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ABSTRACT. The intent of this article is to propose an attribute
group acceptance sampling plan under time-censoring when the
lifetime of a product follows the generalized half-normal (GHN)
distribution. The test plans are formulated by using a traditional
two-point method as well as by minimizing and limiting a linear
combination of conventional producer and consumer risks. The op-
timal number of groups and the acceptance number are obtained
using integer nonlinear programming. The suggested optimal group
plans outperform the traditional optimal two-point plan in terms
of sample size when the producer and consumer risks are less than
a maximum risk tolerated by the analyst. The proposed plans are
applied to a real data set for illustrative purposes.
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1. INTRODUCTION

Quality control methods for manufactured products of companies in-
clude systematic methods to ensure products comply with quality stan-
dards. Acceptance sampling constitutes a critical instrument in the do-
main of industrial quality control, enabling practitioners to ascertain
the acceptability of products predicted on the data derived from a ran-
domly selected sample of the lot. In these schemes, the product lots
are subjected to inspection protocols to determine their acceptance or
rejection based on randomly selected samples extracted from the lots. A
multitude of lot inspection frameworks are present in the academic lit-
erature, each presenting distinct viewpoints. Notably, one can reference
the work of [13], [22], [7] and, more recently, [15], [19] and [11].

Single acceptance sampling plans (SASPs) by attributes are the sim-
plest plans in industrial quality, where a lot of products is accepted if
no more than ¢ failures occur during the experiment time. For more
detailes, see [18]. The advancement of SASPs has culminated in the de-
velopment of group acceptance sampling plans (GASPs), wherein testers
are able to assess multiple items simultaneously, thereby resulting in sig-
nificant savings in both time and cost. This type of acceptance sampling
plans has been considered by many researchers based on several prob-
ability distributions. Papers by [2], [13] and [17] were focused on the
Weibull distribution, while [24], [5] and [6] discussed the generalized ex-
ponential distribution. Gamma distribution was analyzed in [4]. The
design of GASPs under other models such as the inverse Rayleigh, in-
verse log-logistic, generalized transmuted-exponential, gamma Lindley,
transmuted Weibull, odd-Perks-Lomax and type-1 heavy-tailed Rayleigh
distributions was proposed by [3], [27], [10], [1], [26], [16] and [21].

[25] introduced the generalized gamma (GG) distribution with two
shape parameters and a scale parameter. Many distributions commonly
used for parametric models in reliability analysis such as the exponential,
Weibull, gamma, log-normal and half-normal distributions are special
cases of the GG distribution. The hazard function of the GG distri-
bution is bathtub-shaped and hump-shaped for some values of shape
parameters. The GHN distribution is proposed by [J] to describe the
lifetime process under fatigue and is the only member in the family of
G @ distribution which has a bathtub-shaped hazard function with rich
statistical properties and mathematically tractable two parameter life-
time density, see [28] and [20] for more detailes.

All works presented in the literature on GASP based on lifetime data
have focused on finding the optimal number of groups and the accep-
tance number using the traditional single-point method or two-point
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method (simultaneous control of producer and consumer risk). Our mo-
tivation is to design a GASP where the optimal parameters of the plan
are determined by limiting and minimizing a weighted-average of the
conventional producer and consumer risks.

The remainder of the article is structured as follows. The methodology
of GASP is proposed in Section 2. The GASPs with minimal weighted-
average risks are presented in Section 3. The GASPs are developed to
find the best plans with limited weighted-average risks in Section 4. A
real data example is provided in Section 5. Finally, concluding remarks
are offered in Section 6.

2. TIME CENSORED GSPSS FOR LOT SENTENCING

According to [2], the procedure of the GASP under time-censoring is
as follows:

(1) Select the number of groups g and allocate k units to each group
so that the sample size is n = gk.

(2) Select the acceptance number ¢ (< k) for a group and the ter-
mination time %g.

(3) Perform the experiment for the g groups altogether and record
the number of failures for each group.

(4) Retain the lot if no more than c failures are observed across each
of the groups; otherwise, terminate the experiment and reject
the lot.

The above procedure is known as time censored GASPs, where the ex-
periment time is censored. For more information, see papers by [[14] and
8.

The probability distribution of the quality characteristic aids to design
an efficient acceptance sampling plan. [J] proposed the GHN distribu-
tion for the material specimen failure time ¢ with the probability density
function (pdf)

0
s =y2(5) (4) e s, 2.1)

and the associated cumulative density function (cdf)

(;)6] 1, >0, (2.2)

where § > 0 and A > 0 are the shape and scale parameters, respectively,
and ®(.) denotes the cdf of the standard normal distribution. We denote
a random variable with pdf (@) by T ~ GHN (9, \).

F(t;0,\) =29
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The mean of the random variable T of the GHN distribution can be

computed as
1
25 1496
=/—T(—— A 2.
p=y 2 ( as ) , (23)

which is proportional to the scale parameter A when the parameter ¢ is
fixed. For simplicity, the mean lifetime is considered the quality char-
acteristic of interest. However, note that in our context, it is equivalent
to use the mean or median lifetimes, or even a given percentile.

Assume that the lifespan of products follows the GHN (4, ) with pdf
given in (R.1)). Let u be the true mean lifetime of products and g be the
specified mean life. The quality level of a product can be expressed in
terms of the ratio r = pu/up. Test termination time ¢y can be determined
as a multiple of ug, that is tg = fug, where f is a positive constant.

The operating characteristic (OC') curve depicts the relationship be-
tween the probability of accepting a lot and the true proportion of de-
fective items p. The OC function is defined by L(p) = L(p;g,c) and is
given by

L) = [ZO ()pa-m] (2.4

where p = p(f,d,r) denotes the probability that a product in a group
fails before the time tg and is given by

=

1)
25 f (1456
—T <25> ~ 1. (2.5)

Assume that the producer and consumer characterize the acceptable
and rejectable defective rates, defined as py = p(f,d,79) and p; =
p(f,0,71), respectively, where ry is the mean ratio at the producer’s
risk and 77 is the mean ratio at the consumer’s risk. The conventional
producer risk (PR) and the consumer risk (CR) are defined respectively
as sup,<p, 11 — £(p)} and sup,>, {£(p)}. Since L(p) is a decreasing
function of p, then the PR and CR are given by PR(g,c,pg) = 1— L(po)
and CR(g,c,p1) = L(p1), which can be expressed as

PR(g,c,po) =1— [i (?)Pé(l —po)ki]g, (2.6)

1=0

p(r) =2

and

crg.eon =3 (Mot -] .1

1=0
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TABLE 1. Minimum-WR. group number, g., and the corre-
sponding risks (%) for selected values of ¢ when § = 1,79 =
2, =1, k=5, f=0.5,1.0.

(’LU()7 wl) = (027 08) (w(], wl) = (05, 05) (’LU()7 ’LU1) = (08, 02)
f ¢ g WR PR CR % WR PR OR . WR PR CR
05 0 2 18.38 82.11 2.44 1 36.67 57.71 15.63 1 49.29 57.71 15.63
1 5 15.28 6291 3.37 3 2896 44.84 13.08 1 2454 17.99 50.76
2 20 10.93 46.45 2.05 11 2043 29.07 11.79 3 1832 894 55.82
3 121 6.74 28.16 1.38 78 1277 19.20 6.34 36 13.09 937 27.99
4 1716 3.70 15.59 0.73 1216 7.19 11.32 3.05 715 8.03 6.82 1285
1.0 0 1 17.98 84.37 1.39 1 4288 84.37 1.39 1 67.77 84.37 1.39
1 2 15.77 74.23 1.16 1 30.00 49.24 10.76 1 4154 49.24 10.76
2 4 1217 54.04 1.71 2 2263 32.21 13.06 1 21.36 17.66 36.14
3 12 8.12 34.59 1.50 7 1528 21.93 8.64 3 15.05 10.07 35.00
4 73 448 18.90 0.87 50 8.63 13.37 3.89 28 942 772 16.22

3. OrpTIMAL GASP WITH MINIMAL WEIGHTED-AVERAGE OF RISKS

[23] analyzed simple and composite hypotheses using minimization
of a weighted sum of Type I and II errors. [12] and [20] developed
this idea to design optimal acceptance test plans by minimizing and
limiting a weighted-average of producer and consumer risks. Our aim
is to expand this method to design an GASP under time censoring for
GHN distribution.

Consider the weighted-average of PR and CR risks (WR) as

WR(gv Czp07pl) - U)OPR(g, Cap(]) + ’LUlCR(g, cvpl)a (31)

where the positive constants wg and wq are the producer and consumer
weights, respectively and wg + wy = 1. The optimal GASP with a fixed
acceptance number ¢ can be obtained by minimizing (B.1)). Therefore,
the optimization problem can be written as

min{WR(g,c,po,p1) : (g,¢) € Q},
where Q = {(g,¢) : n € N,c € Ng,c < k} is the feasible region, N =
{1,2,3, ...} is the set of positive integers and Ny = N J{0}.

The number of groups with minimum WR, g., and their associated
risks (WR, PR and CR) are presented in Table 1 and 2 for rg = 2, r; =
1, k=5, f=0.5,1,¢=0(1)4 and wy = 0.2,0.5,0.8 when § = 1 and § =
2, respectively. It can be observed that the minimum-WR group number
ge grows when acceptance number c¢ increases, while the WR and PR
decrease. For instance, if f = 0.5, wg = 0.2 and § = 1, we obtain from
Table 1 that go = 2(np =2 x5 =10), WR = 18.38%, PR = 82.11% and
CR = 2.44%, whereas g1 = 5(n1 = 25), WR = 15.28%, PR = 62.19%
and CR = 3.37%.

Moreover, when wyg increases, g. and the PR decrease, whereas the
CR grows. For instance, if f =0.5, ¢ =1 and § = 1, we obtain g. = 5,
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TABLE 2. Minimum-WR. group number, g., and the corre-
sponding risks (%) for selected values of ¢ when § = 2,79 =
2, =1, k=5, f=0.5,1.0.

(wo,w1) = (0.2,0.8) (wg,w1) = (0.5,0.5) (wo,w1) = (0.8,0.2)
gc WR PR CR 9o WR PR CR 9o WR PR CR

5 13.69 57.56 2.73 3 2586 40.20 11.52 1 2233 15.75 48.65
29  6.46 26.61 1.42 19 12.25 18.35 6.16 9 1266 9.15 26.71
277 225  9.58 0.42 206 4.46 7.22 1.71 135 522 479 6.94
4734 0.67 293 0.11 3773 1.38 234 0.42 2812 1.74 175 1.70

1 1275 51.35 3.10 1 2722 51.35 3.10 1 41.70 51.35 3.10
3 7.64 35.60 0.65 2 1445 2543 347 1 14.64 13.64 18.63
7 3.19 1292 0.76 5 6.24 941 3.07 3 7.08 5.76 12.37

31 1.00 439 0.15 24 2.04 342 0.66 17 252 243 2.86
250 0.24 1.08 0.03 206 0.51 0.89 0.14 163 0.67 0.71 0.54

s (-) are presented in the required cells for a large number of groups.

c
0
1
2
3
4
1.0 0
1
2
3
4
h

WR=15.28%, PR =62.91% and CR = 3.27% when wy = 0.2, whereas
ge =3, WR = 28.96%, PR = 44.84% and CR = 13.08% when wy = 0.5.
For better presentation of the results, the WR percentage is plotted
in Figure [l| versus the number of groups g when ¢ = 1, § = 2,1y =
2, 1=1, k=5 f=0.510and wg = 0.5. It can be seen that the
optimal number of groups are ¢ = 19 and g = 2, when f = 0.5 and
f = 1.0, respectively. Figure gshows the OC functions for the best
GASP forc=1, § =2,19 =2, r1 =1, k =5 and the producer weight
wo = 0.2,0.5,0.8 when f = 0.5,1.0. It is clear that the lot acceptance
probability is higher for the GASP (29,1) and (3,1) when f = 0.5 and
f = 1.0, respectively. The WR, PR and CR percentages versus wqg are
depicted in Figure § for c =1, § = 2,19 = 2, r1 = 1, £k = 5 when
f =0.5,1.0. It is evident that the PR reduces and the CR increases,
when wy increases while the WR first increases and then decreases.

4. OPTIMAL GASP WITH LIMITED WEIGHTED-AVERAGE OF RISKS

The conventional two-point method to determine the optimal GASP
controls consumer and producer risks concurrently. The consumer re-
quires that the probability of lot acceptance should be smaller than
the specified consumer’s risk § at a lower quality level (usually at ra-
tio 1), whereas the producer demands that the lot rejection probability
should be smaller than the specified producer’s risk « at a higher qual-
ity level. The producer wants PR(g,c,po) < «, whereas the consumer
wants CR(g,c,p1) < . Optimal (o, 8)—(PR,CR) plans, (g¢,¢), can be
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Ficure 3. WR, PR and CR percentages versus wg when
c=1,6=2,19=2, =1, k=5, f=0.5,1.0

determined by solving the constrained optimization problem
Minimize ¢
Subject to PR(g,c,pp) < a,
CR(ga Capl) < Ba (41)
g €N, ceNp,
c<k.

Suppose that the analyst wants to control the risk incurred by the
selected GASP by considering v € (0, 1) as the maximum risk tolerated,
where v < min{wg,w;}. Our aim is to determine the optimal num-
ber of groups and the acceptance number that satisfy the inequality
WR(gacup07p1) S -

The constrained optimization problem to obtain the optimal group
number, g*, and the optimal acceptance number, ¢*, is an integer non-
linear programming problem, which can be stated as follows:

Minimize ¢

Subject to WR(gv ¢, pOapl) < 7,
g €N, ce Ny,
c<k.

(4.2)

A step-by-step iterative method to determine the optimal plan pa-
rameters, (g*, ¢*), can be summarized as follows:

e Step 1. Set the value of parameter J, the termination ratio f,
the group size k, the maximum risk tolerated by the analyst -,
and the producer and consumer weights, wg and w; = 1 — wyg.
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e Step 2. Set the initial values of plan parameters, the number of
groups g = 1 and the acceptance number ¢ = 0.

e Step 3. Calculate the PR, CR and WR given in (@), (@) and
(@j), respectively..

e Step 4. Determine the different feasible plans S = (g, ¢) verifying
the nonlinear inequality constraint W R(g, ¢, po, p1) < 7.

e Step 5. Find the best plans with minimal g and ¢ from the
feasible solutions obtained in the previous step.

Optimal y—WR plan, (¢*,c¢*), and the associated risks(%) are sum-
marized in Tables 3 and 4 for different values of v = 0.02,0.05, rg =
2(2)10, 1 =1, k=5, f =0.5,1.0 and wg = 0.2,0.5,0.8 when ¢ = 1
and § = 2, respectively. In view of Tables 3 and 4, it is clear that the
optimal group numbers tend to decrease as 7y increases. For instance,
ifro=4, =1, k=5, f =05, § =2 and wy = 0.2, the opti-
mal 0.02—WR and 0.05—WR plans are (27,1) and (20, 1), respectively.
Moreover, optimal group numbers decrease when 7y increases. For ex-
ample, if wg =0.2, ry =1, f=0.5, § =2, then the optimal 0.05—WR
group numbers are 20 and 5 when rg = 4 and rg = 6, respectively.

For a graphical comparison of traditional optimal two-point y—(PR,CR)
and y—WR plans, Figure H shows the optimal 0.05—(PR,CR) and 0.05—WR
group number versus wg for 11 =1, f = 0.5 and rg = 4 when § = 1 and
d = 2. It can be seen that the optimal 0.05—(PR,CR) group numbers
are 85 and 21 when 6 = 1 and § = 2, respectively, whereas the values
of optimal 0.05—WR group numbers are less than 85 and 21. This im-
plies that the optimal v — W R plan outperforms the traditional optimal
v — (PR,CR) plan in terms of sample size n = gk, when the PR and
CR are at most ~.

5. REAL DATA APPLICATION

A practical example is presented in this section to illustrate the pro-
posed GASP. The data set given in Table fj reported in [J] represents the
stress-rupture life of kevlar 49/epoxy strands, subjected to the constant
sustained pressure at the 70% stress level until all had failed.

We fit GHN distribution as well as Gamma, Log-normal, Weibull and
Birnbaum-Saunders distributions to the data. The criteria of fitness
are the Akaike information criterion (AIC), Bayesian information crite-
rion (BIC), the log-likelihood (LL) function, Kolmogorov-Smirnov (K-S)
statistic and p-value. Table 6 displays the model fitting summary of the
chosen data set. From Table 6, it is clear that the GHN distribution has
a good fit to considered data set as compared to Gamma, Log-normal,
Weibull and Birnbaum-Saunders distributions.
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TABLE 3. Optimal y—WR plan, (g%, ¢*), and the associated
To, w05f7T1:17 k=25

risks(%) for selected values of ~,

when 6 = 1.
(wo,w1) = (0.2,0.8) (wo,w1) = (0.5,0.5) (wo,w1) = (0.8,0.2)
f Y ooro g ¢ WR PR CR g ¢ WR PR CR g ¢ WR PR CR
05 002 2 P . - oo o« oo« .
4 111 3 199 2.05 1.97 112 3 199 2.07 1.90 842 4 2.00 0.27 8.92
6 21 2 192 285 1.69 94 3 1.98 0.35 3.60 69 3 1.95 0.26 8.71
8 20 2 188 1.18 2.05 19 2 1.80 1.12 2.49 14 2 198 0.83 6.58
10 7 1 199 6.46 0.87 18 2 1.79 0.55 3.02 13 2 192 040 7.99
0.05 2 - - - - - - - - - - - - - - -
4 16 2 494 6.87 4.46 69 3 5.00 1.28 8.71 44 3 4.87 0.82 21.09
6 6 1 421 1422 1.71 13 2 4.88 1.77 7.99 9 2 446 1.23 17.39
8 5 1 411 7.09 3.37 13 2 438 0.77 7.99 8 2 460 047 21.12
10 5 1 3.63 4.66 3.37 5 1 4.01 4.66 3.37 3 1 487 282 13.08
1.0 0.02 2 - - - - - - - - - - - - - - -
4 12 3 185 3.23 1.50 52 4 196 0.51 3.41 38 4 199 037 847
[§ 5 2 148 492 0.62 10 3 1.80 0.57 3.02 8 3 1.58 046 6.09
8 4 2 1.72 176 1.71 4 2 173 176 1.71 4 2 1.7 1.7 1.71
10 4 2 155 093 1.71 4 2 132 093 1.71 3 2 150 0.70 4.72
0.05 2 - ; } .- - .- o .
4 4 2 371 1174 171 8 3 412 216 6.09 5 3 456 1.36 17.39
6 2 1 437 17.20 1.16 3 2 3.85 298 4.72 2 2 421 200 13.06
8 2 1 3.02 1045 1.16 3 2 3.02 1.32 4.72 2 2 332 089 13.06
10 2 1 232 698 1.16 2 1 407 698 1.16 1 1 5.00 3.55 10.76

Dashs (-) are presented in the required cells for a large number of groups.

TABLE 4. Optimal v—WR plan, (g*, ¢*), and the associated
risks(%) for selected values of v, rg, wo, f, 71 =1, k=05

when § = 2.
(wo, w1) = (0.2,0.8) (wo, w1) = (0.5,0.5) (wo, w1) = (0.8,0.2)

f v 1 ¢ & WR PR CR g ¢ WR PR CR ¢ & WR PR CR
05 002 2 - - - -  — - - T - - - - -
4 27 1 190 1.87 1.90 27 1 1.89 187 1.90 23 1 1.96 159 3.42

6 26 1 1.84 036 221 23 1 1.87 032 342 17 1 184 024 826

8§ 7 0 194 712 065 23 1 176 0.10 342 16 1 1.97 007 9.56

10 6 0 1.8 397 133 23 1 173 004 342 16 1 194 0.03 9.56

005 2 - - - - - L - o .

4 20 1 453 139 532 17 1 472 118 826 11 1 4.60 0.77 19.91

6 5 0 397 895 273 16 1 489 022 956 10 1 472 0.4 23.06

8 5 0 321 514 273 4 0 487 413 560 3 0 479 3.11 1152

10 5 0 284 332 273 4 0 413 266 560 3 0 391 200 11.52

1.0 002 2 20 3 1.79 286 1.53 105 4 1.95 046 345 77 4 1.96 0.33 847
4 3 1 115 315 065 3 1 1.90 315 065 4 2 135 015 6.16

6 3 1 065 065 065 2 1 1.95 044 347 2 1 1.04 044 347

§ 2 0 170 811 010 2 1 1.81 014 347 2 1 081 014 347

100 2 0 113 526 010 2 1 176 006 347 2 1 074 0.06 3.47

005 2 5 2 434 941 307 12 3 493 172 813 8 3 468 115 1877

4 2 1 320 211 347 2 1 279 211 347 1 1 458 1.06 18.63

6 1 0 393 727 310 2 1 195 044 347 1 1 3.90 022 1863

8§ 1 0 331 414 310 1 0 362 414 310 1 0 393 414 3.10

10 1 0 301 267 310 1 0 288 267 310 1 0 275 267 3.10

Dashs (-) are presented in the required cells for a large number of groups.
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FIGURE 4. Optimal y—WR and y—(PR,CR) group num-
bers versus wo whenrg =4, r1 =1, k=5, f = 0.5 when
0=1and é=2.

TABLE 5. Failure times (in hours) of strands.

10561 1137 1389 1921 1942 2322 3629 4006 4012 4063
4921 5445 5620 5917 5905 5956 6068 6121 6473 7501
7886 8108 8546 8666 8831 9106 9711 9806 10205 10396
10861 11026 11214 11362 11604 11608 11745 11762 11895 12044
13520 13670 14110 14496 15395 16179 17092 17568 17568

The maximum likelihood estimates of the parameters for this data
set are 6 = 1.6407 and A = 10906.98. Using (@), the mean life can be
estimated as pg = 8809. If we consider the termination ratio as f = 1.0,
then, the termination time is tg = 8809h. The optimal 0.05-WR plans
and the corresponding risks are reported in Table 7 for k = 5, ry =
2(2)10 and wy = 0.2,0.5,0.8. If we consider o = 4 and wy = 0.5, then
optimal 0.05-WR plans are (¢*,c¢*) = (2,1) with corresponding risks
WR = 4.28%, PR = 5.84% and CR = 2.72%. According to these
specifications, a total of n = 10 products are needed and five items will
be allocated to each of the two groups. We will accept the lot if one
failure occurs before tg = 8809h in each of the two groups.

6. CONCLUDING REMARKS

There are several works in the research literature that focus on GASP
by determining the optimal group number and acceptance number us-
ing the traditional single-point method or two-point method. This study
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TABLE 6. Distribution fit test results of the considered

data set.
Model LL AIC BIC K-S statistic p-value
GHN —479.66 963.32 967.11 0.06 0.97
Gamma —483.14 970.28 974.06 0.11 0.60
Log-normal —487.87 979.74 983.52 0.14 0.17
Weibull —480.85 965.70 969.48 0.09 0.87
Birnbaum-Saunders —488.43 980.86 984.64 0.17 0.07

TABLE 7. Optimal 0.05—WR plans, (¢*,c*), and the associ-
ated risks(%) when k =5 and § = 1.6407.

(wo, w1) = (0:2,0.8) (wo, w1) = (0.5,0.5) (wo, w1) = (0.8,0.2)
* ¢ WR PR CR g ¢ WR PR CR g* WR PR CR

*

~
=

S}
Q

0.5 2 81 2 496 13.32 2.88 614 3 5.00 3.20 6.79 414 3 5.00 2.17 16.31
4 12 1 485 3.90 5.09 12 1 449 390 5.09 8 1 484 262 13.73
6 5 0 484 21.29 0.73 10 1 4.62 0.89 8.36 6 1 494 053 22.56
8 4 0 3.81 11.24 1.95 10 1 435 0.35 8.36 6 1 4.68 021 22.56
10 4 0 315 793 195 4 0 494 793 1.95 6 1 459 0.10 22.56
1.0 2 13 3 473 554 4.53 14 3 476 595 3.57 40 4 490 0.73 21.61
4 2 1 334 584 272 2 1 428 584 272 2 2 460 035 21.61
6 1 0 486 14.00 2.58 2 1 219 1.66 272 1 1 39 0.83 16.49
8 1 0 385 893 258 2 1 1.69 066 2.72 1 1 356 033 16.49
10 1 0 332 626 2.58 1 0 442 6.26 2.58 1 1 343 0.16 16.49

presents a method for developing the optimal GASP for GHN distribu-
tion using minimization and limiting a weighted-average of risks.

GASPs with minimal WR, (g.,c) are constructed. Afterwards, the
~v-WR plans, (g*,c*), are determined by solving constrained optimiza-
tion problems using integer nonlinear programming. It is observed that
the optimal 7-WR plans outperform the traditional optimal v-(PR,CR)
plans in terms of sample size. A real data analysis is provided to il-
lustrate the results. The results derived for GHN distribution are also
valid for any other lifetime distributions.

The methodology outlined in this article may also be utilized in cases
where there exists prior knowledge regarding the nonconforming pro-
portion. In this situation, it may be possible to utilize a pre-existing
consensus model to integrate expert viewpoints into the development of
the most efficient GASP, leading to further reductions in group number
and acceptance number. The optimal group number and acceptance
number can be determined by defining a linear combination of expected
produser and consumer risks.
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