| تعداد نشریات | 31 |
| تعداد شمارهها | 520 |
| تعداد مقالات | 5,048 |
| تعداد مشاهده مقاله | 7,713,526 |
| تعداد دریافت فایل اصل مقاله | 5,740,103 |
Expanding the Mutation Spectrum of Autosomal Recessive Non-Syndromic Hearing Loss in the Iranian Families | ||
| Journal of Genetic Resources | ||
| دوره 11، شماره 2، 2025، صفحه 225-236 اصل مقاله (796.69 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22080/jgr.2025.29460.1440 | ||
| نویسندگان | ||
| Mobarakeh Ajam-Hosseini1، 2؛ Farshid Parvini* 3؛ Abdolhamid Angaji1 | ||
| 1Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran | ||
| 2Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran | ||
| 3Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran | ||
| تاریخ دریافت: 31 اردیبهشت 1404، تاریخ بازنگری: 04 مهر 1404، تاریخ پذیرش: 19 تیر 1404 | ||
| چکیده | ||
| Hearing loss is known as the most common sensory disorder in humans, with an incidence of 466 million people worldwide. This disorder is genetically highly heterogeneous, so among the 180 genes responsible for hearing loss, a disproportionate share of genes is involved in different ethnicities. Here, we report the underlying genetic cause of non-syndromic hearing loss segregating in four unrelated Iranian families. In the first step, patients were examined for mutations in the common genes GJB2 and GJB6. After confirming the negativity of mutations in these genes, the affected patients were subjected to targeted-exome sequencing. Subsequently, Sanger sequencing was used to confirm the mutations found in the patients and their family members. In-silico analyses were used to consider the possible deleterious effect of the identified variants on encoded proteins. Targeted-exome sequencing revealed a novel intronic mutation c.490-8C>A in the CABP2 gene, a novel ~154 kb deletion mutation including the OTOA gene involved in hearing loss, and two previously reported mutations: a pathogenic/likely pathogenic variant c.413C>A in the TMPRSS3 gene and a c.966dupC variant with conflicting classifications of pathogenicity in the COL11A2 gene. However, the audiological evaluations, segregation analysis, and in-silico approaches confirmed the disease-causing nature of all mutations found. Our findings could extend the pathogenic mutation spectrum of non-syndromic hearing loss, highlight the high genetic heterogeneity of hearing loss, and also aid in conducting genetic counseling, prenatal diagnosis, and clinical management of hearing loss in the Iranian population. | ||
| کلیدواژهها | ||
| Genetic heterogeneity؛ Non-syndromic hearing loss؛ Novel mutations؛ Targeted-exome sequencing | ||
| مراجع | ||
|
Ajam-Hosseini, M., Parvini, F., & Angaji, S. A. (2023a). Study of genes and mutations spectrum causing non-syndromic hearing loss in Iran: a review study. Feyz Medical Sciences Journal, 26(6), 722-738. https://doi.org/10.48307/FMSJ.2022.26.6.722
Ajam-Hosseini, M., Parvini, F., & Angaji, A. (2023b). A novel de novo nonsense mutation in SALL4 causing duane radial ray syndrome: a case report and expanding the phenotypic spectrum. BMC Medical Genomics, 16, 33. https://doi.org/10.1186/s12920-023-01467-1
Akhavanfard, S., Padmanabhan, R., Yehia, L., Cheng, F., & Eng, C. (2020). Comprehensive germline genomic profiles of children, adolescents and young adults with solid tumors. Nature Communications, 11(1),2206. https://doi.org/10.1038/s41467-020-16067-1
Ammar-Khodja, F., Bonnet, C., Dahmani, M., Ouhab, S., Lefèvre, G. M., Ibrahim, H., Hardelin, J. P., Weil, D., & Louha, M., Petit, C. (2015). Diversity of the causal genes in hearing impaired Algerian individuals identified by whole exome sequencing. Molecular Genetics & Genomic Medicine, 3(3), 189-196. https://doi.org/ 10.1002/mgg3.131
Anna, A., & Monika, G. (2018). Splicing mutations in human genetic disorders: examples, detection, and confirmation. Journal of Applied Genetics, 59(3), 253-268. https://doi.org/10.1007/s13353-018-0444-7
Bademci, G., Foster, J., Mahdieh, N., Bonyadi, M., Duman, D., Cengiz, F. B., ... & Tekin, M. (2016). Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genetics in Medicine, 18(4), 364-371. https://doi.org/10.1038/gim.2015.89
Bazazzadegan, N., Babanejad, M., Banihashemi, S., Arzhangi, S., Kahrizi, K., Booth, K. T. A., & Najmabadi, H. (2025). A novel candidate gene MACF1 is associated with autosomal dominant non-syndromic hearing loss in an Iranian family. Archives of Iranian Medicine, 28(1), 63-66. https://doi.org/10.34172/aim.31746
Chakchouk, I., Grati, M. H., Bademci, G., Bensaid, M., Ma, Q., Chakroun, A., ... & Liu, X. Z. (2015). Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53. Molecular Genetics and Genomics, 290(4), 1327-1334. https://doi.org/10.1007/s00438-015-0995-9
Chaleshtori, A. R. S., Tabatabaiefar, M. A., Salehi, H. R., & Chaleshtori, M. H. (2014). Analysis of CABP2 c. 637+ 1G> T mutation in Iranian patients with non-syndromic sporadic hearing loss. Genetics in the third Millennium, 12(2), 3504-3511. http://dx.doi.org/10.18869/acadpub.jbums.16.1.70
Del Castillo, F. J., Rodriguez-Ballesteros, M., Alvarez, A., Hutchin, T., Leonardi, E., De Oliveira, C. A., ... & Del Castillo, I. (2005). A novel deletion involving the connexin-30 gene, del (GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of Medical Genetics, 42(7), 588-594. https://doi.org/10.1136/jmg.2004.028324
Fahimi, H., Behroozi, S., Noavar, S., & Parvini, F. (2021). A novel recessive PDZD7 bi-allelic mutation in an Iranian family with non-syndromic hearing loss. BMC Medical Genomics, 14(1), 1-8. https://doi.org/10.1186/s12920-021-00884-4
Gao, X., Yuan, Y. Y., Wang, G. J., Xu, J. C., Su, Y., Lin, X., & Dai, P. (2017). Novel mutations and mutation combinations of TMPRSS3 cause various phenotypes in one Chinese family with autosomal recessive hearing impairment. BioMed Research International, 2017. https://doi.org/10.1155/2017/4707315
Kalra G. (2021). Multi-omic analysis of hearing difficulty risk loci and gene regulatory networks in the mammalian Cochlea. Doctoral Dissertation, University of Maryland, Baltimore.
Lee, K., Chiu, I., Santos-Cortez, R. L. P., Basit, S., Khan, S., Azeem, Z., ... & Leal, S. M. (2013). Novel OTOA mutations cause autosomal recessive non-syndromic hearing impairment in Pakistani families. Clinical Genetics, 84 (3), 294-296. https://doi.org/10.1111/cge.12047
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589-595. https://doi.org/10.1093/bioinformatics/btp698
Li, H., Li, S., Zhao, Z., Kong, L., Fu, X., Zhu, J., ... & Kong, X. (2025). Noninvasive prenatal diagnosis (NIPD) of non-syndromic hearing loss (NSHL) for singleton and twin pregnancies in the first trimester. Orphanet Journal of Rare Diseases, 20(1), 40. https://doi.org/10.1186/s13023-025-03558-x
Zhao, C., Su, K. J., Wu, C., Cao, X., Sha, Q., Li, W., ... & Deng, H. W. (2010). The Genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297-1303. https://doi.org/10.1101/gr.107524.110
Nawaz, H., Parveen, A., Khan, S. A., Zalan, A. K., Khan, M. A., Muhammad, N., ... & Wasif, N. (2024). Brachyolmia, dental anomalies and short stature (DASS): Phenotype and genotype analyses of Egyptian and Pakistani patients. Heliyon, 10(1), e23688. https://doi.org/10.1016/j.heliyon.2023.e23688
Noavar, S., Behroozi, S., Tatarcheh, T., Parvini, F., Foroutan, M., & Fahimi, H. (2019). A novel homozygous frame-shift mutation in the SLC29A3 gene: a new case report and review of literature. BMC Medical Genetics, 20(1), 1-7. https://doi.org/10.1186/s12881-019-0879-7
Park, H. R., Kanwal, S., Lim, S. O., Nam, D. E., Choi, Y. J., & Chung, K. W. (2020). Homozygous mutations in Pakistani consanguineous families with prelingual nonsyndromic hearing loss. Molecular Biology Reports, 47(12), 9979-9985. https://doi.org/10.1007/s11033-020-06037-7
Parvini, F., Fahimi, H., & Noavar, S. (2022). Study of frequency and spectrum of GJB2 gene mutations in non-syndromic hearing loss patients of Semnan province. Armaghane Danesh, 2023, 28(1): 112-121. http://dx.doi.org/10.52547/armaghanj.28.1.10
Picher, M. M., Gehrt, A., Meese, S., Ivanovic, A., Predoehl, F., Jung, S., ... & Moser, T. (2017). Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells. Proceedings of the National Academy of Sciences, 114(9), E1717-E1726. https://doi.org/10.1073/pnas.1617533114
Sheyanth, I. N., Højland, A. T., Okkels, H., Lolas, I., Thorup, C., & Petersen, M. B. (2021). First reported CABP2‐related non‐syndromic hearing loss in Northern Europe. Molecular Genetics and Genomic Medicine, 9(4), e1639. https://doi.org/10.1002/mgg3.1639
Sloan-Heggen, C. M., Babanejad, M., Beheshtian, M., Simpson, A. C., Booth, K. T., Ardalani, F., ... & Najmabadi, H. (2015). Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. Journal of Medical Genetics, 52(12), 823-829. https://doi.org/10.1136/jmedgenet-2015-103389
Souissi, A., Said, M. B., Ayed, I. B., Elloumi, I., Bouzid, A., Mosrati, M. A., ... & Masmoudi, S. (2021). Novel pathogenic mutations and further evidence for clinical relevance of genes and variants causing hearing impairment in Tunisian population. Journal of Advanced Research, 31, 13-24. https://doi.org/10.1016/j.jare.2021.01.005
Sugiyama, K., Moteki, H., Kitajiri, S. I., Kitano, T., Nishio, S. Y., Yamaguchi, T., … & Usami, S. I. (2019). Mid-frequency hearing loss is characteristic clinical feature of OTOA-associated hearing loss. Genes, 10(9). 715. https://doi.org/10.3390/genes10090715
Tassano, E., Ronchetto, P., Calcagno, A., Fiorio, P., Gimelli, G., Capra, V., & Scala, M. (2019). ‘Distal 16p12.2 microdeletion’ in a patient with autosomal recessive deafness-22. Journal of Genetics, 98, 56. https://doi.org/10.1007/s12041-019-1107-0
Trpchevska, N., Freidin, M. B., Broer, L., Oosterloo, B. C., Yao, S., Zhou, Y., ... & Nagtegaal, A. P. (2022). Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. American Journal of Human Genetics, 109(6), 1077-1091. https://doi.org/10.1016/j.ajhg.2022.04.010
Vona, B., Maroofian, R., Mendiratta, G., Croken, M., Peng, S., Ye, X., ... & Shi, L. (2017). Dual Diagnosis of Ellis-van Creveld Syndrome and Hearing Loss in a Consanguineous Family. Molecular Syndromology, 9(1), 5-14. https://doi.org/10.1159/000480458
Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603
Weegerink, N. J., Schraders, M., Oostrik, J., Huygen, P. L., Strom, T. M., Granneman, S., ... & Kunst, H. P. (2011). Genotype-phenotype correlation in DFNB8/10 families with TMPRSS3 mutations. Journal of the Association for Research in Otolaryngology, 12(6), 753-766. https://doi.org/10.1007/s10162-011-0282-3
Wong, S. H., Yen, Y. C., Li, S. Y., & Yang, J. J. (2020). Novel mutations in the TMPRSS3 gene may contribute to taiwanese patients with nonsyndromic hearing loss. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072382
Zafar, S., Shahzad, M., Ishaq, R., Yousaf, A., Shaikh, R. S., Akram, J., ... & Riazuddin, S. (2020). Novel mutations in CLPP, LARS2, CDH23, and COL4A5 identified in familial cases of prelingual hearing loss. Genes, 11(9), 1-10. https://doi.org/10.3390/genes11090978 | ||
|
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 4 |
||