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Abstract. In this paper, we introduce the structure of a groupoid
associated to a vector field on a smooth manifold. We show that in
the case of the 1-dimensional manifolds, our groupoid has a smooth
structure such that makes it into a Lie groupoid. Using this ap-
proach, we associated to every vector field an equivalence relation
on the Lie algebra of all vector fields on the smooth manifolds.
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1. Introduction

The concept of a groupoid is a generalization of the concept of a group,
the main difference being that not any two elements of a groupoid are
composable. Note that groupoids generalize not only the notion of a
group but also the notion of a group action. A groupoid can be endowed
with the algebraic, geometric or topological structures and in this case
we can study the compatibility among these structures and groupoid.

Note that the theory of groupoids has developed in different fields
of mathematics. The algebraic, topological and differentiable groupoids
play an important role in algebra, measure theory, harmonic analysis,

1 Corresponding author: abbasi.makrani@gmail.com
Received: 10 October 2013
Revised: 5 March 2014
Accepted: 5 March 2014

267

http://cjms.journals.umz.ac.ir


268 H. ABBASI, G. A. HAGHIGHATDOOST

differential geometry and symplectic geometry. This can also be seen
from a view at the list of references (see [2, 4, 5, 6, 7, 8, 9]).

A set G(1) has the structure of a groupoid with the set of units G(0),
if there are defined maps ∆ : G(0) → G(1) (the unit map), an involution

ι : G(1) → G(1) called the inverse map and denoted by ι(α) = α−1,

a target map r : G(1) → G(0), a source map s : G(1) → G(0) and an
associative multiplication m : (α, β)→ αβ defined on the set

G(2) = {(α, β) ∈ G(1) × G(1)
∣∣ s(α) = r(β)},

satisfying the conditions
(i) s(α) = r(α−1), αα−1 = ∆(r(α)),
(ii) r(∆(t)) = t = s(∆(t)), α∆(s(α)) = α, ∆(r(α))α = α,

for all α ∈ G(1) and t ∈ G(0).
Here, we have only considered groupoids where G(1) and G(0) are sets.

In some interesting cases, however, they have more structure. For ex-
ample, they could be topological spaces, in which case (G(1),G(0)) is a
topological groupoid. In this paper, we will be concerned mainly with
the case when G(1) and G(0) are smooth manifolds. A Lie groupoid or a
differentiable groupoid is a groupoid (G(1),G(0)) such that G(0),G(1) and

G(2) are smooth manifolds, s, r : G(1) → G(0) are smooth submersions,
∆ : G(0) → G(1) is an immersion, and all other maps are smooth.

Any Lie group is obviously a Lie groupoid, taking as the set of units
a set with a single element. Also, if M is a smooth manifold, then
(M×M,M) is a Lie groupoid. It is known that for an arbitrary groupoid

(G(1),G(0)) there is an equivalence relation on the unit space G(0). For

two elements t, l ∈ G(0) the relation t ∼ l if and only if s−1(t)∩r−1(l) 6= ∅
is an equivalence relation on G(0).

Note that Lie groupoids are used in the study of manifolds. They are
geometric objects that interpolate between differentiable manifolds and
Lie groups. To a compact smooth manifold M one associates the com-
mutative algebra C∞(M,R) of its differentiable functions, whereas to a
Lie group G one associates the convolution algebra Cc(G) of compactly
supported smooth functions on the group. The algebras C∞(M,R) and
Cc(G) are particular cases of the convolution algebra of a differential
groupoid and in this way, differentiable groupoids provide a link be-
tween geometry and harmonic analysis (see [3]).

We now give a brief summary of how the paper is organized.
In Section 2 we begin with our basic construction. We construct a

groupoid associated to a vector field X on a smooth manifold M . If M
is a smooth 1-dimensional manifold, we show that our groupoid admits
a smooth structure such that makes it into a Lie groupoid.
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Section 3 contains some conclusions. In this section an equivalence
relation on the Lie algebra of all vector fields χ(M) on M is introduced
and we will give the conditions that the equivalence classes are abelian
Lie subalgebras of the Lie algebra χ(M).

Our basic reference for groupoids is [1], and for an extensive use of
them one can refer to [3].

Throughout this paper, all smooth manifolds are assumed to be real,
Hausdorff, and finite-dimensional. All vector fields on manifolds are
assumed to be smooth.

2. The structure of a groupoid

Assume that M is a smooth manifold and TM its tangent bundle. Let
ΓM = C∞(M,R∗) × C∞(M,R), where R∗ = R\{0}. For each p ∈ M ,
let Tp(M) be the space of tangent vectors to M at p.

Fix a vector field X on M , and let Yp be a non-zero tangent vector
in Tp(M). Let GX(Yp) be the set of all (f, g) ∈ ΓM such that:

Yp(f) = Xp(g) + g(p), f(p)Yp 6= g(p)Xp.

We introduce the set GX(M) as follows:

GX(M) = {(p, Yp, f, g)
∣∣ p ∈M,Yp ∈ Tp(M)\{0p}, (f, g) ∈ GX(Yp)}.

Define an equivalence relation over GX(M).
We say that two elements (p, Yp, f, g) and (q,Wq, h, k) of GX(M) are

equivalent if the following conditions are hold:

p = q, Yp = Wq, f(p)Yp − g(p)Xp = h(q)Wq − k(q)Xq.

Let [a] be the equivalence class of any a ∈ GX(M) and the set of all

equivalence classes of GX(M), is denoted by G(1)X (M).

Let G(0)(M) = {(p, Yp) ∈ TM | Yp 6= 0p}. We have to show that the

pair (G(1)X (M),G(0)(M)) has the structure of a groupoid.

Lemma 2.1. Let M be a smooth manifold and X an arbitrary vector

field on M . Then the pair (G(1)X (M),G(0)(M)) has the structure of a
groupoid, that is, the maps

∆(p, Yp) = [(p, Yp, 1, 0)], the unit map

r([(p, Yp, f, g)]) = (p, Yp), the target map

s([(p, Yp, f, g)]) = (p, f(p)Yp − g(p)Xp), the source map

and the inverse given by

ι([(p, Yp, f, g)]) = [(p, f(p)Yp − g(p)Xp,
1

f
,− g

f
)],
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and the multiplication m given by

m([(p, Yp, f, g)], [(p, f(p)Yp − g(p)Xp, h, k)]) = [(p, Yp, fh, gh+ k)],

satisfy the axioms of a groupoid.

Proof. It is clear that ∆ : G(0)(M) → G(1)X (M) is well-defined. Assume

that [(p, Yp, f, g)] ∈ G(1)X (M). Since

Yp(f) = Xp(g) + g(p),

and f(p)Yp(
1
f ) +

Yp(f)
f(p) = Yp(f

1
f ) = Yp(1) = 0, so we have

(f(p)Yp − g(p)Xp)(
1

f
) +Xp(

g

f
) = f(p)Yp(

1

f
) +

Yp(f)

f(p)
− g(p)

f(p)

= − g(p)

f(p)
.

Also, f(p)Yp−g(p)Xp 6= 0 and 1
f(p)(f(p)Yp−g(p)Xp)+ g(p)

f(p)Xp = Yp 6= 0.

Hence, the map ι : G(1)X (M)→ G(1)X (M) is well-defined. Let

G(2)X (M) = {(α, β) ∈ G(1)X (M)× G(1)X (M)
∣∣ s(α) = r(β)}.

To show m(G(2)X (M)) ⊆ G(1)X (M), assume that

([(p, Yp, f, g)], [(p, f(p)Yp − g(p)Xp, h, k)]) ∈ G(2)X (M).

Since Yp(f) = Xp(g) + g(p) and f(p)Yp(h) = g(p)Xp(h) +Xp(k) + k(p),
so one can get

Yp(fh)−Xp(gh+ k) = Yp(f)h(p) + k(p)−Xp(g)h(p)

= (gh+ k)(p).

Also, Yp 6= 0 and h(p)f(p)Yp− g(p)h(p)Xp− k(p)Xp 6= 0. Therefore, the

map m : G(2)X (M)→ G(1)X (M) is well-defined. It is easy to check that m
is associative. It is straightforward to check that the following axioms
are true

s(α) = r(α−1), αα−1 = ∆(r(α)),

r(∆(t)) = t = s(∆(t)),

α∆(s(α)) = α, ∆(r(α))α = α,

for all α ∈ G(1)X (M) and t ∈ G(0)(M). �

We illustrate our construction in the case M = R and X = ∂
∂x .
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Example 2.2. Apply the above lemma to M = R and X = ∂
∂x . One

can identify G(0)(R) with R×R∗ and G(1)X (R) with R×R∗×R∗ and their
maps are as follows:

∆(x1, x2) = (x1, x2, x2), r(x1, x2, x3) = (x1, x2),

s(x1, x2, x3) = (x1, x3),

and the inverse is given by

ι(x1, x2, x3) = (x1, x3, x2),

and the multiplication is given by

(x1, x2, x3)(x1, x3, y) = (x1, x2, y).

Remark 2.3. As a consequence of Lemma 2.1, one gets an equivalence
relation on G(0)(M) (see Section 1 above). Fix a vector field X. We say

that two elements (p, Yp) and (q,Wq) of G(0)(M) are equivalent if and
only if there exists a pair (f, g) ∈ ΓM such that:

p = q, f(p)Wp = g(p)Xp + Yp, Wp(f) = Xp(g) + g(p).

The next theorem indicate situations in which G(1)X (M) has a smooth

structure as a smooth manifold and (G(1)X (M),G(0)(M)) is a Lie groupoid.

Theorem 2.4. Let M be a smooth 1-dimensional manifold and X a

vector field on M . Then G(1)X (M) has a topology and a smooth structure
such that make it into a smooth 3-dimensional manifold. Moreover,

(G(1)X (M),G(0)(M)) is a Lie groupoid.

Proof. We begin by defining the maps that will become our smooth
charts. Let (x, U) be a smooth coordinate chart on M . For every p ∈ U,
write Xp = X1

p ( ∂
∂x)p in terms of the coordinate basis. Let

Ũ = {[(p, Yp, f, g)] ∈ G(1)X (M)
∣∣ p ∈ U}.

Let D1 = R∗ × R∗. If we define x̃ : Ũ → x(U)×D1 as

x̃([(p, a(
∂

∂x
)p, f, g)]) = (x(p), a, f(p)a− g(p)X1

p ),

then x̃ is a bijection, with the inverse x̃−1 : x(U)×D1 → Ũ by setting

x̃−1(x(p), a, b) = [(p, a(
∂

∂x
)p, f, g)],

where (f, g) ∈ ΓM is a pair with the following properties:

f(p)a = g(p)X1
p + b, a(

∂f

∂x
)p = Xp(g) + g(p).

It is easy to check that the pair (f, g) exists, and x̃−1 is well-defined.
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We can therefore use x̃ to transfer the topology of x(U)×D1 to Ũ : a

set A in Ũ is open if and only if x̃(A) is open in x(U)×D1. Let B be the

collection of all open subsets of Ũi as Ui runs over all coordinate open
sets in M. Then B satisfies the conditions for a collection of subsets to
be a basis for some topology on G(1)X (M).

Let {Ui}∞i=1 be a countable basis of M consisting of coordinate open
sets. Since

Ũi = {[(p, Yp, f, g)] ∈ G(1)X (M)
∣∣ p ∈ Ui} ' Ui ×D1,

it is diffeomorphic to an open subset of R3 and is therefore second

countable. For each i, choose a countable basis {Bi,j}∞j=1 for Ũi. Then

{Bi,j}∞i,j=1 is a countable basis for G(1)X (M). Now, suppose we are given

two charts (x, U) and (y, V ) for M , and let (x̃, Ũ), (ỹ, Ṽ ) be the corre-

sponding charts on G(1)X (M). Then the sets

x̃(Ũ ∩ Ṽ ) = x(U ∩ V )×D1,

and

ỹ(Ũ ∩ Ṽ ) = y(U ∩ V )×D1,

are both open subsets of R3. If Ũ ∩ Ṽ 6= ∅, then the transition maps
ỹ◦x̃−1 and x̃◦ỹ−1 are clearly smooth. Therefore, if {(xi, Ui)} is a smooth

atlas for M , then {(x̃i, Ũi)} is a smooth atlas for G(1)X (M) and G(1)X (M)
is a smooth 3-dimensional manifold.

Also, G(0)(M) is a smooth 2-dimensional manifold and its smooth
atlas is as follows. Given any coordinate chart (x, U) for M and set˜̃

U = {(p, Yp) ∈ G(0)(M)
∣∣ p ∈ U}.

If we define ˜̃x :
˜̃
U → R2 by

˜̃x(p, a(
∂

∂x
)p) = (x(p), a),

then its image set is x(U) × R∗, which is an open subset of R2. It is a
bijection onto its image, because its inverse can be written explicitly as

(x(p), a) 7→ (p, a(
∂

∂x
)p).

One can check that if {(xi, Ui)} is a smooth atlas for M , then {(˜̃xi, ˜̃U i)}
is a smooth atlas for G(0)(M). Also, G(2)X (M) is a smooth 4-dimensional

submanifold of G(1)X (M) × G(1)X (M) and s, r : G(1)X (M) → G(0)(M) are

smooth submersions, ∆ : G(0)(M) → G(1)X (M) is an immersion, and the
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maps ι : G(1)X (M) → G(1)X (M) and m : G(2)X (M) → G(1)X (M) are smooth.

Hence, (G(1)X (M),G(0)(M)) is a Lie groupoid. �

3. An equivalence relation on the Lie algebra of all
vector fields on a smooth manifold

Let M be a smooth manifold and χ(M) be the Lie algebra of all
vector fields on M . In this section, we introduce an equivalence relation
on χ(M) associated to a vector field X. The idea comes from Remark
2.3. We say that two elements Y and W of χ(M) are equivalent iff there
exists a pair (f, g) ∈ ΓM such that:

fW = gX + Y, W (f) = X(g) + g,

and write (f, g) : Y → W, where ΓM is defined as before by ΓM =
C∞(M,R∗)× C∞(M,R).

We have (1, 0) : Y → Y , for every Y ∈ χ(M). If (f, g) : Y →W , then
( 1
f ,
−g
f ) : W → Y. Also, if (f, g) : Y → W and (h, k) : W → Z, then

(fh, fk + g) : Y → Z. Therefore, we obtain an equivalence relation on
χ(M).

Let [Y ]X be the equivalence class of any Y ∈ χ(M). Let us give an
example.

Example 3.1. The vector field X on R2 defined in terms of the identity
chart x by

X = x1
∂

∂x1
+ x2

∂

∂x2

has integral curves γ = (z1 exp t, z2 exp t). Let ζ be the zero vector field,
defined by ζ(f) = 0 for each f ∈ C∞(R2,R). We have

[ζ]X = { g
f
X | (f, g) ∈ ΓR2 , gX(f)− fX(g) = fg}.

Assume that W = g
fX ∈ [ζ]X such that g is a non-zero function. Since

d
dt(

g
f ◦ γ) = X( g

f ) ◦ γ, it follows that

f(z1, z2)g(z1 exp t, z2 exp t) exp t = f(z1 exp t, z2 exp t)g(z1, z2),

on R, for all (z1, z2) ∈ R2. Hence, we have

f(z1, z2)g(z1s, z2s)s = f(z1s, z2s)g(z1, z2),

for all (z1, z2) ∈ R2 and all s > 0. Since g
f 6= 0 we can choose z ∈ R2

such that g(z)
f(z) 6= 0. Then lims→0 | g(sz)f(sz) | would be infinite and this would

imply that g
f is not continuous at 0 and this is a contradiction. Hence,

we have [ζ]X = {ζ}.
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In general, one can check that the equivalence classes are not sub-
spaces of χ(M). Now, we will give the conditions that the equivalence
classes are Lie subalgebras of the Lie algebra χ(M).

Theorem 3.2. Assume that X,Y ∈ χ(M). Then the following proper-
ties are equivalent:

(i) [Y ]X is an abelian Lie subalgebra of the Lie algebra χ(M),
(ii) [Y ]X = {fX | f ∈ C∞(M,R), X(f) = −f},
(iii) there is a smooth function e ∈ C∞(M,R) such that Y = −eX

and X(e) = −e.

Proof. It is easy to check that (i) =⇒ (ii) and (ii) =⇒ (iii). So, it
suffices to show only (iii) =⇒ (i). Let e ∈ C∞(M,R) such that Y =
−eX and X(e) = −e. Assume that W,Z ∈ [Y ]X . Therefore, there are
the pairs (f, g), (h, k) ∈ ΓM such that (f, g) : Y → W, (h, k) : Y → Z.
We have to show that (s, t) = (fh, fk+hg+e(1−h−f)) : Y →W +Z.
It follows that

s(W + Z)− tX = Y,

and

(W + Z)(s)−X(t) = X(g)h+ hg + (g − e)X(h)

+ (k − e)X(f) + fX(k) + fk

−X(f)k − fX(k)−X(g)h− gX(h)

−X(e) +X(e)h+ eX(h) +X(e)f + eX(f)

= t.

Hence, W + Z ∈ [Y ]X . On the other hand, it is simple to see that
λW ∈ [Y ]X , for all λ ∈ R. Therefore, [Y ]X is a subspace of the space
χ(M). Also,

fh[W,Z] = (g − e)X(k − e)X − (g − e)X(h)
1

h
(k − e)︸ ︷︷ ︸

X(k)+k

X

− (k − e)X(g − e)X + (k − e)X(f)
1

f
(g − e)︸ ︷︷ ︸

X(g)+g

X

= 0.

Since fh ∈ C∞(M,R∗), it follows that [W,Z] = 0. �

A non-zero function h ∈ C∞(M,R) such that X(h) = λh, for some
real number λ, is said to be an eigenfunction of the vector field X and
λ is called the corresponding eigenvalue. Note that a non-zero function
h ∈ C∞(M,R) is an eigenfunction of a vector field X corresponding to a
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zero eigenvalue if and only if it is constant on the range of every integral
curve.

Example 3.3. (i) Any vector field X on a compact manifold M has all
its eigenvalues zero. Let ζ : C∞(M,R)→ C∞(M,R) be the zero vector
field. Using Theorem 3.2, one gets [ζ]X = {ζ}.

(ii) The vector field X on R2 defined in terms of the identity chart x
by

X = x2
∂

∂x1
− x1 ∂

∂x2

has every eigenvalue zero, since its integral curves

γ = (a sin(t+ b), a cos(t+ b))

are all periodic, that is, there exists r > 0 such that γ(t1) = γ(t2) if and
only if t1 − t2 = kr for some k ∈ Z. Let ζ : C∞(R2,R)→ C∞(R2,R) be
the zero vector field. Hence, from Theorem 3.2, we have [ζ]X = {ζ}.
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