path in CG(L) with d(x, y) = 2. So suppose that
|CA(L)| ̸= 1 and the meet of any two distinct coatom elements of L is
not 0. Consider two distinct vertices b and c of CG(L). If b adjacent to
c, then b ∽ c is a path. So we may assume that b ∨ c is not a coatom
element of L. Then either b ∨ c = 1 or b ∨ c ≨ a for some a ∈ CA(L). If
b ∨ c ≨ a (so b ≨ a and c ≨ a), then b ∽ a ∽ c is a path in CG(L) with
d(x, y) = 2. If b ∨ c = 1, we split the proof into three cases:

Case 1. b, c ∈ A(L). Then b ∽ b ∧ c ∽ c is a path in CG(L) with
d(b, c) = 2.

Case 2. If exactly one of b and c is coatom, then without loss of
generality, assume that b ∈ CA(L) and c /∈ CA(L). By [14, Lemma 2.1],
there is a coatom element a of L such that c ≨ a which implies that
b ∽ a ∧ b ∽ a ∽ c is a path in CG(L) with d(b, c) = 4.

Case 3. b, c /∈ CA(L). Then there exist a, a′ ∈ CA(L) such that b ≨ a
and c ≨ a′ by [14, Lemma 2.1]. If a = a′, then b ∽ a ∽ c is a path in
CG(L) with d(b, c) = 2. If a ̸= a′, then b ∽ a ∽ a∧ a′ ∽ a′ ∽ c is a path
in CG(L) with d(b, c) = 4. Hence, we infer that CG(L) is connected
with diam(CG(L)) ≤ 4.
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Conversely, assume that CG(L) is connected. If L is a local lattice,
then we are done. So we may assume that |CA(L)| ̸= 1. On the contrary,
assume that there are two coatom elements c1 and c2 of L such that
c1 ∧ c2 = 0. We claim that c2 is an atom element of L. Assume to the
contrary, 0 ≨ x ≨ c2 for some x ∈ L. Then c1 ∧ x ≤ c2 ∧ c1 = 0 gives
x ∧ c1 = 0. If x ∨ c1 ̸= 1, then x ≤ c1 implies that 0 = x ∧ c1 = x
which is impossible. Thus, x ∨ c1 = 1. Now, we have c2 = c2 ∧ 1 =
c2 ∧ (x∨ c1) = (c2 ∧ x)∨ (c2 ∧ c1) = x, a contradiction. So c2 is an atom
element. Similarly, c1 is an atom element. By the hypothesis, c1 ∽ v for
some vertex v of CG(L). Then c1 ∨ v = c1 since c1 ∨ v is a coatom (so
v ≨ c1), a contradiction Since c1 is an atom element, as required. □

Theorem 3.15. Assume that L is a complete lattice with Rad(L) ̸= 0
and let CG(L) be a graph which contains a cycle. Then gr(CG(L)) = 3, 4.

Proof. Assume that Rad(L) ̸= 0 (so Rad(L) is a vertex of CG(L) since
Rad(L) ̸= 1) and let x ∽ y. By Proposition 3.5, either x /∈ CA(L) or
y /∈ CA(L). If x, y /∈ CA(L), then x ∽ x ∨ y ∽ y ∽ x is a cycle (so
gr(CG(L)) = 3). Suppose that one of x or y is a coatom element. We
can assume that x ∈ CA(L) and y /∈ CA(L). By Lemma 3.2, there is
a coatom element a of CA(L) such that y ≨ a. Hence we obtain the
cycle x ∽ y ∽ a ∽ Rad(L) ∽ x which implies that gr(AG(L)) = 4, as
needed. □

Assume that (L1,≤1), (L2,≤2), · · · , (Ln,≤n) are lattices (n ≥ 2) and
let L = L1 × L2 × · · · × Ln. We set up a partial order ≤c on L as
follows: for each x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ L, we write
x ≤c y if and only if xi ≤i yi for each i ∈ {1, 2, · · · , n}. The following
notation below will be used in this paper: It is straightforward to check
that (L,≤c) is a lattice with x ∨c y = (x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn)
and x ∧c y = (x1 ∧ y1, · · · , xn ∧ yn). In this case, we say that L is a
decomposable lattice.

Lemma 3.16. Let L = L1 ×L2 × · · · ×Ln be a decomposable lattice. If
ci is a coatom element of Li for i ∈ {1, · · · , n}, then c′1 = (c1, 1, · · · , 1),
c′2 = (1, c2, 1, · · · , 1), · · · , and c′n = (1, 1, · · · , cn) are coatom elements of
L.

Proof. On the contrary, assume that
c′1 = (c1, 1, · · · , 1) ≨ x = (x1, x2, · · · , xn) ≨ (1, 1, · · · , 1)

for some element x of L (so xi = 1 for i ∈ {2, 3, · · · , n}). It follows
that c1 ≨ x1 ≨ 1, a contradiction, as c1 is a coatom element. Thus c′1
is a coatom element of L. Similarly, c′2, · · · , c′n are coatom elements of
L. □
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Theorem 3.17. Let L = L1 × L2 × · · · × Ln be a decomposable lattice
such that CA(Li) = {ci} for i ∈ {1, 2, · · · , n}. Then diam(CG(L)) ≤ 2.
Proof. By Lemma 3.16, CA(L) = {c′1, · · · , c′n}, where we have that

c′k = (1, 1, · · · , 1, ck, 1, · · · , 1)
for k ∈ {1, 2, · · · , n}. Let x and y be two vertices of CG(L) such that
they are not adjacent. If x ≤ c′i and y ≤ c′i for some c′i, then x ∽ c′i ∽ y
is a path in CG(L) with d(x, y) = 2. Otherwise, there are c′i, c

′
j ∈ CA(L)

such that x ≤ c′i, y ≰ c′i, y ≤ c′j and x ≰ c′j . We may assume that
i < j. Consider the element z = (1, 1, · · · , 1, ci, 1, · · · , 1, cj , 1, · · · , 1).
Since x ≰ c′j and y ≰ c′i, we conclude that z ∨ x = c′i and z ∨ y = c′j .
This shows that x ∽ z ∽ y is a path in CG(L) with d(x, y) = 2. Thus,
diam(CG(L)) ≤ 2. □
Theorem 3.18. Let L = L1 × L2 × · · · × Ln be a decomposable lattice
such that CA(Li) = {ci} for i ∈ {1, 2, · · · , n}. Then gr(CG(L)) = 3.
Proof. By Lemma 3.16, CA(L) = {c′1, · · · , c′n}, where we have that
c′k = (1, 1, · · · , 1, ck, 1, · · · , 1) for k ∈ {1, 2, · · · , n}. Now we consider
the elements x = (c1, c2, 1, · · · , 1), y = (c1, 1, c3, 1, · · · , 1) and z =
(1, c2, c3, 1, · · · , 1). Since x ∨ y = c′1, x ∨ z = c′2 and y ∨ z = c′3, we
get the cycle x ∽ y ∽ z ∽ x. This shows that gr(CG(L)) = 3. □

4. Further results in related lattices

The following theorem provides some condition under which the graph
CG(L) is star.
Proposition 4.1. If a chain is formed by the nontrivial elements of L,
then CG(L) is a star graph.
Proof. By assumption, there is an element c of CA(L) such that c ∽ x
for every x ∈ V (CG(L)). If x ̸= c and y ̸= c are two distinct vertices
of CG(L), then either x ≤ y or y ≤ x. For both cases, x and y are not
adjacent vertices. Thus CG(L) is a star graph with center c. □

In the following theorem, we describe the relation between cut vertex
element and coatom elements.
Theorem 4.2. Suppose that the meet of any two distinct coatom ele-
ments of L is not 0 and let a be a cut vertex of CG(L). Then there exist
coatom elements b, c of L such that a = b ∧ c.
Proof. If a is a coatom element, then a = a∧ a. So we may assume that
a is not a coatom element. Let b and c be two vertices of CG(L) such
that b ∈ V1 and c ∈ V2, where V1 and V2 are the distinct components
CG(L) \ {a}. Now we consider the various possibilities for b and c.
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Case 1. b, c ∈ CA(L). Since b ∽ b ∧ c ∽ c is a path in CG(L) and a
is a cut vertex, we infer that a = b ∧ c.

Case 2. b ∈ CA(L) and c /∈ CA(L). By assumption, c ≤ u for some
coatom element u of L by Lemma 3.2; hence u ∈ V2. Since b ∽ b∧u ∽ u
is a path in CG(L), b ∈ V1 and a is a cut vertex, we conclude that
a = b ∧ u.

Case 3. b /∈ CA(L) and c ∈ CA(L). By an argument like that in
Case 2, a = c ∧ v for some coatom element v of L with b ≤ v.

Case 4. b, c /∈ CA(L). By assumption, b ≨ a and c ≨ a′ for some
coatom elements a and a′ of L by Lemma 3.2; so a ∈ V1 and a′ ∈ V2.
Since a ∽ a ∧ a′ ∽ a′ is a path in CG(L) and a is a cut vertex, we infer
that a = a ∧ a′. □

We next give one other characterization of the Jacobson radical of L.

Theorem 4.3. If L is a complete lattice, then Rad(L) =
∨

e≪L e.

Proof. Let r =
∨

e≪L e. By [14, Proposition 2.2], Rad(L) ≪ L and so
Rad(L) ≤ r. Let a ≪ L. If c is a coatom element of L, and if a ≰ c,
then a ∨ c = 1; but then since a ≪ L, we have a = 1, a contradiction.
We infer that every small element a of L we have that a ≤ Rad(L) and
so r ≤ Rad(L, as needed. □
Proposition 4.4. The following hold in a complete lattice L:

(1) If x ∈ L, then x ≪ L if and only if x ≤ Rad(L);
(2) If x is a nontrivial element of L and Rad(L) ≨ x, then x is not

small in L.

Proof. (1) One side is clear by Theorem 4.3. To prove the other side,
assume to the contrary, that x is not small in L. Then there exists a
nontrivial element b of L such that x∨ b = 1. By [14, Lemma 2.1], b ≤ c
for some coatom element c of L. Since x ≤ Rad(L) ≤ c, we conclude that
1 = x ∨ b ≤ c ∨ b = c which implies that c = 1 which is a contradiction.
Therefore, x ≪ L.

(2) It is a direct consequence of (1). □
Proposition 4.5. The following hold in CG(L):

(1) If L is complete, c ∈ CA(L) and x ≨ Rad(L), then c ∽ x;
(2) If x /∈ CA(L) and y ≨ x, then x is not adjacent to y.

Proof. (1) Since x ≨ Rad(L) ≤ c, we conclude that x ∨ c = c and so
c ∽ x.

(2) If y ≨ x, then x ∨ y = x. Since x /∈ CA(L), we infer that x is not
adjacent to y. □

The following theorem shows that when the join coatom element
graph is a complete bipartite graph.
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Theorem 4.6. Let L be a complete lattice with Rad(L) ̸= 0. Then
every vertex of CG(L) is either coatom or small if and only if CG(L) is
a complete bipartite graph.

Proof. Let V1 and V2 be the set of coatom elements and small elements of
L, respectively. If c, c′ ∈ V1, then c and c′ are not adjacent by Proposition
3.5. If x, y ∈ V2, then x ∨ y ≪ L by [14, Lemma 2.3 (2)] and so
x ∨ y ≨ Rad(L) by Proposition 4.4 which implies that any two vertices
of V2 are not adjacent. Moreover, every vertex in V1 is adjacent to each
vertex V2 by Proposition 4.5. Therefore, CG(L) is a complete bipartite
graph.

Conversely, suppose that V1 and V2 are parts of CG(L) and let c be
an coatom element of L. Without loss of generality, let c ∈ V1. If
c ̸= c′ ∈ CA(L) with c′ /∈ V1, then c′ ∈ V2 implies that c ∨ c′ is coatom
which is impossible. Thus CA(L) ⊆ V1. If b ∈ V1 with b /∈ CA(L),
then there exists a coatom element a of L (so a ∈ V1) such that b ∽ a
by Lemma 3.2, a contradiction. Therefore, V1 = CA(L). Suppose that
c ≤ Rad(L) for some vertex c. We show that c is small in L. Let d be any
element of L such that c ∨ d = 1. If d is coatom, then c ≤ Rad(L) ≤ d
and so d = 1. If d is not coatom, then d = 1. Otherwise, there exists
a coatom element u of L such that d ≤ u by [14, Lemma 2.1]. Since
c ≤ Rad(L) ≤ u, we conclude that 1 = c ∨ d ≤ u, a contradiction.
Therefore, S = {s ∈ V (CG(L) : s ≤ Rad(L)} is the set of all small
elements of L. An easy inspection will show that V2 = S, as required. □

5. Clique number, domination number
and planarity of CG(L)

We continue this section with the investigation of the stability of join
coatom element graphs in various lattice-theoretic constructions. In the
following results we show that domination numbers are really of interest
in indecomposable lattices.

Theorem 5.1. Let L = L1 × L2 be a decomposable lattice such that
CA(Li) = {ci} for i ∈ {1, 2}. Then γ(CG(L)) = 2;

Proof. By Lemma 3.16, CA(L) = {c′1, c′2}, where we have that c′1 =
(c1, 1) and c′2 = (1, c2). Let a = (a1, a2) be a nontrivial element of L.
Since a ∨c c

′
1 = (a1 ∨ c1, 1) and a ∨c c

′
2 = (1, c2 ∨ a2), we infer that any

vertex of the graph CG(L) is adjacent to at least one of the elements of
the set {c′1, c′2}. This shows that γ(CG(L)) = 2. □

Theorem 5.2. Let L = L1 × L2 × · · · × Ln (n ≥ 3) be a decomposable
lattice such that CA(Li) = {ci} for i ∈ {1, 2, · · · , n}. Then γ(CG(L)) ≤
n.
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Proof. By Lemma 3.16, CA(L) = {c′1, · · · , c′n}, where we have that
c′k = (1, 1, · · · , 1, ck, 1, · · · , 1) for k ∈ {1, 2, · · · , n}. Then the set CA(L)
dominates all the vertices of the graph CG(L); hence γ(CG(L)) ≤ n. □

The following example shows that in general Theorem 5.2 is not true
in the case γ(CG(L)) = n.

Example 5.3. Suppose that L1 = L2 = L3 = {0, 1} and let L =
L1 × L2 × L3 be a decomposable lattice. Then we have

V(CG(L)) = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)}.

If D = {(0, 0, 1), (1, 0, 0)}, then the set D dominates all the vertices of
the graph CG(L); hence γ(CG(L)) = 2 ̸= 3.

Proposition 5.4. Let a, b /∈ CA(L) such that they are adjacent. Then
there is a unique coatom element c of L such that c ∈ N(a) ∩N(b).

Proof. Since a∨ b is a coatom element, we infer that a∨ b is adjacent to
both a and b which gives a∨ b ∈ N(a) and a∨ b ∈ N(b). Let x ∈ CA(L)
such that x ∈ N(a) ∩ N(b). It suffices to show that x = a ∨ b. On the
contrary, assume that x ̸= a∨ b. First, we prove that x ∈ N(a)∩N(b) if
and only if x ∈ N(a∨b). If x ∽ a∨b, then x∨(a∨b) is a coatom element
of L which gives x∨ a ̸= 1 and x∨ b ̸= 1. Since x ≤ a∨ x and x ≤ x∨ b,
we conclude that a∨ x = x = x∨ b and so x ∽ a and x ∽ b. Conversely,
assume that a ∽ x and b ∽ x. Then a∨x and x∨ b are coatom elements
gives a ∨ x = x = x ∨ b which implies that (a ∨ b) ∨ x = x; so x ∽ a ∨ b.
Since x∨ (a∨ b) is a coatom element, we infer that x∨ (a∨ b) ̸= 1 which
implies that a∨b ≤ x. Therefore, x = a∨b, as a∨b is a coatom element,
a contradiction. Thus x = a ∨ b. □

Theorem 5.5. Let G be a clique in CG(L). Then G is contained in the
subgraph induced by {x ∈ V (CG(L)) : x ≤ c} for some coatom element
c of L.

Proof. By Proposition 3.5, clique G has at most one coatom element. If
G∩CA(L) = {c}, then x ≤ c for every x ∈ G and so G is contained in the
subgraph induced by {x ∈ V (CG(L)) : x ≤ c}. So we may assume that
G∩CA(L) = ∅. The adjacency of every two vertices of G and Proposition
5.4 shows that there exists a unique coatom element c′ of L for which G
is a subgraph of the graph induced by {x ∈ V (CG(L)) : x ≤ c′}. □

The following theorem provides some condition under which CG(L)
is a split graph.

Theorem 5.6. If CG(L) is not empty and V (CG(L)) = A(L)∪CA(L),
then CG(L) is a split graph.
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Proof. At first, we show that the subgraph induced by the atom elements
of L is a complete graph. It is enough to show if c and d are atom
elements of L with c ̸= d, then c ∽ d. We claim that c ∨ d ̸= 1.
On the contrary, let c ∨ d = 1. Since 0 ≤ c ∧ d ≨ c, we infer that
c ∧ d = 0. Let c ≤ e ̸= 1 for some element e of L. As 0 ≤ e ∧ d ≨ d and
1 = c∨d ≤ e∨d, we conclude that e∧d = 0 and e∨d = 1 which implies
that c = c∧1 = c∧(e∨d) = (c∧e)∨(c∧d) = c∧e = e. This shows that c is
coatom. Similarly, d is coatom. It follows that V (CG(L)) = CA(L) and
so CG(L) is empty by Proposition 3.5 which is impossible. Therefore,
c ∨ d ̸= 1. It is clear that c ∨ d /∈ A(L); so c ∨ d ∈ CA(L), i.e. any two
atom elements are adjacent. Consider the subgraph induced by A(L)
of CG(L). Let c, d ∈ A(L) with c ̸= d. Then c ∨ d ∈ CA(L) which
implies that the subgraph induced by A(L) is complete. Moreover, by
Proposition 3.5, the subgraph induced by CA(L) is empty. Thus, CG(L)
is a split graph. □

Corollary 5.7. If CG(L) is not empty and V (CG(L)) = A(L)∪CA(L),
then |A(L)| ≤ ω(CG(L)).

Proof. Since the subgraph of CG(L) with the vertex set of A(L) is a
complete subgraph of CG(L), we conclude that |A(L)| ≤ ω(CG(L)). □

The following example shows that the equality does not hold neces-
sarily in Corollary 5.7.

Example 5.8. Let L = {0, a, b, c, d, 1} be a lattice with the relations
0 ≤ d ≤ c ≤ a ≤ 1, 0 ≤ d ≤ c ≤ b ≤ 1, a ∨ b = 1 and a ∧ b = c. Clearly,
the nontrivial elements of L are a, b, c and d. An inspection will show
that A(L) = {d}, CA(L) = {a, b} and G = {a, c} is a clique. Hence
|A(L)| = 1 < ω(CG(L)) = 2.

The following theorem provides some condition under which CG(L)
is a planar graph.

Theorem 5.9. Suppose that CG(L) is not empty and let V (CG(L)) =
A(L) ∪ CA(L). If |A(L)| ≤ 3, then CG(L) is a planar graph.

Proof. Note that CG(L) is a split graph by Theorem 5.6. Since |A(L)| ≤
3, we infer that any subgraph induced by five vertices is not complete;
so K5 is not a subgraph of CG(L). It suffices to show that K3,3 is not
a subgraph of CG(L). On the contrary, assume that K3,3 is a subgraph
of CG(L) with partite sets |V1| = 3 and |V2| = 3. Therefore, either
V1 ⊆ CA(L) or V2 ⊆ CA(L). If V1 ⊆ CA(L), then V2 ⊆ A(L), a
contradiction since the subgraph induced by the atom elements of L is
a complete graph. Therefore, CG(L) is a planar graph. □
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