- Hayati, H., Eager, D., Pendrill, A. M., Alberg, H. Jerk within the Context of Science and Engineering—A Systematic Review. Vibration, 2020; 3: 371-409. doi:10.3390/vibration3040025.
- Nemes, A., Mester, G. Energy Efficient Feasible Autonomous Multi-Rotor Unmanned Aerial Vehicles Trajectories. In: Proceedings of the 4th International Scientific Conference on Advances in Mechanical Engineering; 2016 Oct 15-16; Debrecen, Hungary. p. 369-376.
- Pendrill, A.-M. Rollercoaster loop shapes. Physics Education, 2005; 40: 517-521. doi:10.1088/0031-9120/40/6/001.
- Eager, D., Pendrill, A.-M., Reistad, N. Beyond velocity and acceleration: jerk, snap and higher derivatives. European Journal of Physics, 2016; 37: 065008. doi:10.1088/0143-0807/37/6/065008.
- Gierlak, P., Szybicki, D., Kurc, K., Burghardt, A., Wydrzyński, D., Sitek, R., Goczał, M. Design and dynamic testing of a roller coaster running wheel with a passive vibration damping system. Journal of Vibroengineering, 2018; 20: 1129–1143. doi:10.21595/jve.2017.18928.
- Sicat, S., Woodcock, K., Ferworn, A. Wearable technology for design and safety evaluation of rider acceleration exposure on aerial adventure attractions. In: Proceedings of the Annual Occupational Ergonomics and Safety Conference; 2018 Jun 7-8; Pittsburgh, Pennsylvania. p. 74-79.
- Vaisanen, A. Design of Roller Coasters (Master Thesis). Espoo (FI): Aalto University; 2018.
- Pendrill, A.-M., Eager, D. Velocity, acceleration, jerk, snap and vibration: forces in our bodies during a roller coaster ride. Physics Education, 2020; 55: 065012. doi:10.1088/1361-6552/aba732.
- Bae, I., Moon, J., Seo, J. Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus. Electronics, 2019; 8: 943. doi:10.3390/electronics8090943.
- Coats, T. W., Haupt, K. D., Murphy, H. P., Ganey, N. C., Riley, M. R. A Guide for Measuring, Analyzing, and Evaluating Accelerations Recorded During Seakeeping Trials of High-Speed Craft. Bethesda (MD): Naval Surface Warfare Center Carderock West Bethesda United States; 2016. Report No.: NSWCCD-80-TR-2016/003.
- Sosa, L., Ooms, J. A Comfort Analysis of an 86 m Yacht Fitted with Fin Stabilizers Vs. Magnus-Effect Rotors. In: 24th International HISWA Symposium on Yacht Design and Yacht Construction; 2016 Nov 14-15; Amsterdam, Netherlands. p. 1-13.
- Werkman, J. Determining and Predicting the Seakeeping Performance of Ships Based on Jerk in the Ship Motions (Master Thesis). Delft (NL): Delft University of Technology; 2019.
- Geoffrey Chase, J., Barroso, L. R., Hunt, S. Quadratic jerk regulation and the seismic control of civil structures. Earthquake Engineering & Structural Dynamics, 2003; 32: 2047-2062. doi:10.1002/eqe.314.
- He, Z., Xu, Y. Correlation between global damage and local damage of RC frame structures under strong earthquakes. Structural Control and Health Monitoring, 2017; 24: e1877. doi:10.1002/stc.1877.
- Taushanov, A. Jerk Response Spectrum. In: Proceedings of the International Jubilee Scientific Conference “75th Anniversary of UACEG”; 2017 Nov 1-3; Sofia, Bulgaria. p. 39-50.
- Tong, M., Wang, G.-Q., Lee, G. C. Time derivative of earthquake acceleration. Earthquake Engineering and Engineering Vibration, 2005; 4: 1-16. doi:10.1007/s11803-005-0019-6.
- Papandreou, I., Papagiannopoulos, G. On the jerk spectra of some inelastic systems subjected to seismic motions. Soil Dynamics and Earthquake Engineering, 2019; 126: 105807. doi:10.1016/j.soildyn.2019.105807.
- He, H., Li, R., Chen, K. Characteristics of jerk response spectra for elastic and inelastic systems. Shock and Vibration, 2015; 2015: doi:10.1155/2015/782748.
- Yaseen, A. A., Ahmed, M. S., Al-Kamaki, Y. S. S. The Possibility of Using Jerk Parameters as Seismic Intensity Measure. In: 3rd international conference on recent innovations in engineering (ICRIE); 2020 Sep 9-10; Duhok, Iraq. p. 254-277.
- Wakui, M., Iyama, J., Koyama, T. Estimation of plastic deformation of vibrational systems using the high-order time derivative of absolute acceleration. In: Proceedings of the 16th World Conference on Earthquake Engineering; 2017 Jan 9-13; Santiago, Chile. p. 3932.
- Vukobratović, V., Ruggieri, S. Jerk in earthquake engineering: State-of-the-art. Buildings, 2022; 12: 1123. doi:10.3390/buildings12081123.
- Amiri, S., Di Sarno, L., Garakaninezhad, A. On the aftershock polarity to assess residual displacement demands. Soil Dynamics and Earthquake Engineering, 2021; 150: 106932. doi:10.1016/j.soildyn.2021.106932.
- Amiri, S., Garakaninezhad, A., Bojórquez, E. Normalized residual displacement spectra for post-mainshock assessment of structures subjected to aftershocks. Earthquake Engineering and Engineering Vibration, 2021; 20: 403-421. doi:10.1007/s11803-021-2028-5.
- Amiri, S., Di Sarno, L., Garakaninezhad, A. Correlation between non-spectral and cumulative-based ground motion intensity measures and demands of structures under mainshock-aftershock seismic sequences considering the effects of incident angles. Structures, 2022; 46: 1209-1223. doi:10.1016/j.istruc.2022.10.076.
- Amiri, S., Koboevic, S. Inelastic spectra under mainshock-multiple aftershock sequences. In: 3rd European Conference on Earthquake Engineering & Seismology; 2022 Sep 4-9; Bucharest, Romania. p. 1-22.
- Garakaninezhad, A., Amiri, S., Noroozinejad Farsangi, E. Effects of Ground Motion Incident Angle on Inelastic Seismic Demands of Skewed Bridges Subjected to Mainshock–Aftershock Sequences. Practice Periodical on Structural Design and Construction, 2023; 28: 04023006. doi:10.1061/PPSCFX.SCENG-1218.
- Amiri, S., Koboevic, S. On the necessary number of aftershocks for seismic collapse risk assessment of buildings. In: 18th World Conference on Earthquake Engineering (WCEE2024); 2024 Jun 30-Jul 5; Milan, Italy. p. 1-9.
- Somerville, P. G., Smith, N. F., Graves, R. W., Abrahamson, N. A. Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity. Seismological Research Letters, 1997; 68: 199-222. doi:10.1785/gssrl.68.1.199.
- Baker, J. W. Identification of near-fault velocity pulses and prediction of resulting response spectra. 1st ed. Reston (VA): 2008. doi:10.1061/40975(318)4.
- Rupakhety, R., Sigurdsson, S. U., Papageorgiou, A. S., Sigbjörnsson, R. Quantification of ground-motion parameters and response spectra in the near-fault region. Bulletin of Earthquake Engineering, 2011; 9: 893-930. doi:10.1007/s10518-011-9255-5.
- Ezzodin, A., Ghodrati Amiri, G., Raissi Dehkordi, M. A Random Vibration-Based Simulation Model for Nonlinear Seismic Assessment of Steel Structures Subjected to Fling-Step Ground Motion Records. Journal of Vibration Engineering & Technologies, 2022; 10: 2641-2655. doi:10.1007/s42417-022-00509-9.
- Bray, J. D., Rodriguez-Marek, A. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 2004; 24: 815-828. doi:10.1016/j.soildyn.2004.05.001.
- Iervolino, I., Chioccarelli, E., Baltzopoulos, G. Inelastic displacement ratio of near-source pulse-like ground motions. Earthquake Engineering & Structural Dynamics, 2012; 41: 2351-2357. doi:10.1002/eqe.2167.
- Khoshnoudian, F., Ahmadi, E. Effects of pulse period of near-field ground motions on the seismic demands of soil–MDOF structure systems using mathematical pulse models. Earthquake Engineering & Structural Dynamics, 2013; 42: 1565-1582. doi:10.1002/eqe.2287.
- Khoshnoudian, F., Ahmadi, E. Effects of inertial soil–structure interaction on inelastic displacement ratios of SDOF oscillators subjected to pulse-like ground motions. Bulletin of Earthquake Engineering, 2015; 13: 1809-1833. doi:10.1007/s10518-014-9693-y.
- Baker, J. W. Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis. Bulletin of the seismological society of America, 2007; 97: 1486-1501. doi:10.1785/0120060255.
- Zhai, C., Li, S., Xie, L., Sun, Y. Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions. Earthquake Engineering and Engineering Vibration, 2007; 6: 351-355. doi:10.1007/s11803-007-0755-x.
- Dong, H., Han, Q., Du, X., Liu, J. Constant ductility inelastic displacement ratios for the design of self-centering structures with flag-shaped model subjected to pulse-type ground motions. Soil Dynamics and Earthquake Engineering, 2020; 133: 106143. doi:10.1016/j.soildyn.2020.106143.
- Ghanbari, B., Akhaveissy, A. H. Constant-damage residual ratios of SDOF systems subjected to pulse type ground motions. AUT Journal of Civil Engineering, 2020; 4: 145-154. doi:10.22060/ajce.2019.14984.5510.
- Dong, H., Han, Q., Qiu, C., Du, X., Liu, J. Residual displacement responses of structures subjected to near-fault pulse-like ground motions. Structure and Infrastructure Engineering, 2022; 18: 313-329. doi:10.1080/15732479.2020.1835997.
- Garakaninezhad, A., Amiri, S. Inelastic acceleration ratio of structures under pulse-like earthquake ground motions. Structures, 2022; 44: 1799-1810. doi:10.1016/j.istruc.2022.08.102.
- OpenSees Effects of Hysteretic-Material Parameters. 2006. Available online: https://opensees.berkeley.edu/OpenSees/manuals/usermanual/4052.htm (accessed on December 2025).
- Di Sarno, L., Amiri, S. Period elongation of deteriorating structures under mainshock-aftershock sequences. Engineering Structures, 2019; 196: 109341. doi:10.1016/j.engstruct.2019.109341.
- Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L. OpenSees Command Language Manual. Pacific Earthquake Engineering Research (PEER) Center, 2006; 264: 137-158.
- Scott, M., Filippou, F. Hysteretic Material. 2016. Available online: https://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material (accessed on December 2025).
- PEER ground motion database. Pacific Earthquake Engineering Research Center. 2010. Available online: https://ngawest2.berkeley.edu/ (accessed on December 2025).
|